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Reactions between phosphoric acid [H3PO4] or ammonium hydrogen

phosphates [i.e., NH4H2PO4, (NH4)2HPO4] and halide salts can be used to

dehalogenate (remove halides from) salt-based waste streams, where the

process of removing halides yields products that have more efficient

disposal pathways for repository storage. In this context, the term efficiency

is defined as higherwaste loadings and simplified immobilization processes with

potential for recycle of certain salt components (e.g., 37Cl as H37Cl or NH4
37Cl).

The main streams identified for these processes are nuclear wastes generated

during electrochemical reprocessing of used nuclear fuel as well as used halide

salts from molten salt reactor operation. The potential byproducts of these

reactions are fairly consistent across the range of halide species (i.e., F, Cl, Br, I)

where the most common are hydrogen halides [e.g., HCl(g)] or ammonium

halides (e.g., NH4Cl). However, trihalide compounds (e.g., NCl3), nitrogen

triiodide ammine adducts [NI3·(NH3)x], and ammonium triiodide (NH4I3) are

also possible. Several of these byproducts (i.e., NCl3, NBr3, NI3, and NH4I3) are

shock-sensitive contact explosives so their production in these processes must

be tracked and carefully controlled, which includes methods of immediate

neutralization upon production such as direct transport to a caustic scrubber for

dissolution. Several benefits arise from utilizing H3PO4 as the phosphate

additive during dehalogenation reactions for making iron phosphate waste

forms including more oxidized iron (higher Fe3+:Fe2+ ratios), higher chemical

durabilities, and the avoidance of trihalides, but the byproducts are hydrogen

halides, which are corrosive and require special handling.
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Introduction

Salt-based nuclear wastes can be generated through electrochemical reprocessing

(pyroprocessing) or operation of molten salt reactors (MSRs). If the radionuclide-containing

salt wastes cannot be directly disposed in a nuclear waste repository, it is possible that these

wastes can be treated prior to disposal to improve the available options for waste form

production (Riley, 2020). One of these treatment processes includes dehalogenation of the salt

where the halides are removed and 1) recovered and recycled, 2) immobilized in a different form,

or 3) potentially discarded. The primary goal of partitioning the wastes is to find more suitable

and efficient waste forms for the different waste constituents since halide solubilities in
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traditional borosilicate glass nuclear waste forms are very low and

the retentions of halides during melting to create glassy waste

forms are also low (Hrma, 2010; Riley et al., 2012; Riley et al.,

2014). Secondary goals include the benefit of recovering valuable

isotopes like 37Cl for applications like MSRs. While both 35Cl and
37Cl are stable isotopes, the motivation for using 37Cl-enriched salts

for MSRs are 1) to prevent neutron activation of natural 35Cl to the

long-lived radioisotope of 36Cl (t1/2 = 3.01 × 105 years) and 2) to

decrease parasitic neutron absorption (McFarlane et al., 2019).

Having long-lived radioisotopes in nuclear wastes drives

repository dose calculations so they should be minimized, if

possible, to save on disposal costs and potential environmental

impacts. Since radioiodine is also an issue from a repository dose

standpoint due to long-lived 129I (t1/2 = 1.57 × 107 years), selective

removal of iodine from these salts and maximizing iodine loading

in a high efficiency waste form is also desired. Bromine is a fission

product present in nuclear waste streams (Riley et al., 2018) and,

unlike the other halogens, is a liquid at room temperature with a

boiling temperature of 58.8°C (Lide 2007-2008). Following

dehalogenation, immobilization of the fission product oxides

could be realized in a phosphate waste form including

phosphate glass (e.g., iron phosphate, iron aluminophosphate,

aluminophosphate) (Day et al., 1998; Siemer, 2013a; Siemer,

2013b; Day and Ray, 2013; Bai et al., 2021) and/or phosphate-

based crystalline matrices (e.g., monazite) (McCarthy et al., 1978;

Boatner et al., 1980).

