AUTHOR=Xiong Feng , Yu Mingao , Xu Honggui , Zhong Zhenmin , Li Zhenwei , Guo Yuhan , Zhang Tianyuan , Zeng Zhixuan , Jin Feng , He Xun TITLE=Discovery of TIGIT inhibitors based on DEL and machine learning JOURNAL=Frontiers in Chemistry VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2022.982539 DOI=10.3389/fchem.2022.982539 ISSN=2296-2646 ABSTRACT=

Drug discovery has entered a new period of vigorous development with advanced technologies such as DNA-encoded library (DEL) and artificial intelligence (AI). The previous DEL-AI combination has been successfully applied in the drug discovery of classical kinase and receptor targets mainly based on the known scaffold. So far, there is no report of the DEL-AI combination on inhibitors targeting protein-protein interaction, including those undruggable targets with few or unknown active scaffolds. Here, we applied DEL technology on the T cell immunoglobulin and ITIM domain (TIGIT) target, resulting in the unique hit compound 1 (IC50 = 20.7 μM). Based on the screening data from DEL and hit derivatives a1-a34, a machine learning (ML) modeling process was established to address the challenge of poor sample distribution uniformity, which is also frequently encountered in DEL screening on new targets. In the end, the established ML model achieved a satisfactory hit rate of about 75% for derivatives in a high-scored area.