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In the past two decades, we have witnessed rapid developments in

nanotechnology, especially in biomedical applications such as drug delivery,

biosensing, and bioimaging. The most commonly used nanomaterials in

biomedical applications are nanoparticles, which serve as carriers for various

therapeutic and contrast reagents. Since nanomaterials are in direct contact

with biological samples, biocompatibility is one of themost important issues for

the fabrication and synthesis of nanomaterials for biomedical applications. To

achieve specific recognition of biomolecules for targeted delivery and

biomolecular sensing, it is common practice to engineer the surfaces of

nanomaterials with recognition moieties. This mini-review summarizes

different approaches for engineering the interfaces of nanomaterials to

improve their biocompatibility and specific recognition properties. We also

focus on design strategies that mimic biological systems such as cell

membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
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1 Introduction

Research on bio-inspired interfaces has gained significant attention in recent years

due to their increasing potential in biomedical science. One of the major goals in

biomedical research is to improve the efficacy of drugs while reducing side effects,

which includes enhancing the delivery efficiency and endowing specific targeting abilities.

In addition, biomedical imaging is another important aspect to consider, which provides

valuable information on molecular distributions both in vitro and in vivo. Biomedical

applications based on nanoparticles (NPs) have been widely investigated due to their

accessibility and versatility. When designing a delivery system, we need to consider the

journey of NPs in the body before they reach disease sites, as well as the barriers they will

face during their journey. In general, NP-based delivery systems enter circulation through
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either injection or oral uptake. Therefore, one of the most

challenging issues for efficient delivery is reaching the targeted

organs while avoiding clearance by the body.

One of the barriers to NPs in circulation is removal by the

liver and spleen in the reticuloendothelial system (RES). NPs

are deemed foreign substances when administered

intravenously and are subjected to sequestration by the liver

via Kupffer cells (Tang et al., 2019). Another barrier is the

tendency to form protein corona immediately upon entering

circulation. When NPs enter a complex biological environment

such as the bloodstream, interstitial fluid, or extracellular

matrix, they interact with various biomolecules, such as

plasma proteins, which trigger corona formation. As proteins

start to build up on the surfaces of the NPs, the formation of

protein corona signals the mononuclear phagocyte system

(MPS) for quick removal (Mirkasymov et al., 2021).

To overcome these barriers, it is essential for NPs to possess

the necessary tools to navigate through the body and reach their

target site without being removed. One of the common

strategies is to mimic the blood cells in circulation by

camouflaging the surfaces of NPs with membranes of blood

cells, which can prevent clearance by RES and premature

expulsion (Xie et al., 2019). It is essential for the designed

NPs to spend a suitable amount of time traversing the

circulatory system to arrive at their destination (Sushnitha

et al., 2020). Another important factor governing the

capabilities of NPs is the ability to execute selective

targeting—that is, to only interact with the site of interest

while leaving other sites intact (cells, tissue, etc.) (Mitchell

et al., 2021). Lastly, NPs must be cleared from the body after

completing their tasks without inducing any negative impact

(Khan et al., 2019; Wang et al., 2021a).

FIGURE 1
Design principles for bioinspired interfaces of nanoparticle categorized into three different sections. Membrane-coated nanoparticles derived
frommammalian cell, cancer cell, bacteria or virus. Surfacemodification ligands such as PEG, zwitterion, positively/negatively charged ligands or viral
capsids. Manipulation of geometric properties of nanoparticles such as size or shape.
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These general features are crucial for designing NPs because

they ultimately decide the fate of the NPs when administered into

the body. The body is a complex biological environment that may

vary in complexity in different people. Furthermore, it is

challenging for designed NPs to overcome several barriers and

retain their intended functions. Therefore, in this mini-review,

we present several design principles that may provide insights

into using NPs in different situations (Figure 1).

2 Design principles for bioinspired
interfaces of NPs

NPs have attracted attention among researchers due to the

wide array of biomedical science applications, including targeted

drug delivery, in vivo therapeutics, bioimaging, and cancer

treatment (Wang et al., 2020a) (Figure 2). One of the major

challenges is to overcome the ability of the human body to

recognize and clear foreign materials (Pratiwi et al., 2019;

Malachowski and Hassel, 2020). For example, interaction with

opsonins triggers quick removal from the body by the MPS

(Papini et al., 2020). Furthermore, extensive protein corona

formation may also result in the loss of targeting capability of

ligand-functionalized NPs, as well as significant changes to NPs’

surface chemistry, thus disabling or altering the desired

properties (Rampado et al., 2020).

Without additional surface modifications, NPs can only rely

on the enhanced permeability retention effect for entrance into

solid tumors, which normally has less efficiency (Subhan et al.,

2021). Several strategies have been developed over the years to

overcome these problems by either functionalization of NPs or

altering their geometric properties. The strategies are

categorized in later sections based on the nature of the

modifications.

2.1 Functionalization of NPs with
biomimetic materials derived from
biological entities

Biomimetic materials can reproduce or recapitulate the

properties of their biological counterparts in terms of chemistry,

FIGURE 2
Applications of membrane-coated and surface functionalized nanoparticles, which includes bioimaging, targeted delivery, multimodal
theranostic and drug carriers.
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structure, characteristics, and functions (Perera and Coppens, 2019).

Red and white blood cells possess the ability to circulate freely in the

bloodstreamwithout being expelled by theMPS. Platelets are able to

evade phagocyte uptake and contain surface receptors that can target

specific sites for tissue repair during an injury. Other cells such as

cancer cells or stem cells have also been investigated (Figure 3).

Hence, the concept of membrane-coated NPs (MNPs) has arisen

and has been utilized in NPs to improve their circulation half-time

after administration into the bloodstream, perform drug delivery to

a specific site in the human body or use as contrast agents for

bioimaging purposes. (Zou et al., 2020).

In addition to blood cells, studies have also been done on

pathogen-based materials derived from bacteria (Jiménez-

Jiménez et al., 2020) and viruses (Park et al., 2022), which

exhibit some unique properties in delivering payloads.

Therefore, it is important to understand the characteristics of

different biological entities and exploit their functions for

therapeutic applications. In this section, we discuss how

researchers are taking advantage of the unique properties of

these natural biological materials in designing NPs for

biomedical applications and the challenges that they may face.