Dehalogenation reactions and
byproducts

Demonstrated methods for dehalogenating chloride-

based salt wastes include reactions between chloride-based

salts with ammonium phosphates [e.g., NH4H2PO4 and

(NH4)2HPO4] shown in Eqs 1, 2 (Donze et al., 2000; Donze

et al., 2001; Bekaert et al., 2006; Riley et al., 2020), reactions

with H3PO4 such as that shown in Eq. 3 (Lavrinovich et al.,

2003; Park et al., 2007a; Park et al., 2007b; Park et al., 2008;

Park et al., 2011; Siemer, 2012; Lee et al., 2019), reactions with

hydrogen-based zeolites like ultrastable H-Y zeolite shown in

Eq. 4 (Wasnik et al., 2019a; Wasnik et al., 2019b), or through

high-temperature reactions with steam to produce metal

oxides shown in Eq. 5 (Sato et al., 2002). A third

ammonium phosphate material, (NH4)3PO4, will be

mentioned here for completion purposes, but it is quite

unstable; however, it could potentially be adapted for these

types of processes.

2NH4H2PO4 + 2NaCl → 2NH4Cl + 2H2O(g) +Na2O · P2O5

(1)
2 (NH4)2HPO4 + 4NaCl → 4NH4Cl +H2O(g) + (Na2O)2 · P2O5

(2)

2H3PO4 + 4NaCl → 4HCl(g) +H2O(g) + (Na2O)2 · P2O5

(3)
H(SiO2)2.6(AlO2) +NaCl → Na(SiO2)2.6(AlO2) +HCl(g) (4)

2NaCl +H2O(g) → Na2O + 2HCl (5)

Dehalogenation processes are useful for waste form

production of chloride-based salt wastes because it allows for

much higher waste loadings in the final waste form for the

remaining fission products because the halides no longer limit

this loading capacity as it does with other salt waste form options

like crystalline matrices with physical halide limits such as

chlorosodalite [e.g., Na8(AlSiO4)6Cl] (Vance et al., 2012) and

chlorapatite [e.g., Ca5(PO4)3Cl] (Vance et al., 2012) due to crystal

chemistry stoichiometries (Figure 1B). When the salt loading

limits are exceeded for crystalline-based halide-host matrices,

residual salts can be observed (Figure 1B), which are not a

chemically durable or stable form for long-term disposal.

Fluoride salts can be processed using phosphate precursors as

well. Wang et al. (2004) demonstrated that NH4H2PO4 can be

used to defluorinate LiF salt with a byproduct of NH4F through

Eq. 6 or produce NH4F through the reaction between HF(g) and

NH3(g) as shown in Eq. 7. It is likely that these types of reversible

reactions could take place at different times in the same system

depending on the experimental conditions. Regarding Eq. 7, both

hydrogen halides (e.g., HCl) and NH3(g) can be found as

byproducts of these reactions as well as in the decomposition

reactions of the phosphate reagents. However, to the knowledge

of the authors, no such studies have been performed starting

from pure iodine-containing salts. In a study by Xiang et al.

(2019), NH4H2PO4, Cs2CO3, SrCO3, PbBr2, and NaBr were

reacted together resulting in a 45P2O5-20PbBr2-10NaBr-

13Cs2O-12SrO glass containing CsPbBr3 crystals after a

mechanical stress was applied. This study provides evidence of

Br retention after heating NH4H2PO4 and Br-containing

compounds to 680°C in air.

2NH4H2PO4 + 2 LiF → 2NH4F + 2H2O(g) + Li2O · P2O5 (6)
HF(g) + NH3(g) → NH4F (7)

These types of reactions can be studied in real-time using

characterization techniques like differential scanning calorimetry

(DSC; i.e., phase change temperatures, heats of reaction),

thermogravimetric analysis (TGA; i.e., mass loss over a range

of changing temperatures and/or times), evolved gas analysis

(EGA; i.e., identification of off-gas species from the reactions)

with an attached gas chromatograph and mass spectrometer, or

hot stage X-ray diffraction. In a recent study (Riley et al., 2021a),

EGA was utilized to study NH4Cl decomposition as well as

monitor the reactions between NH4H2PO4 and KCl. This

study showed similar byproducts of NH3, HCl, and H2O for

both of these experiments at temperatures as low as ~200–300°C

providing evidence that heat treatment temperatures, heating
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rates, and temperature dwell times are important parameters for

preventing decomposition of the byproducts if ammonium

halide salt products are desired [Eq. 8].

