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A suitable electrolyte is crucial to enhancing the electrochemical performance

of magnesium (Mg) batteries. Here, the influence of Na2SiO3 on the

electrochemical behavior of AZ31B Mg alloy in the Na2SO4-NaNO3

composite electrolyte was investigated. The results revealed that the

activation potential of the AZ31B Mg alloy first represented a negative shift

and then a positive shift with the increase in Na2SiO3. The most negative

activation potential (−1.51 V) and the lowest polarization (−3.20 V) were

found when 6mM of Na2SiO3 was added; no discharge hysteresis was

observed, and the polarization resistance value (R1) was 3,806Ω. After 24 h

immersion in the composite electrolyte with Na2SiO3, more and wider cracks

appeared on the alloy surface, where a thick, dense film was formed, showing

excellent discharge performance and corrosion resistance.
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Introduction

In view of the limited nature and high price of lithium resources, the research on

electrochemical energy storage devices, such as non-lithium batteries (Zhang J. L. et al.,

2021; Liu et al., 2021; Wan et al., 2022) and supercapacitors (Zhang Y. et al., 2021; Wei

et al., 2021) is increasing.Magnesium (Mg) holds a promising application in anodematerials for

the first-generationMg battery owing to its abundance, small density (1.74 g cm−3), low cost, and

excellent electrical conductivity (Bertasi et al., 2016; Yang et al., 2022). In addition, located on the

diagonal of the periodic table, Mg and Li share many similar chemical properties. The standard

electrode potential of metallic Mg is −2.36 V (vs. SHE), allowing the formation of large open-

circuit voltage and working voltage (Deng et al., 2019; Maddegalla et al., 2021). Mg has an

electrochemical equivalent of 0.454 g Ah−1 and a theoretical specific capacity up to 2,202 mAh

g−1, enabling it to be applied to long-time discharge (Kékedy-Nagy et al., 2021). However,

shortcomings also remain unresolved, such as the lessened battery storage capacity after

discharge, voltage hysteresis, severe inferior corrosion resistance of the electrode, and poor

current efficiency, forming the main obstructors of the commercial availability of Mg battery

(Shao et al., 2015; Horia et al., 2022; Zhang et al., 2022). In the Mg battery, “voltage lag” is the

essence of the passivation of the Mg electrode in the electrolyte. Passivation film hinders the

reaction during battery discharge, and its breakdown promotes a smooth reaction. Therefore, a
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Mg battery is required for the normal voltage output over a period of

time. The “hysteresis” in the Mg battery is mainly relevant to the

coverage degree of surface passivation film and the rate and relaxation

time of film breakdown (Gong et al., 2022; Wei et al., 2022).

Recently, employing a suitable additive into electrolytes has been

proved to be simple and effective in changing the surface membrane

structure of theMg electrode, thus reducing voltage lag (Li et al., 2021).

The presence of both 0.005M EDTA-ZnNa2 and 0.01M C6H11NaO7

has been demonstrated to remarkably inhibit corrosion and improve

the performance ofMgbattery for pureMg in 3.5 wt%NaCl electrolyte

(Qu et al., 2022). Zhao et al. (2016) investigated the discharge

performance of an oxyanion corrosion inhibitor (Li2CrO4) as an

electrolyte additive in 3.5 wt% NaCl electrolyte for Mg-air battery,

verifying enormously reduced corrosion current density of AZ31BMg

alloys in the presence of 0.1 wt% Li2CrO4, which is beneficial to the

intermittent discharge performance of the Mg-air battery.

Sodium metasilicate (Na2SiO3) is relatively cheap,

environment-friendly, and non-toxic, often used as an anionic

corrosion inhibitor (Kong et al., 2022). This thesis mainly

explored the electrochemical performance and corrosion

behavior of AZ31B Mg alloy in Na2SO4-NaNO3 and Na2SiO3

composite electrolyte to pick out the matching electrolyte, thus

ensuring the activation of the electrode and inhibiting the

hydrogen evolution-induced self-corrosion.

Experiment

Chemicals and materials

In this study, Na2SO4, NaNO3, and Na2SiO3 of analytical

grade (≥99%) were utilized. The electrolyte was obtained by a

mixture of 2 M Na2SO4 and 2 M NaNO3 (volume ratio = 1:9),

and the Na2SiO3 concentration ranged from 0.2 to 1.0 mM.