2.1.1 Erythrocyte membrane
Red blood cells (RBCs) are the most commonly found cells in

the human body. The properties of RBCs include

biocompatibility, prolonged circulation time, and

biodegradability, which make them a perfect candidate for

efficient NP carriers. The CD47 “marker-of-self” proteins

FIGURE 3
Surface receptors found on different membranes. Abbreviations: CCR2, C-C chemokine receptor 2; CXCR1, C-X-C chemokine receptor 1;
CXCR2, C-X-C chemokine receptor 2; C8bp, C8 binding protein; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion
molecule-1; TGF-β, transforming growth factor beta; TF-antigen, Thomsen-Friedenreich antigen; EpCAM, epithelial cell adhesionmolecule; PAMPs,
pathogen associated molecular patterns.
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found on RBC surfaces are able to inhibit phagocytosis of RBCs

by immune cells, thus preventing degradation and improving the

circulation time significantly (Guo et al., 2021). This feature has

been incorporated into many drug-delivery systems by coating

NPs with RBC membranes (RBCMs) (RBCM-NPs).

The earliest successful fabrication of RMCM-NPs was

achieved by Hu et al., where they encased poly (lactic-co-

glycolic acid) (PLGA) NPs with RBCM. The CD47 proteins

were retained with the correct orientation, thus allowing the

encased NPs to reduce macrophage engulfment by 64%. It was

also shown that RBCM-NPs have a longer elimination half-life

than other surface-modified NPs (Hu et al., 2011; Hu et al., 2013).

In another example, RBCM-coated PLGA NPs loaded with

rapamycin demonstrated high targeting specificity towards

atherosclerotic plaques, where the development of the disease

was delayed significantly, and prolonged administration did not

cause serious side effects in the mice model (Wang Y. et al.,

2019a).

Other than disease treatment, RBCM-NPs were also

employed in many cancer-related studies. RBCM-coated

PLGA NPs loaded with gambogic acid display enhanced

anticancer effects both in vitro and in vivo (Zhang L. et al.,

2017a). In another study, RBCM-coated mesoporous silica

nanoparticles containing doxorubicin successfully prevented

breast cancer metastasis (Su et al., 2017). Although many

designs of RBCM-NP have shown promising results in cancer

treatment, RBCM lacks the natural tumor-targeting ability and

can only rely on the enhanced permeability and retention (EPR)

effect (Xia et al., 2019).

In order to improve the targeting ability of RBCM-NP,

decorating ligands were added to the RBCM via chemical

synthesis (Wu et al., 2019). It was demonstrated that the

cancer-targeting ability was enhanced significantly when

epithelial cell adhesion molecules were added to the surface of

RBCM-coated gold nanocage (Zhu et al., 2018). Other than

chemical synthesis, the lipid insertion method also enables the

targeting functionalization of RBCM-NPs (Fang et al., 2013).

The superiority of RBCM-NPs not only excels in the area of

drug therapeutics but also in the area of bioimaging, more

specifically for in vivo imaging of tumors. Upconversion NPs

(UCNPs) were commonly used for in vivo fluorescence imaging

but suffered from diminished targeting capabilities when

administered into the body due to protein corona formation.

To resolve this issue, RBCM was used to eliminate the tendency

of protein corona formation in UCNPs. Further addition of

cancer-targeting molecules onto the RBCM surface resulted in

RBCM-coated UCNPs with excellent optical capabilities that

show enhanced accumulation at tumor sites (Rao et al., 2017).

The vast development in dual-functionalized RBCM-NPs was

also yielding impressive results in bioimaging. RBCM-coated

semiconducting polymer NPs (RBCM-SPNPs) with both

photoacoustic imaging (PAI) and photothermal therapeutic

(PTT) properties were developed. Results have shown that the

RBCM-SPNPs significantly improved PAI signals and PTT

capabilities (Zheng et al., 2020).

2.1.2 Leukocyte membrane
Also known as leukocytes, white blood cells (WBCs) are

immune cells protecting the body against threats such as

infections, foreign invaders, and pathogens (Glenn and

Armstrong, 2019). The diverse and versatile functions of

WBCs have promoted the development of WBC membrane-

coated NPs due to their ability of cellular self-recognition,

crossing biological barriers of the body, and preference to

bind to receptors at disease sites (Harjunpaa et al., 2019). By

taking advantage of such characteristics, WBCmembrane-coated

nanoporous silica particles were developed and could retain

WBC traits such as avoiding clearance by the immune system

and traversing the endothelial layer (Parodi et al., 2013; Gong

et al., 2020).

Various WBCs are frequently employed as NP carriers, such

as neutrophils, macrophages, monocytes, and T cells. For

example, neutrophil membrane-coated NPs successfully

targeted and reduced bacterial load at bacteria-infected sites in

mice by mimicking neutrophils’ characteristics to interact with

inflamed tissues or cells via adhesion proteins (Zhang C. et al.,

2019a). Macrophages have also been extensively studied due to

their specific targeting ability for inflammation and tumor

endothelium. This capability was demonstrated in macrophage

membrane-coated NPs (MM-NPs) when they were used to

inhibit the progression of atherosclerosis in mice. It was

shown that the treatment regime was able to effectively target

and accumulate atherosclerotic lesions in vivo (Wang et al.,

2021a). The use of MM-NPs in cancer treatment and

bioimaging was also very active. In a study, a persistent

luminescence NP-derived nanocomposite containing the drug

was coated with a macrophage membrane. The macrophage

membrane-coated nanocomposite has shown great potential

in autofluorescence-free imaging as well as enhanced tumor

inhibition capabilities (Chen et al., 2020). As promising as

MM-NPs sound, however, studies have pointed out

limitations such as the ability only to target limited types of

tumors (Liang et al., 2020; Sun et al., 2020).

Monocyte recruitment occurs as a natural response when

there is a change in the physiological environment in the body.

Specifically, the ability to infiltrate different sites of interest varies

(Kratofil et al., 2017; Lehmann et al., 2017; Teh et al., 2019)).

Hence, by exploiting the ability of monocytes, a lipid NP-based

drug-delivery platform was designed specifically to attach to the

surface of circulating monocytes. The monocytes would then

carry and extravasate with the lipid NPs at the diseased site

(Huang et al., 2021).