NH4Cl(s) → NH3(g) +HCl(g) (8)

Thermodynamic calculations performed using HSC Chemistry

show that the ammonium halides should form spontaneously based

on negative Gibbs free energies of formation (ΔGf
°) across the

temperature range of 0 ≤ T ≤ 600°C as shown in Figure 1A

(Riley et al., 2020). Also, the ΔGf
° values show that the formation

preference of the ammonium halides is in the order of NH4F →
NH4Cl→ NH4Br→ NH4I with the more favorable reactions being

the lighter ammonium-halide complexes (Figure 1A and Figures

2E–H). In the presence of salt simulants with both chlorine and

iodine, both NH4Cl and NH4I were observed in the solid

condensates after reactions with NH4H2PO4 at temperatures up

to 600°C (Figure 1C) (Riley et al., 2020). However, what these

calculations did not show was the formation of other, unwanted

potential byproducts when nitrogen-containing reactants are used to

dehalogenate some of these salts.

In reactions involving nitrogen-containing compounds and

halide vapors, complexes such as nitrogen trihalides (i.e., NF3,

NCl3, NBr3, and NI3) can form as well as ammonium triiodide

(e.g., NH4I3) or ammines (adducts) of ammonia nitrogen

triiodide [NI3·(NH3)x] where x = 1, 2, 3, 5, or 12 according to

Matyáš and Pachman (2013) (Figure 2M). The pure hydrogen

halide compounds HF, HCl, HBr, and HI are all colorless gases at

room temperature with different boiling temperatures (Tbs) of

19.5°C, −85°C, −66.8°C, and −35.4°C, respectively (Lide 2007-

2008; Matyáš and Pachman, 2013) (see Figures 2A–D). The

ammonium halide salts are all white in appearance and some

FIGURE 1
(A) Gibbs free energies of formation for various ammonium halide salts (Riley et al., 2020). (B) Residual halite (NaCl) mass, based on X-ray
diffraction data, as a function of salt loading used to make glass-bonded sodalite waste forms showing that residual salts are observed when the salt
fractions are too high (>8 mass%) due to crystal stoichiometry limits (Riley et al., 2017). (C) Powder X-ray diffraction data showing the majority phase
of NH4Cl with a minor NH4I phase in solid condensates recovered after a reaction between NH4H2PO4 and a Cl/I-containing salt simulant at
temperatures up to 600°C in an alumina crucible (Riley et al., 2020). Parts (A,C) of this figureweremodified from the originals by Riley et al. (2020) and
were reprinted with permission. Copyright Elsevier (2020). Part (B)wasmodified from the original by Riley et al. (2017) and reprinted with permission.
Copyright Elsevier (2017).
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can decompose when heated into NH3(g) and hydrogen halides

[e.g., Eq. 8]. For instance, NH4F decomposes at 100°C, NH4Cl

decomposes at 338°C, NH4Br boils at 452°C, and NH4I sublimes

at 235°C (Lide 2007-2008; Matyáš and Pachman, 2013). The

nitrogen trihalide compounds NF3, NCl3, and NI3 all behave

differently with Tbs of −129.1°C, 71°C, and −20°C (sublimation

temperature) and have different appearances of a colorless gas, a

yellow oily liquid, and a dark solid, respectively (Lide 2007-2008;

Matyáš and Pachman, 2013) (see Figures 2I, J, L). The compound

NBr3 is a deep red solid, and the Tb could not be found reported

in the literature but it is known to be explosive at temperatures as

low as −100°C even under slight disturbances (Jander, 1976) (see

Figure 2K), likely making the Tb determination difficult. The

ammine compounds of NI3·(NH3)x are black-colored crystals

FIGURE 2
Potential halogen-based byproducts generated during dehalogenation processes including (A–D) hydrogen halides; (E–H) ammoniumhalides;
(I–L) nitrogen trihalides; (M) NI3·(NH3)x ammine adduct where x = 1, 2, 3, 5, or 12; and (N) NH4I3. The yellow triangles (!) for some species indicate
additional hazards that are described in the text in more detail.
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and this is the expected appearance of NH4I3 as well (Fedoroff

et al., 1975) (see Figure 2N).

The primary concern with NCl3, NBr3, NI3, and NH4I3 is that

they are known contact explosives (Matyáš and Pachman, 2013); NF3
is not a contact explosive but it is both a toxic gas and greenhouse gas

with high global warming potential (Tsai, 2008). Contact explosives

are highly unstablematerials that can react or explode violently when

exposed even to very small amounts of external energy (e.g., gentle

contact, sound, α particles, light, spark discharge, mild heating) or

strong light and can do so in the absence of oxygen (e.g., in an inert

glovebag, glovebox, or hot cell) (Henderson, 1922; Meerkämper,

1954; Bowden, 1958; Fedoroff et al., 1975; Matyáš and Pachman,

2013). These high-energy reactions can proceed to produce diatomic

halide gases [e.g., I2(g)] along with other byproducts documented

through experimentation (or proposed) in Eqs 9–11 (Holleman and

Wiberg, 2001) and are often used in chemistry demonstrations for

students.