According to our previous work (Xu et al., 2017), the AZ31BMg

alloy (3.0 wt% Al, 1.0 wt% Zn, 0.2 wt% Mn, and 96.8 wt% Mg) was

purchased from Wuxi Xinbiao Metal Material Co. Ltd. in China.

TheMg alloy was sheared into an appropriate size of 1 × 1 cmwith a

thickness of 0.6 cm, then embedded with electric conductive copper

wire, and encapsulated with epoxy resin in quick succession.

Subsequently, these prepared samples were used as the working

electrode for the electrochemical analysis.

Electrochemical characterization

The electrochemical characterization was performed on an

electrochemical measurement system (CHI660E, China) using a

standard three-electrode system comprising the graphite rod as the

counter electrode, the saturated calomel electrode as the reference

electrode, and the AZ31BMg alloy as the working electrode.

The influence of Na2SiO3 additive on the electrochemical behavior

of AZ31B Mg alloy electrode in the Na2SO4-NaNO3 composite

electrolyte was investigated by the linear sweep voltammetry (LSV)

at a sweep rate of 1mV s−1. The discharge curves were explored at a

discharge current density of 3mA cm−2.Moreover, the electrochemical

impedance spectroscopy (EIS) was conducted at open circuit potentials

in the range of 10–2~105 Hz with an amplitude of 5mV.

Surface morphology analysis

The effect of the Na2SiO3 additive on the morphology of the

corrosive film layer on theMg alloy electrode surface immersed into

the Na2SO4-NaNO3 composite electrolyte with or without Na2SiO3

(0.6 mM) for 24 hwas revealed by the scanning electronmicroscopy

(SEM, HITACHI S 4800) at an operating voltage of 15 kV.

Results and discussion

The AZ31B Mg alloy electrodes were soaked in the Na2SO4-

NaNO3 composite electrolytes of different Na2SiO3 concentrations

(CNa2SiO3) for 24 h. Then, the LSV curves of the electrodes were

measured at a sweep rate of 1 mV s−1, and the results are shown in

Figure 1. The inflection point on the curve is generally referred as the

activation electrode potential (Eact). Generally, negative values of Eact
imply a low self-corrosion rate and a high discharge activity, under

which theMg alloy is strongly corrosion-resistant (Wang et al., 2014).

Based on the curves, Na2SiO3 addition led to negative shifts in Eact,

indicating the ability of Na2SiO3 to improve the discharge behavior of

the Mg alloy electrode in the composite electrolyte. With the increase

in CNa2SiO3, Eact values shifted negative first and then positive. Eact
reached to lowest point (−1.51 V) when CNa2SiO3 was 6 mM, 1.1 V

poorer than the original value without Na2SiO3 additive. A plausible

reason was that the Na2SiO3 addition affected the ionization

FIGURE 1
LSV curves of AZ31B Mg alloy electrodes in Na2SO4-NaNO3

composite electrolyte with different concentrations of Na2SiO3.
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equilibriumby accelerating the release ofMg2+ ions from theMg alloy,

consequently improving the ionic conductivity and the mass transfer

ofMg2+ ions (Zhang et al., 2022). The shift of Eact values might also be

closely related to the microstructural change of the Mg alloy in the

composite electrolyte added with Na2SiO3, as verified by the SEM

images (vide infra).

Figure 2 illustrates the discharge curves of AZ31B Mg alloy

electrodes in the composite electrolytes with varying CNa2SiO3 at a

discharge current density of 3mA cm−2. In the absence of Na2SiO3, the

discharge potential reached itsmaximumrapidly at the initial discharge

stage and then slowly recovered to a stable state, which was ascribed to

the activation process. This period lasted for 2.7 s and was attributed to

the “hysteresis time.” Surprisingly, the “hysteresis time” disappeared

after the addition of Na2SiO3, and the discharge curves were rapidly

stabilized. Na2SiO3, as a type of surfactant, loosened the passive film on

the electrode surface, promoting detachment andhence eliminating the

hysteresis time required for the current to penetrate the passive film

and enhancing the discharge activity of Mg alloy electrodes.