It was mentioned earlier that the membranes of WBCs

contain various proteins on the surfaces to detect

inflammation and diseased tissues. T cells possess a higher

level of targeting proteins than general WBCs and more easily
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accumulate at a tumor site. Therefore, the membranes of T cells

were also employed as a camouflaging mechanism for NPs to

prolong circulation by avoiding phagocytosis while taking

advantage of the surface adhesion molecules for cancer

targeting (Zhang Z. et al., 2017b). For bioimaging application,

azide-modified T cell membrane coated NPs were shown to have

excellent fluorescence intensity signal as well as enhanced

photothermal response (Han et al., 2019). In several studies, it

was revealed that there is a reliance on the activation of T-cell

receptor-peptide-major histocompatibility complex interaction

to eliminate cancer cells. As effective as it may seem, the

interaction was not effective against solid tumor treatment

due to the deficiency of tumor-specific biomarker presented

by solid tumor cells (He et al., 2019).

2.1.3 Thrombocyte membrane
Platelets are a component in blood that are responsible for

initiating a blood clot during blood vessel injury. Compared to

other forms of membranes for NP coating, platelet membranes

are advantageous due to their ability to promote drug targeting

both actively and passively. Similar to RBC membranes, platelet

membranes also possess CD47 “marker-of-self” proteins that

prevent immune clearance (Olsson et al., 2005; Han et al., 2022).

Hence, the circulation of platelet membrane-coated

nanoparticles (PM-NPs) can be prolonged, achieving passive

drug targeting.

Platelet membranes also contain a set of unique surface

receptors such as glycoprotein Ib that can bind to the exposed

collagens of the damaged vasculatures to trigger tissue repair or

bind directly to pathogenic bacteria, causing platelet aggregation

(Deppermann and Kubes, 2018). These surface receptors are

passed onto PM-NPs, thus enabling active drug targeting (Hu

et al., 2015). Due to these characteristics, platelet membranes have

become a popular choice in the development of nanotherapeutics

(Wang S. et al., 2020c). Platelet-like proteoliposomes were

fabricated using platelet membranes that could interact strongly

with circulating monocytes, which could significantly improve

post-infarction therapy (Cheng et al., 2016).

PM-NPs could also be used as an antibody decoy for the

treatment of immune thrombocytopenia as they possess native

platelet surface proteins that can strongly interact with anti-

platelet antibodies (Wei et al., 2016). Another common

application of PM-NPs is in the area of cancer cell detection,

drug-delivery treatment, and tumor imaging by exploiting the

specific interaction between platelets and various cancer cells.

Docetaxel-loaded PLGA NPs coated with platelet membranes

were compared with free docetaxel and an uncoated control by

analyzing the biodistribution of the drug in vivo in a mouse

model of human lung cancer. The results showed that docetaxel-

loaded PLGA NPs coated with platelet membranes were able to

retain the highest concentration of drugs in tumors, thus

achieving the highest inhibition of tumor growth in vivo (Chi

et al., 2019). Other than docetaxel, PM-NPs were also used to

deliver other anti-cancer drugs to treat various cancers (Shang

et al., 2019; Xu et al., 2019). A PM-NP-derived second near-

infrared window (NIR-II) phototheranostic nanoprobes were

developed for aggressive active targeting of various types of

cancer. From the results, the nanoprobes displayed

outstanding photoacoustic imaging ability and enhanced

photothermal conversion efficiency (Geng et al., 2020).

Even though PM-NPs possess advantages that succeed as an

excellent candidate for biomedical application, it was shown that

patients with autoimmune diseases may develop platelet

autoantibodies, which form immune complexes with PM-NPs

triggering removal by the immune system (Nelson et al., 2021).

Hence, further studies should be conducted to provide more

comprehensive and risk-free development of PM-NPs.

2.1.4 Cancer cell membrane
The development and progression of cancer involve a multi-

stage process inwhich cancer cell adhesionmolecules (CCAMs) play

an important role in metastasis (Okegawa et al., 2004; Bendas and

Borsig, 2012). CCAMs have various surface receptors that are crucial

for intravascular heterotypic or homotypic adhesive interaction,

which ultimately leads to the build-up of metastatic deposits

(Sun et al., 2016; Harjunpaa et al., 2019). CD47 surface proteins

are also expressed on the surfaces of cancer cells, which provide

them with the ability to avoid the immune system (Lian et al., 2019;

Huang C.-Y. et al., 2020a). Taking advantage of these characteristics,

cancer cell membranes (CCMs) have been used to coat NPs.

CCM-coated NPs (CCM-NPs) possess the ability to evade

immune detection as well as the capability to target homologous

cancerous sites or tumors. CCM-NPs could also be tuned

specifically to cater to specific needs of cancer treatment (Li

et al., 2017). The homotypic targeting ability of CCM-NPs was

investigated by CCM derived from the same type of cancer cells.

As compared to uncoated NPs and RBCM-NPs, the CCM-NPs

display a strong homotypic affinity to the source cancer cells,

which led to significantly higher cellular uptake (Fang et al.,

2014). In another example, it was demonstrated that by adjusting

the source of the cell membrane coating of CCMNPs, it can

achieve self-recognition internalization by the source cancer cell

lines as well as highly selective targeting to the homologous

tumor in vivo when homotypic CCM was used (Zhu et al., 2016).

From the previous example, personalization of cancer treatment

can be advantageous as drug delivery to the site of cancer

metastasis was significantly enhanced. The feasibility of this

concept was further proved by using NPs with a programmed

CCM that could target the bone specifically and enhance

homotypic tumor uptake (Gdowski et al., 2019).

Owing to the homologous targeting ability, CCM-NPs were

commonly employed in tumor imaging and were often

functionalized with more than just imaging capabilities (Rao

et al., 2016; Li J. et al., 2018a). Most recently, novel iridium

complexes functionalized black-titanium NPs coated with CCM

were developed. The NPs possess a hierarchical dual targeting
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ability, which can selectively reside in the mitochondria and

exhibit enhanced accumulation in cancerous cells. It can also

generate efficient photothermal capability upon NIR-II

irradiation and generate reactive oxygen species upon

ultrasound radiation. The combination of two stimulating

factors produces a high-resolution image of the tumor site

and triggers the eradication of tumor cells in mouse models

(Shen et al., 2021).