2NI3(s) → N2(g) + 3 I2(g) (9)

8 (NI3 ·NH3) → 5N2(g) + 6NH4I + 9 I2(g) (10)
NH4I3(s) → NH4I + I2(g) (11)

Alternatively, both NH4I3 and NI3 can be neutralized

chemically through reactions with high-pH solutions such as

those present within a caustic scrubber whereby the complexes

are dissolved and dissociate into more stable (less dangerous)

species. Aqueous caustic scrubbers are often used in nuclear

applications to neutralize acidic species and an alternative to

this approach with similar capabilities would be a nonaqueous

molten hydroxide scrubber (Haefner and Tranter, 2007; Riley

et al., 2016; Riley et al., 2019; Andrews et al., 2021; Bollinger

et al., 2022). These acids include the hydrogen halide acids (i.e., HF,

HCl, HBr, and HI; Figures 2A–D), which are likely byproducts

when H3PO4 or ammonium phosphates are present, all of which

can be neutralized through the hydroxide ions present within

caustic scrubbers. However, it is possible that other acids will be

present in these streams as well depending on the application (e.g.,

HNO3), which would also be neutralized by the caustic scrubber or

molten hydroxide scrubber, which is a secondary benefit.

Despite the volatile and solid-condensable byproducts [e.g.,

hydrogen halide gases, H2O(g), N2(g), NH3(g), ammonium halides]

and the initial salt chemistry, if these reactions are performed in air,

it is likely that the material remaining in the crucible after

dehalogenation of halide salts with phosphate precursors

[i.e., H3PO4, NH4H2PO4, (NH4)2HPO4] would be fairly

consistent in composition no matter which phosphate reactant

is used where the salt cations are converted from halides to oxides

within a P2O5 matrix [Eqs 1–3, 5 above]. This is one of the more

important benefits of dehalogenation as it greatly simplifies the

next steps required to fully immobilize the remaining product,

which can be reacted with glass-forming chemicals (e.g., Fe2O3) to

produce a chemically durable waste form for disposal in a nuclear

waste repository (Park et al., 2007a; Park et al., 2007b; Park et al.,

2008; Park et al., 2011; Siemer, 2012; Ebert et al., 2018; Ebert and

Fortner, 2019a; Ebert and Fortner, 2019b; Lee et al., 2019; Ebert and

Fortner, 2020; Stariha and Ebert, 2020; Riley et al., 2021b; Stariha

and Ebert, 2021).

The fates of the halides following dehalogenation need to

be considered. If halide recycle is desired such as the recovery

of valuable 37Cl from MSR-based wastes, capture as HCl or

NH4Cl should provide multiple pathways for reuse. One such

option for 37Cl recycle is to use NH4Cl to convert U0 to UCl3
that potentially could be returned to MSRs as a fuel source or

as an oxidant for electrochemical reprocessing (Herrmann,

2017; Frank et al., 2018; Riley et al., 2020). For Cl, Br, and I, if

these are captured in caustic scrubbers, the products can likely

be immobilized directly in a halide-specific waste form like

sodalite or apatite starting from these halide-containing

solutions and reacting them with reagents (e.g., zeolites) at

room temperature and atmospheric pressure or at elevated

temperatures and pressures in an autoclave (Henderson and

Taylor, 1978; Weller and Wong, 1989; Vance et al., 2012; Cao

et al., 2017; Chong et al., 2017; Nam et al., 2018). For fluorine,

it is likely that captured fluoride byproducts could be

discarded or immobilized in a fluoride-based waste form

like a CaF2-based glass-ceramic waste form (Gregg et al.,

2020).

Phosphate Waste Forms

When formulating and synthesizing phosphate glasses

containing high alkali contents, previous work can be

drawn upon as well such as the work done with

aluminophosphates, iron aluminophosphates, and iron

phosphates where a range of phosphate precursors were

used to produce glasses including P2O5, H3PO4, NaPO3,

Al(PO3)3, AlPO4, and NH4H2PO4 (Brow, 1993; Brow et al.,

1993; Day et al., 1998; Mesko et al., 2000; Siemer, 2012;

Stefanovsky et al., 2014; Stefanovsky et al., 2017; Bai et al.,

2021). In a study by Bai et al. (2021) directly comparing the

same glass compositions produced with H3PO4 with those

made using NH4H2PO4, glasses made with H3PO4 showed

significantly higher Fe3+:Fe2+ ratios based on Mössbauer

spectroscopy, which can lead to more chemically resistant

(higher chemical durability) waste forms (Yu et al., 1997).