Notably, the Na2SiO3 addition reduced the discharge potential,

which was −1.93 V in the composite electrolyte without Na2SiO3 at

3mA cm−2. In particular, when CNa2SiO3 was 6mM, the discharge

voltage occurred at −3.21 V, corresponding to a negative shift of

1,380mV. This facilitated the increase in the output voltage of a battery

cell. However, the discharge potential shifted positively withCNa2SiO3 >
6mM. It is speculated that at high Na2SiO3 concentrations, the excess

SiO3
2− ionsmay react withMg2+ ions in the electrolyte to formdeposits

on the electrode surface (Ge et al., 2013), potentially thickening the

passive film on the electrode surface and hindering the discharge of the

electrode, thus shifting the discharge potential to the positive direction.

The EIS spectra of the AZ31BMg alloy electrodes after 24 h

immersion in the composite electrolytes of varying Na2SiO3

concentrations are shown in Figure 3. EIS was conducted at an

open-circuit potential of 10–2~105 Hz, with a sinusoidal disturbance

amplitude of 5mV. The insert illustrated the equivalent circuit of the

EIS system. In the equivalent circuit diagram, Rs was induced by the

solution resistance;下标 corresponded to the high-frequency charge-

transfer resistance arising from the alloy surface and corrosive film

layer.CPE1 denoted the double-layer capacitance induced by irregular

oxide film on the alloy surface.

As shown in Figure 3, the EIS plots exhibited capacitive loops of

similar shapes at low and high frequencies, and only some changes took

place in the radii of the capacitive loops, indicating that the corrosion

mechanism of the AZ31BMg alloy was free from the influence of the

addition amount of Na2SiO3. At aNa2SiO3 concentration of 6mM, the

capacitive reactance diameter reached the maximum. According to the

curves, R1 was 957Ω in the absence of Na2SiO3. With the Na2SiO3

addition, the resistance value was enhanced significantly, indicating the

prohibited corrosion of the AZ31BMg alloy in the Na2SO4-NaNO3

composite electrolyte. When CNa2SiO3 was 6mM, the R1 value reached

the maximum of 3,886Ω, increasing by more than four times and

representing a stronger corrosion resistance.

The surface morphology images of AZ31BMg alloy electrodes

after 24 h immersion in the Na2SO4-NaNO3 composite electrolyte

are shown in Figure 4. Figures 4A,B show the SEM images of

electrodes soaked in the absence of Na2SiO3. After 24 h of soaking, a

thick, dense, and smooth filmwas formed on theMg alloy electrode.

Despite their large number, the cracks appearing on the surface were

very narrow (generally <3 μm in width). As a result of hydrogen

evolution from the electrode during the early soaking stages, a few

small holes and pits were formed on the film. After 24 h of soaking

in the presence of 6 mM Na2SiO3 (Figures 4C,D), the alloy surface

exhibited more and wider cracks (the widest cracks exceeded 10 μm

in width). A thick and dense film was formed, effectively protecting

the Mg alloy electrode and enhancing its corrosion resistance.

FIGURE 2
Discharge curves of AZ31B Mg alloy electrode in the Na2SO4-
NaNO3 composite electrolyte with different CNa2SiO3 at a current
density of 3 mA cm−2.

FIGURE 3
Nyquist curves of EIS for AZ31B Mg alloy electrodes in the
Na2SO4-NaNO3 composite electrolyte with different
concentrations of Na2SiO3.
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Conclusion

The influence of Na2SiO3 on the electrochemical and

corrosion behavior of the AZ31B Mg alloy electrode in the

Na2SO4-NaNO3 composite electrolyte (the volume ratio of

2 M Na2SO4 to 2 M NaNO3 was 1:9) was investigated in this

work. When CNa2SiO3 was 6 mM, Eact values reached −1.51 V,

1.1 V lower than that without the Na2SiO3 additive. In

particular, the discharge voltage occurred at −3.21 V,

shifting negative to 957 mV, and the discharge curves

were rapidly stabilized. Moreover, the resistance value

reached a maximum value of 3,886 Ω, increasing by more

than four times. The composite electrolyte with 6 mM

Na2SiO3 was appropriate for Mg alloy, loosening the

passive film on the electrode surface, facilitating the ionic

conductivity, and eliminating the hysteresis time. This can

realize not only the excellent discharge activity but also the

high corrosion resistance of Mg alloy electrodes. Therefore,

the present work offers a new electrolyte formulation to

enhance the electrochemical behavior and lifespan of Mg

batteries.
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FIGURE 4
SEM of the AZ31B Mg alloy soaked in the Na2SO4-NaNO3 composite electrolyte in the absence (A,B) and presence (C,D) of Na2SiO3 for 24 h.
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