As the development of CCM-NPs progresses, safety concerns

should be evaluated thoroughly. For instance, during the

preparation of CCM-NPs, one should ensure the complete

removal of nuclear and genetic material within the cancer cell,

which may possess carcinogenic risks (Xu et al., 2020).

2.1.5 Stem cell membrane
The most widely studied and used type of stem cells in the

field of biomedical research are mesenchymal stem cells (MSCs)

because of their easy isolation and tumor-targeting properties

(Zhao W. et al., 2017a; Aravindhan et al., 2021). Applications of

MSCs for NP-based drug delivery systems have been

demonstrated by several research groups. For instance,

different types of NPs were loaded into MSCs, and their

effects were investigated. It was shown that loaded NPs were

successfully internalized into MSCs without affecting cell

viability and differentiation. Most importantly, it was also

demonstrated that the designed MSC membrane-coated NPs

(MSCM-NPs) displayed high selectivity toward an experimental

human glioma model (Roger et al., 2010; Wang et al., 2018).

MSCM-NPs were employed in numerous cancer-related

studies, for instance, MSC membrane-coated gelatin nanogel

was designed to have high tumor affinity. Due to the variety

of molecular recognition moieties on the MSC membrane, the

results demonstrated high stability and high selectivity toward

tumors both in vitro and in vivo (Gao et al., 2016). In another

study, PLGA NPs coated with MSC membrane displayed high

anti-tumor efficiency in an orthotopic breast cancer model (Tian

et al., 2019). Taking advantage of highly specific tumor homing

ability, MSCM-NPs were also frequently used for bioimaging

applications (Lai et al., 2015; Mu et al., 2018). More recently,

Chetty et al. developed a novel, biocompatible MSCM-NP with

multimodal imaging capabilities that serve as an outstanding

imaging agent in near-infrared fluorescence, magnetic resonance,

and computed tomography (Chetty et al., 2020).

Although MSCM-NPs have shown excellent tumor-targeting

capabilities, it should also be noted that there are controversies

over whether MSCs promote tumor growth (Javan et al., 2019) or

inhibit it (Cheng et al., 2019). More evidence is needed to

highlight the advantages and disadvantages of MSCs when

used in cell-mediated gene strategies (de la Torre et al., 2020).

2.1.6 Bacterial membrane
Bacteria are ubiquitous single-celled organisms that are

important to the ecosystem. Some bacteria, however, are

pathogenic and may cause infectious diseases. The mechanism

of how they evade the immune system and trigger favorable

interaction with target cells is a subject of interest due to its

potential applications in therapeutics (Yoo et al., 2011; Sushnitha

et al., 2020). Bacterial membranes contain many immunogenic

antigens and adjuvants that are responsible for innate immunity

stimulation and adaptive immune response promotion (Poetsch

and Wdlters, 2008; Chen B.-M. et al., 2021a; Prior et al., 2021). It

is strategic to coat bacterial membranes onto NPs because not

only do the characteristics of both NPs and bacteria remain

intact, but they can also mimic the natural antigen interactions

between bacteria and the immune system (Gao et al., 2015;

Anwar et al., 2021).

Generally, bacterial membrane-coated NPs (BM-NPs) are

fabricated by coating NPs with processed bacterial outer

membrane vesicles (OMVs). Naskar et al. discuss the details

of the preparation of OMVs and fabrication of BMNPs (Naskar

et al., 2021). BMNPs are relatively new in the field of cell

membrane-coated NPs, and comprehensive research studies

are still under development. Nevertheless, BM-NPs have

several unique advantages that outshine other membrane-

coated NPs.

It was demonstrated that PLGA NPs coated with OMVs

originating from S. aureus can actively target macrophages

infected with S. aureus in vitro, as well as major organs

bearing metastatic infections in S. aureus bacteremia-bearing

mouse models. Compared to the E. coli OMV control, the S.

aureus BM-NPs exhibit excellent selectivity towards S. aureus-

infected macrophages and organs. The selectivity of the BMNP

became specific to E. coli when the origin of the OMV used was

switched from S. aureus to E. coli, demonstrating the unique

advantage of using bacterial membranes (Gao et al., 2019). This

advantage of bacteria-specific targeting was not shown in other

kinds of membrane-coated NPs.

BM-NPs were also used in the development of anti-bacterial

vaccines to provide another alternative to antibiotics due to the

rapid emergence of bacterial drug resistance (Naskar and Kim,

2019). As mentioned earlier, bacterial membranes contain

various immunogenic antigens with intrinsic adjuvant

properties. The integration of synthetic NPs and bacterial

membranes resulted in BM-NPs that retain the biological

characteristics of bacteria as well as the physicochemical

properties of the synthetic NPs. A BM-NP was developed by

coating size-controlled bovine serum albumin NPs with OMVs

from carbapenem-resistant Klebsiella pneumonia (CRKP). These

BM-NPs were used to provide immunization to mouse models,

which endowed them with an increase in survival rate when

infected with a lethal dose of CRKP (Wu et al., 2020).

Certain species of bacteria have natural tumor targeting

properties and were applied in cancer therapeutic (Van Dessel

et al., 2015; Jiménez-Jiménez et al., 2022). The discovery of the

presence of bacteria in human tumors has also provided insights

regarding the usage of BM-NPs for cancer therapy or tumor
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imaging (Nejman et al., 2020). A cancer vaccine based on a

polyplex core containing adjuvants coated with imide groups and

the bacterial membrane was developed. When combined with

radiotherapy, immunogenicity generated by the designed BM-

NPs exhibits enhanced inhibition of tumor growth and produces

anti-cancer immune memory (Patel et al., 2019). The

applications of BM-NPs in bioimaging were also

demonstrated in several studies (Wang Z-. H. et al., 2019b;

Zhang Y. et al., 2019b).

The use of bacterial membranes as a coating agent for NPs is

still an ongoing research topic that requires thorough studies in

order to overcome some issues raised by researchers. It was

shown that the size of OMVs has a distinct effect on the

mechanism of the entrance to host cells (Turner et al., 2018).

