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A solid-state mixing method was adopted to prepare a new Pr0.8Sr0.2Fe0.7Ni0.3O3−δ-
Pr1.2Sr0.8Fe0.4Ni0.6O4+δ (PSFN113-214) composite cathode oxide for the solid oxide fuel
cells (SOFCs). Herein, heterointerface engineering was investigated for the performance
enhancement. It was found that the oxygen vacancy content could be increased by mixing
the PSFN214 with PSFN113, which gave rise to the formation of a heterostructure, and
resulted in the promotion of oxygen ion transport as well as the specific surface area. The
optimum mixing ratio 5:5 resulted in the highest oxygen vacancy content and the largest
specific surface area, indicating the strongest interface effect. Polarization resistance of
PSFN113-214 (5:5) was 0.029Ω cm2 at 800°C, which wasmerely 24% of PSFN113 and 39%
of PSFN214. The corresponding maximum power density was 0.699W cm−2, which was
nearly 1.44 times of PSFN113 and 1.24 times of PSFN214. Furthermore, the voltage
attenuation rate after 100 h was merely 0.0352% h−1. Therefore, the new PSFN113-214

composite could be a prospective cathode oxide for SOFCs.
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INTRODUCTION

The development of intermediate-temperature solid oxide fuel cells (IT-SOFCs) is severely limited
because of its restricted cathodic oxygen reduction reaction (ORR) rate (Huan et al., 2021; Ahmad
et al., 2022). Therefore, high-performance cathode materials have become a research hotspot (Ajaa
et al., 2020).

Perovskite oxides possess extraordinary conductivity but poor surface mobility. Ruddlesden-
Popper (R-P) phase oxides possess a special structure of alternating layers of perovskite and rock salt,
which provides more oxygen vacancies as well as oxygen gaps. Unfortunately, their conductivity is
relatively lower (Liu et al., 2016; Lee and Lee, 2017; Yu et al., 2019). Hence, it is impossible for single-
phase materials to fully satisfy the conditions of cathodematerials. Heterostructure cathode materials
possess sufficient contact sites between oxygen and heterointerfaces, which can not only enhance
electronic or ionic conductivity but also have potential to enhance stability and catalytic
performance. It has thus become a hot research area for IT-SOFCs cathode materials. Studies
have shown significantly enhanced electrochemical performance of heterogeneous composite
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cathodes compared to single-phase materials, as seen in
La0.5Sr0.5CoO3-δ-LaSrCoO4±δ (Li et al., 2020),
La0.6Sr0.4Co0.2Fe0.8O3−δ-La0.6Sr1.4Co0.2Fe0.8O4−δ (Wang et al.,
2020), La0.6Sr0.4Co0.2Fe0.8O3−δ-La2NiO4+δ (Dong et al., 2019;
Ghamarinia et al., 2020), PrSrFe0.5Co0.5O4-
Pr0.4Sr0.6Fe0.5Co0.5O3 (Yu et al., 2019), and Nd0.5Sr0.5CoO3−δ-
Nd0.8Sr1.2CoO4±δ (Zheng et al., 2019; Zheng et al., 2020a; Zheng
et al., 2020b). However, cobalt-based materials have some
disadvantages, such as poor chemical stability, high price, and
high coefficient of thermal expansion. Consequently, Cobalt-free
ABO3-A2BO4 heterocomposite cathodes come into our sight. For
example, the introduction of Sr ions into Pr2Ni0.5Mn0.5O4−δ could
form a PrOx-(PrSr)Ni0.5Mn0.5O3−δ-(PrSr)2(MnNi)O4−δ
heterocomposite cathode. Among them, the heterostructure
formed at the interface of (PrSr)Ni0.5Mn0.5O3−δ and
(PrSr)2(MnNi)O4−δ could improve the electrochemical
performance, and the maximum power density (PPD)
enhanced from 483 to 960 mW cm−2 at 800°C (Yang et al.,
2019). Introducing La0.5Sr1.5MnO4+δ into La0.5Sr0.5MnO3−δ to
form La0.5Sr1.5MnO4+δ-La0.5Sr0.5MnO3−δ, the ORR would be
broadened to entire cathode region, and PPD was
936 mW cm−2 at 700°C (Hou et al., 2020). Porous
(La0.6Sr0.4)0.98FeO3−δ electrodes impregnated with aqueous
nitrate solutions of Pr2Ni0.6Cu0.4O4 and Pr2Ni0.7Cu0.3O4

greatly reduced the polarization resistance, from 0.98Ω cm2 to
0.13Ω cm2 and 0.16Ω cm2 at 650°C (Khoshkalam et al., 2020).