This is another benefit for using H3PO4 as the phosphate

additive when producing iron phosphate waste forms as

opposed to ammonium hydrogen phosphates.

Impacts on potential applications

Based on the information provided above, several potentially

problematic species could be generated from reacting phosphateswith
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halide salt streams. The main hazards include the corrosive hydrogen

halides (i.e., HF, HCl, HBr, and HI) and shock-sensitive trihalide

compounds (i.e., NCl3, NBr3, NI3, and NH4I3). As previously

discussed, the thermal stabilities of all possible byproducts vary

extensively meaning that processes and facilities for managing

these byproducts will likely differ for each halide-based salt. The

phase-change (Tbs) and decomposition temperatures reported here

are for pure compounds. Thus, these temperatures do not represent

the actual conditions expected where water is present as a byproduct

that will result in dilution (and therefore adjustments to the phase-

change temperatures) of the pure compounds. Also, several of these

byproducts have very lowTbs and, if produced, would likely be vented

as gases. However, it seems that after careful selection of the

phosphate precursor, reaction temperatures, reaction times, the

molar ratios of the scavenging reactant cation to the total halide

content (e.g., NH4
+:Cl−, H+:Cl−), and byproduct management, several

options exist for removing the halides from salt-based nuclear wastes

containing fission-product (Riley et al., 2020; Riley et al., 2021a). Since

the primary MSR designs currently under consideration are either

chloride-based or fluoride-based, these types of processes are possible

for recycling the valuable 37Cl from chloride-basedMSRs or removing

the fluorine from fluoride-based wastes so that more effective waste

management options are available for storing the fission product

cations, such as phosphatewaste forms like glass, crystallized glass,

or glass ceramics (Siemer, 2012; Zhang et al., 2013; Liu et al.,

2019; Riley et al., 2019; Riley et al., 2020; Wang et al., 2020; Riley

et al., 2021a; Riley et al., 2021b). Management of the halide-

based byproducts for waste disposal depends on the specific

halide distribution and isotopes present for each, which will

likely include some iodine-based species. Separate potential

waste form options exist for halide-based species including

mineral synthesis from solutions (e.g., caustic scrubbers)

(Bollinger et al., 2022) into crystalline matrices like apatite

[e.g., Ca5(PO4)3F, Ca5(PO4)3Cl, Pb10(VO4)6I2] (Metcalfe and

Donald, 2004; Donald et al., 2007; Metcalfe et al., 2008; Vance

et al., 2012; Cao et al., 2017), spodiosite [e.g., Ca2(PO4)Cl]

(Metcalfe et al., 2008; Vance et al., 2012), and sodalite [e.g.,

Na8(AlSiO4)6Cl, Na8(AlSiO4)6I2] (Strachan and Babad, 1979;

Nakazawa et al., 1999; Vance et al., 2012; Lepry et al., 2013;

Chong et al., 2020).

Summary and conclusion

This paper provides a very brief overview of the types of reactions

and byproducts that can be expected when reacting halide-containing

nuclear salt wastes with phosphate precursors such as H3PO4,

NH4H2PO4, and (NH4)2HPO4. While most of the byproducts are

very manageable from these types of reactions, the primary concerns

come frompotential trihalides that can formunder certain conditions

including NCl3(s), NBr3(s), NI3(s), and NH4I3(s), which are all shock-

sensitive contact explosives. While these are potential byproducts

from the reactions described herein, other byproducts are also

possible from such streams that do not pose these types of issues

such as ammonium halides (e.g., NH4I) and dihalides [e.g., I2(g)]. Due

to the inherent instabilities with most of the triiodides, is also likely

that these complexeswill undergo decomposition prior to condensing

depending on the processing conditions. In any case, removing the

condensate products of these reactions and transporting them

towards a caustic scrubber or molten hydroxide scrubber should

be an adequate method for neutralization and preventing

downstream transport or unwanted release to the environment.

Formation of the triiodides can be avoided if H3PO4 is used

instead of the ammonium hydrogen phosphates. The hydrogen

halide byproducts can be neutralized in a caustic scrubber.
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