Studies of the cytotoxicity of BM-NPs are needed for practical

biomedical applications to be possible. This problem was

partially resolved in work where lipopolysaccharide

neutralizing peptides were used to reduce the inflammation

response of BM-NPs. However, this only addresses the

problem on a cell-type-specific level instead of a universal

level (Pfalzfraff et al., 2019). These issues need to be resolved

so that BM-NP-based vaccines and therapeutics can undergo

further improvement.

2.1.7 Virus-derived strategies
Viruses have been called nucleic acid carriers due to their

ability to protect and deliver a segment of nucleic acid that it

encases within its protein outer shell. The ability to evade

immune system recognition and transfer genes into host cells

for self-replication is exploited in the development of biomedical

applications (Elzoghby et al., 2012). Initial development has

involved the use of viral gene vectors such as adenoviruses or

retroviruses to deliver specific genes of interest into host cells.

However, the pathogenic nature raises concerns regarding safety

and unwanted immunogenicity, potential toxicity, and

mutagenesis. In addition, the limitation of size and cargo hold

capacity decreases the versatility of using viral gene vectors (Yoo

et al., 2011; Park et al., 2019).

As alternatives, virus-like particles (VLPs) and virosomes

were introduced. VLPs are self-assembled particles that mimic

the capsid structures or envelope proteins that originate from real

viruses (Nooraei et al., 2021). Virosomes are liposome-like

particles that contain integrated surface glycoproteins but not

the capsid proteins with real virus origin (Asadi and Gholami

2021). Both types of particles do not contain the genetic materials

of viruses and form hollow structures that can encapsulate a wide

array of payloads (Parodi et al., 2017). The typical characteristics

of viruses are retained in these derived entities, including cellular

entry, immune evasion, and specific targeting. Thus, they offer

promise for the development of drug delivery, imaging,

immunotherapy, and theranostic applications (Kuo et al.,

2011; Chung et al., 2020).

Similar to other NP functionalization strategies that involve

the coating of NPs with cell/bacterial membranes, the

encapsulation of NPs within a viral coating protein is also

possible. A genetically engineered hepatitis B core VLP was

used to encapsulate magnetic NPs with high efficiency and

showed potential in the application of magnetic resonance

imaging due to enhanced cellular uptake of the VLP-coated

NPs (Shen et al., 2015). Not all virus-derived strategies

involve the coating of NPs with viral-derived entities. Metallic

NPs were coupled to a targeted adenoviral (Ad) platform, and the

NP-labelled Ad vector did not have lower infectivity and tumor-

targeting capability than the unlabeled control, thus providing

another alternative for targeted delivery of NPs (Saini et al.,

2008). Other virus-derived strategies mostly involve surface

modifications of NPs to mimic that of a virus, which will be

discussed separately.

2.1.8 Challenges for biological entities derived
functionalization

We have discussed several biological entities derived

functionalization of NPs, most of which involve the

encapsulation of NPs with different cell membranes to endow

functions such as immune system evasion, specific targeting, or

bypassing certain biological barriers (Liu et al., 2019). Although

the benefits brought forth by the technique are promising, the

difficulties behind the fabrication process should be carefully

evaluated. The protocols for fusion between cell membrane

vesicles and NP cores have yet to be standardized, different

protocols stand on their own with varying advantages and

disadvantages. For instance, fusion methods such as extrusion

can produce uniform size particles but the complexity and time

required for preparation cause difficulties in mass production

(Xu et al., 2020).

In addition, the cell membrane coating integrity was found to

affect the internalization pathway, and most of the proposed

methodology currently produces a non-homogeneous mixture of

uncoated, partially coated, and fully coated NPs. The solution to

separate fully coated NPs from the non-homogenous mixture is

critical for future improvement (Liu et al., 2021a). The

capabilities of different MNPs must undergo a more

comprehensive study to better classify each of them according

to their therapeutic effect (Lei et al., 2022).

The future for MNP fabrication should focus on

refining current methodologies while aiming toward the

development of a highly efficient and effective universal

protocol for cell membrane extraction as well as fusing cell

membrane vesicles and NP cores. The automation of

these processes is crucial for initial development as this

marks the first step toward industrial-level production.

Overall, the future development for MNP should focus

more on process development instead of discovery (Li R.

et al., 2018b).
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2.2 Functionalization of NPs via surface
modification techniques

The surface modification of NPs is an important aspect of

designing NPs to achieve specific biomedical functions. It is an

effective yet simple way to easily change the characteristics of

NPs. For example, conjugation of poly (ethylene glycol) (PEG)

onto the surfaces of NPs may allow them to evadeMPS clearance.

Conjugation of functional groups onto the surfaces of NPs can be

fine-tuned to alter the surface electrical charges, which can affect

the rate of cellular uptake. There are also strategies to mimic

viruses to endow NPs with viral-like properties. This section

summarizes the typical ligands used for surface modifications, as

well as their advantages and disadvantages.

2.2.1 PEGylation
The concept of PEGylation of polymeric NPs was first

described in 1977, when PEG molecules were attached to NPs

in an effort to increase their circulation time in the bloodstream

(Gref et al., 1994). The significant improvement in the circulation

time of NPs was due to the decrease in the occurrence of

aggregation, opsonization, and phagocytosis. These

phenomena are responsible for the accelerated clearance of

therapeutic NPs from the body via MPS. However, when the

PEG chains are grafted onto the surfaces of NPs, a hydrophilic

brush layer forms, thus endowing the NPs with an ‘anti-fouling’

surface. Since the PEG-grafted NPs were shielded from nearby

NPs and blood components that may trigger MPS recognition,

they gained a prolonged circulation half-life as a result (Shi L.

et al., 2021a; Mitchell et al., 2021).

The advantages of PEG prompted advancements in

therapeutic NPs. A variety of PEG-decorated NPs with

different applications has emerged over the years. For

instance, PEGylated MSNs loaded with different pH-sensitive

dyes were used to investigate the intracellular pathway of NPs

(Zhang et al., 2020). PEGylated NPs have been widely employed

in studies of cancer treatment, such as sonodynamic therapy

(Wang et al., 2020b) and tumor targeting (Liu et al., 2021b).

PEGylation of NPs also enables enhanced stability and increased

biocompatibility. This was demonstrated when PEGylated

chitosan-modified gold NPs exhibited colloidal stability in a

complex biological environment (Liu et al., 2015). More

examples of nanodrug can be found elsewhere (Patra et al., 2018).

Currently, the most important application of PEG-decorated

NPs is in the area of vaccine development for COVID-19. Briefly,

mRNA-based vaccines are fabricated using lipid NPs decorated

with PEG on the surfaces for efficient mRNA transfection (Pardi

et al., 2018; Corbett et al., 2020). PEGylation of NPs can also be

seen frequently in the applications of imaging and therapy

(Jokerst et al., 2011). There is a long list of benefits that are

brought forth by PEG, but there are reports that several

drawbacks are caused by PEG polymers. Undesired

immunological response involving specific and nonspecific

recognition by the immune system often leads to

hypersensitivity reactions. The exact mechanism involved has

yet to be determined, and there is no exact conclusion about

whether PEG alone or a series of combined reactions is the culprit

(Knop et al., 2010).

There is also evidence showing that anti-PEG titers can occur

in some patients or those immune responses may develop after

administering multiple doses of PEGylated NPs (Kozma et al.,

2020; Chen L. et al., 2021b). Nevertheless, even with the

drawbacks, PEGylation will continue to strive in the area of

nanomedicine research due to its excellent benefits, including

reduced immunogenicity, antigenicity, and toxicity. Future

researchers should be aware of the negative impacts so that

more comprehensive studies can be completed (Shi Y. et al.,

2021b).

2.2.2 Zwitterions
With rising concerns regarding the disadvantages of PEG,

many research groups are seeking alternatives. Many have turned

to other synthetic polymers such as biodegradable poly (glutamic

acid) (Li and Wallace, 2008; Hoang Thi et al., 2020) or non-

biodegradable polymers with close structural similarity to PEG,

such as poly (glycerol) (Qi and Chilkoti, 2015). In this search,

zwitterionic materials have attracted many researchers’ attention.

Similar to PEG, zwitterionic materials are able to extend the

blood circulation half-life of NPs without triggering the immune

response (Pombo-Garcia et al., 2016). Zwitterionic materials are

known to simultaneously possess cationic and anionic moieties

in equal proportion, which enables overall charge neutrality and

superhydrophilicity (Shao and Jiang, 2014; Zhang et al., 2022).

Zwitterionic materials have also shown strong resistance to

nonspecific protein adsorption due to the strong hydration layer

formed via strong electrostatic interaction (Jiang and Cao, 2010).

However, this property can cause hindrance during interaction

with target cells, lowering cellular uptake efficiency (Muro et al.,

2010). This disadvantage could be resolved by modifications via

the coupling of various special functional groups (Zhang et al.,

2010; Debayle et al., 2019). Therefore, the use of zwitterionic

material as surface grafting agents can effectively enhance the

biocompatibility and stability of NPs for prolonging circulation

time in vivo while providing a highly tunable interface for

different applications.

By exploiting the flexibility of zwitterions, a ratiometric

pH sensor based on quantum dots with high stability was

developed to map the intercellular pH difference during

endocytosis (Pratiwi et al., 2016). In another work, a pH-

sensitive zwitterionic material was used to envelop NPs,

which enabled them to traverse the bloodstream without

MPS detection due to the neutral surface. When the NPs

reach a tumor site, the acidic microenvironment of the

tumor triggers the exposure of positively charged functional

groups on the surfaces of the NPs, which effectively enhances

cellular uptake and accumulation (Ou et al., 2018). A similar
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demonstration of a different pH-sensitive zwitterion material

was also shown in another work (Piao et al., 2018).

Other than pH sensitivity, zwitterionic materials can be

functionalized to obtain reduction-responsive properties. The

intracellular components of tumors typically overexpress

glutathione, which can be used to promote and increase the

intercellular drug-release rate (Zhao et al., 2017b). By modifying

zwitterionic material conjugated on NPs with disulfide linkers, a

reduction-sensitive NP delivery platform was developed (Zhu

et al., 2015). A dual-sensitive zwitterionic drug-delivery system

composed of both pH and redox-sensitive functional groups is

also possible (Cai et al., 2015). The vast applications of

zwitterionic material conjugates can allow them to serve as an

alternative for surface modifications. Other stimulating factors

such as temperature or light can also be incorporated into

zwitterionic materials for different applications (Zhou et al.,

2020). A multifunctional zwitterion decorated NP displayed

excellent properties for imaging-guided cancer therapy. When

tested with a tumor mouse model, the results have shown

enhanced efficiency in tumor destruction as well as increased

contrast during magnetic resonance imaging (Zheng et al., 2019).

The use of zwitterionic material for NP coating has shown

increasing popularity for different biomedical applications (Peng

et al., 2020; Ren et al., 2020; Runser et al., 2020). As the area for

zwitterionic material application expands, more problems were

being exposed. The higher tendency to form protein corona for

some species of zwitterionic material may affect its

functionalization (Debayle et al., 2019). The development has

yet to reach the stage for real-life applications due to the lack of

comprehensive studies. For future improvement, it will require

the joint effort of different professionals from various fields of

study (Harijan and Singh, 2022).

2.2.3 Surface electrical charge
Surface charge affects the cellular uptake and fates of NPs

(Sabourian et al., 2020). When designing the interfaces of NPs,

one should be aware of the surface charges of the targets.

Biomedical applications of NPs normally target different cells

for specific drug deliveries. Normally, cell membranes have a

negative charge, which is a natural target for positively charged

NPs (Jo et al., 2015; Nishino et al., 2020). Negatively charged NPs

are expected to experience diminished cellular uptake.

When NPs are administered to the body, they are subjected

to a complex microenvironment where various proteins reside.

This increases the chance of adsorption of different proteins onto

the surfaces of NPs, which results in the formation of a protein

corona. The hydrophobic aggregation of various proteins on the

NP surfaces may alter their functionality and biological nature,

causing them to lose their intended function or gain unwanted

properties (Tenzer et al., 2013; Park, 2020). The chances of non-

specific internalization of NP may increase when different

proteins are adsorbed onto the surfaces of NPs, changing the

surface charges or the properties of the NP completely.

Therefore, the design of the NPs ultimately is decided by

whether one wants to avoid unwanted protein adsorption or

to take advantage of the protein adsorption.

The surface charge effect of NPs can be studied by tuning the

surface charges of NPs through the conjugation of functional

groups onto the surfaces (Du et al., 2018) and by subjecting the

NPs to different microenvironments (Lesniak et al., 2012). In

summary, the overall surface charge as well as the charge density

of NPs should be examined closely for both in vitro and in vivo

experiments in order to elucidate the effect of surface charges on

NPs. In addition, a better understanding of how corona

formation affects the surface charge of NPs will help the

design of NPs (Albanese et al., 2012; González-García et al.,

2022).

2.2.4 Virus mimicking
This section discusses surface modifications of NPs to mimic

various features and properties of viruses. It was observed that

the surface topology of a virus greatly affects the interactions

between host cells (Dimitrov, 2004; Huang Y. et al., 2020b;

Pizzato et al., 2022). Therefore, one of the strategies is to

mimic the surface topology of enveloped viruses. For instance,

adding smaller silica NPs onto larger silica NPs increases the

surface roughness of the large silica particles. This augmentation

significantly promotes the interactions between the silica NPs

and target cells, thereby enhancing delivery efficiency (Niu et al.,

2013).

Other than surface topology, mimicry of viral architecture is

another strategy that many research groups have investigated.

The viral capsid is a subject of interest related to mimicking viral

architecture since it is crucial for cellular targeting and entry.

Unlike natural virus vectors such as VLPs or virosomes, viral

capsids can be fabricated with synthetic building blocks that

possess specific targeting functions, which their alternatives lack

(Matsuura, 2018; Aljabali et al., 2021). In the case of tumor

targeting, a multifunctional viral mimic, fabricated from self-

assembled amphiphilic dendritic lipopeptides was shown to

possess virus-like infection capabilities for solid tumor and

tumor cells. By taking the advantage of typical properties and

characteristics of viruses and additional tuning of the viral mimic,

tumor suppression was achieved in testing in vitro and in vivo in

comparison to the control groups (Zhang et al., 2015). Viral

mimics were also applied for increased therapeutic efficiency in

antimicrobial-related studies (Shi L. et al., 2021a) as well as

biomedical applications in cancer research (Gao et al., 2021).

Viral capsid mimicking can also be function-specific by

endowing the viral capsid with stimuli-responsive receptors

and enabling interactions with a targeted site. In this way,

NPs gain the ability to disassemble and deliver their cargos,

which is advantageous for intracellular interactions (Xu et al.,

2014; Chen et al., 2019). Surface modification techniques

involving virus mimicking can be beneficial as they

completely eliminate the use of viral components that are
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essential for infection inducement in VLPs and virosomes. It can

be anticipated that future research in this area will work towards

the development of multifunctional artificial “viruses” that

overcome several limitations of current NP drug-delivery

systems (Parodi et al., 2017; Figueroa et al., 2021).

2.2.5 Challenges for surface modification
techniques

Surface modification techniques offer a wide variety of

functionalization for NPs, the use of decorating ligands or

molecules was even observed for some NPs to provide

additional features (Zhu et al., 2018; Wu et al., 2019). Owing

to the high variability of these decorating materials for NP

surface modification, many challenges arise. Firstly, one must

consider the conjugation density and orientation of ligands on

the surface of NP as these factors can affect cellular uptake

efficiency. Secondly, there is a lack of standardized analytical

methodology for a comprehensive evaluation of NP with

different surface modifications (Takechi-Haraya et al., 2022).

Lastly, the change of geometric properties of NP must be taken

into consideration (Sanità et al., 2020), because these changes

may also influence cellular uptake or even result in a complete

loss of the intended functionalization. More details regarding

the effect of geometric properties of NP will be discussed in the

next section.

2.3 Functionalization of NP with
geometric property variations

Previous sections have discussed NPs subjected to protection

or transportation via membrane coatings, which prolong the

NPs’ half-life during blood circulation or act as a vehicle to carry

NPs to specific sites of interest. We have also seen various

surface-modification techniques that endow NPs with

properties such as immune-system evasion or increased drug-

delivery efficiency. These methods are considered as providing

“tools” to NPs to gain advantages in various situations. On a

more fundamental side, a simple change in the NPs’ geometry

(size and shape) can also alter the properties of NPs without the

use of any “tools.” For example, the cellular uptake pathway of

NPs was demonstrated to be size-dependent, which is a key factor

when determining the degree of cytotoxicity (Sun et al., 2016;

Sanità et al., 2020).

In another example, the interactions between NPs and cells

were investigated with NPs of different shapes. Rod-shaped NPs

contain more accessible binding sites than spherical NPs, which

promote NP-cell interactions (Salatin et al., 2015; Choo et al.,

2021). Therefore, it is important to have a complete

understanding of the geometry dependency of NPs so that

more comprehensive knowledge can be applied when

designing them. The following sections summarize details

regarding how geometries of NPs affect the level of

internalization as well as cellular uptake pathways.

2.3.1 Size
The size of NPs is an important factor that determines the

interaction mechanisms between NPs and cell membranes. For

NPs to successfully deliver their cargo to a target cell, it is crucial

for the cell to internalize the NPs via endocytosis. To trigger this

process, the receptors on the target cells have to be activated by

specific ligands on the NPs for the initiation of membrane

wrapping. Therefore, increasing the number of ligands on the

NP surfaces will promote endocytosis.

To accommodate the increase in the number of ligands, the

size of NPs naturally needs to be increased. However, it was

shown that for NPs with a diameter greater than 60 nm, steric

hindrance and receptor saturation tend to occur, while NPs

with a diameter less than 30 nm are unable to drive the

membrane-wrapping process. In most in vitro studies, the

optimum range for cell uptake is 10–60 nm, regardless of the

NP core and surface charge (Hoshyar et al., 2016). To elucidate

the size effect on cell internalization, many studies have

reported various results that conflict with each other. For

instance, there are reports indicating that the cellular

internalization of functionalized gold NPs varies inversely

with size (Elbakry et al., 2012; Wong and Wright, 2016),

while other reports state that gold NPs of 50 nm tend to

undergo cellular internalization at a higher frequency than

gold NPs with smaller size (Liu et al., 2013). The reasons for

the variation in results may be the use of different decorating

ligands as well as the method of preparation of the gold NPs.

Other than cellular uptake, the size dependency of NPs

was also observed in a study of biodistribution (Chen et al.,

2015). One should note that a more complicated

experimental model should be used in future studies of

the size dependency of NPs. It was shown that the effects

of multiple parameters are entangled, and it is not possible to

use hierarchical cluster analysis (HCA) to define the

dependence of biological effects on individual

physicochemical properties (Xu et al., 2018). A possible

direction for future studies regarding the size dependency

of NPs may involve the use of different types of NPs (silver

NPs or iron oxide NPs) to build larger model libraries

(Alkilany et al., 2013), as well as introducing more

parameters into HCA so that a more comprehensive data

model may be used for better classifications and predictions.

A final word of advice when dealing with the size of NPs is

that it changes when subjected to a biological environment. As

mentioned earlier, the tendency to form a protein corona is one

of the reasons that may distort the size of the NPs. This

complication causes difficulties in size-dependent studies in

vivo (Sabourian et al., 2020). Any analysis or evaluation

should be done while keeping in mind the size of NPs before
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and after they are introduced into a biological medium (Li et al.,

2019).

2.3.2 Shape
In many experiments, NPs have been fabricated in various

shapes (most commonly spheres). Other shapes such as rods,

triangles, stars, and wires can also be found (Kuo et al., 2007;

Millstone et al., 2009; Charan et al., 2012; Shiohara et al., 2015).

As mentioned earlier, the interactions between NPs and cells are

dependent on the geometric shape of the NPs (Salatin et al.,

2015). When comparing rod-shaped NPs with spherical NPs, the

cellular uptake of rod-shaped NPs has higher efficiency due to the

larger aspect ratio (AR)—i.e., the length-to-width ratio (Huang

et al., 2010). Investigations regarding the shape effect of NPs have

pushed on further in vivo studies. The result of the in vivo

biodistribution and clearance indicated that NPs of different ARs

have a very different fate. For example, NPs with larger ARs

tended to accumulate in the spleen, while NPs with smaller ARs

were likely to be trapped in the liver of mice after intravenous

injection (Huang et al., 2011).

In another example, when spherical MSNs and rod-shaped

MSNs were administered orally to mice, rod-shaped MSNs

attained higher content in all organs than spherical MSNs.

This could be the result of prolonged retention of rod-shaped

MSNs in RES organs (the liver and spleen) and the ability to

prevent macrophage engulfment, thus increasing their half-life in

blood circulation (Zhao et al., 2017c). The effect of shape on the

cellular uptake pathway was also investigated by comparing gold

NPs of three different shapes: stars, rods, and triangles. It was

shown that the endocytosis pathway was strongly associated with

the shape of NPs and should be further studied to provide a more

detailed mechanism (Xie et al., 2017).

Most reports have pointed out the phenomenon of

increased cellular uptake efficiency for large AR NPs, but

one should also consider the time required for the cells to

wrap themselves around NPs with large AR. It was

demonstrated that the internalization rate for rod-shaped

NPs was slower than that of spherical NPs (Verma and

Stellacci, 2010). The benefits of manipulating the shape of

NPs should be evaluated thoroughly before designing NPs

while bearing in mind the goals to achieve in a specific

biomedical application.

3 Future perspectives for NP design

In this review, we have presented various design principles

of bioinspired interfaces used in biomedical applications, such

as drug delivery, cancer treatment/detection, imaging

techniques, and therapeutics. The scope of this review is

limited to the development of NP-related techniques, which

include derivatives of biological entities comprising the use of

various mammalian cell membranes, bacterial membranes,

and virus-derived entities. The functionalization of NPs using

surface modification was also discussed from the use of

common polymers such as PEG to the use of hybrid

zwitterions with dual stimuli-responsive capabilities. Last

but not least, the effects of geometric properties of NPs

were briefly mentioned with the impacts that each property

has on the NPs.

The emergence of hybrid membrane-coated NPs in

recent year have prompted a new route of development

toward the improvement of MNPs. The combination of

different cell membrane coatings endows the NP with

multiple integrated functions which enables a broader

range of applications using a single NP (Zeng et al., 2022;

Zhu et al., 2022). However, the complication of the

membrane structure may result in an even more complex

preparation procedure. Nonetheless, the continuous efforts

of the research community will steadily march towards

further development.

Nanozyme is also another area of interest that is gaining

popularity in recent years due to its unique enzyme-mimetic

activities that serve as a highly versatile candidate for many

disease therapy (Zhang et al., 2021; Ren et al., 2022). For example,

the nanozyme developed by Yang et al. display promising results

for the treatment of sepsis (Yang et al., 2022). Surface

modifications of nanozyme were also shown to provide anti-

tumor properties (Tang et al., 2021). More examples of

nanozyme and related applications can be found elsewhere

(Hong et al., 2022).

NP-related research is still very active, but it seems to be

approaching its limits. Considering that most of the results

and data stem from experiments that were conducted under

controlled conditions, unpredictable results may occur during

actual applications (Vega-Vasquez et al., 2020). This may be

why very few developed NP-based drug delivery systems have

been approved. On the other hand, recent development in the

field of nanodevices has brought about interesting insights

into the nanotechnology community. It was demonstrated

that a chip device containing poly (3,4-

ethylenedioxythiophene)-based nanofiber mats was able to

capture/release rare circulating tumor cells by exploiting the

nature of the nanomaterial using electrical triggers (Yu et al.,

2017). The vast application of nanodevices can also be seen in

several works that involve noninvasive prenatal diagnostics

(Hou et al., 2017), integration with NPs for a versatile

biosensor (Chou et al., 2019), the combination of

microfluidic chips for cancer cell isolation (Yu et al., 2019)

and neuron manipulation (Hsiao et al., 2011; Hsiao et al.,

2016; Tsai et al., 2019). The advancements in the field of

nanodevices may play an important role in the future

development of nanotechnology. Bearing this in mind, the

scientific community should aim toward the integration of

current NP technology with different fields of science so as to

transform theory into real-life applications.
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