Among ABO3 perovskite materials, Pr1−xSrxFe1−yNiyO3−δ has
broad application prospects due to its outstanding electrocatalytic
activity and excellent electrical conductivity (Hashimoto et al.,
2005; Larramendi et al., 2007; Pinedo et al., 2011; Giuliano et al.,
2017; Liu et al., 2017). Especially, the conductivity of the
Pr0.7Sr0.3Fe0.7Ni0.3O3−δ cathode at 600°C was up to 450 S cm−1,
and the electrochemical performance was similar to
La0.6Sr0.4Fe0.8Co0.2O3−δ (Hashimoto et al., 2005). Cathode
materials containing Sr are prone to segregation of SrO during
cell operation. Therefore, in the preparation process of ABO3

material, we could reduce the content of Sr as much as possible to
obtain a more stable cathode material. Pr0.8Sr0.2Fe0.7Ni0.3O3−δ
cathode reduced Rp by only 6% within 200 h, and was stable
within 1000 h (Giuliano et al., 2017). In A2BO4 materials,
Ln2NiO4+δ (Ln = La, Pr, Nd) material is the most widely
studied cathode material. Pr2NiO4 (PNO) had the lowest
polarization resistance and the highest oxygen surface
exchange coefficient (k*) and diffusion coefficient (D*) therein
(Bansod et al., 2018; Kim et al., 2019). However, its thermal
stability was poor, and it was easy to decompose during
operation. The structure stability is improved by doping Sr2+

at the Pr site (Bhoga et al., 2014; Kim and Lee, 2021). Among
Pr2−xSrxNiO4 (x = 0.3, 0.5, and 0.8) cathode materials,
Pr1.2Sr0.8NiO4 had the lowest area-specific resistance value
when the Sr doping amount was 0.8, down to 0.112Ω cm2 at
800°C (Yang et al., 2012). In addition, the substitution of Ni sites
with Fe can increase the oxygen surface exchange and show
excellent performance. For example, in the La1.5Sr0.5Ni1−yFeyO4+δ
series, iron doping promoted the bulk diffusion of the sample,
and the oxygen surface exchange was significantly increased when
y = 0.4 (Gilev et al., 2018). La1.2Sr0.8Ni0.6Fe0.4O4+δ had the

performance suitable for IT-SOFCs cathode. Its polarization
resistance (Rp) was 0.078Ω cm2, and its PPD was up to
781 mW cm−2 at 700°C (Miao et al., 2019). Therefore, this
study chose Pr0.8Sr0.2Fe0.7Ni0.3O3−δ (PSFN113) and
Pr1.2Sr0.8Fe0.4Ni0.6O4+δ (PSFN214) as the two components of
the composite material. The structure, compatibility,
microstructure, specific surface area, and electrochemical
activity of single-phase materials and heterogeneous composite
cathode materials were studied comparatively, and their potential
as IT-SOFCs was evaluated.

EXPERIMENTAL

Chemicals
The chemicals utilized in this study, including Pr(NO3)3·6H2O
(Aladdin, 99.9%), Sr(NO3)2 (Aladdin, 99%), Fe(NO3)3·9H2O
(Aladdin, 98.5%) and Ni(CH3COO)2·6H2O (Aladdin, 99.9%),
are used as received without further purification.

Preparation of Cathode Materials
Single-phase Pr0.8Sr0.2Fe0.7Ni0.3O3−δ (PSFN113) and
Pr1.2Sr0.8Fe0.4Ni0.6O4+δ (PSFN214) cathode powders were
synthesized via the sol-gel method. First, citric acid was
completely dissolved in distilled water under stirring. Raw
materials including Pr(NO3)3·6H2O (Aladdin, 99.9%),
Sr(NO3)2 (Aladdin, 99%), Fe(NO3)3·9H2O (Aladdin, 98.5%),
and Ni(CH3COO)2·6H2O (Aladdin, 99.9%) were joined in
sequence in corresponding proportions. The proportion of
citric acid was twice than of metal ions. Subsequently, 2 g of
polyethylene glycol powder was added. After stirring for 2–3 h,
the above solution was dehydrated in a water bath at 80°C for 12 h
to gain a dry gel. This dry gel was heated on a hot plate to form a
precursor powder. After sufficient grinding, the precursor powder
was calcined in a muffle furnace at 600°C for 4 h. Ultimately, this
pre-fired powder was ground and calcined in a muffle furnace at
900°C for 4 h to obtain the desired cathode material.

Pr0.8Sr0.2Fe0.7Ni0.3O3-δ-Pr1.2Sr0.8Fe0.4Ni0.6O4+δ (PSFN113-214)
heterogeneous composite cathode was synthesized via solid-
state mixing method, in which mass ratio of PSFN113 and
PSFN214 was 4:6, 5:5 and 6:4 respectively. First, PSFN113

powder was poured into ethanol solvent according to the
corresponding proportion, and zirconia ball was milled to
make it evenly distributed. Subsequently, PSFN214 powder of
the corresponding quality was poured into it and ball milled for
24 h. Above-mentioned mixture solution was put in an oven and
dried continuously at 80°C for 12 h to gain dry powder. Finally,
the gained powder was ground in a mortar for 48 h to gain a
uniformly mixed composite cathode.

Cell Construction
The symmetrical cell was assembled as follows. First,
Ce0.8Gd0.2O1.9 (GDC) powder was pressed at 10 MPa into a
disc with a diameter of 13 mm and a thickness of 1 mm. A
compact GDC electrolyte sheet was formed via sintering at
1500°C for 5 h in muffle furnace. Then, 6wt% terpineol/ethyl
cellulose binder was mixed with PSFN113, PSFN214, PSFN113-214
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heterogeneous composite cathodes, and the required five kinds of
cathode slurries were obtained after the grinding for several
hours. Cathode slurry was symmetrically coated on both sides
of the Ce0.8Gd0.2O1.9 (GDC) electrolyte by screen printing,
calcined in a muffle furnace at 900°C for 2 h. Ultimately, the

collector silver slurry was symmetrically coated in the grid
structure on both sides of the electrolyte, and dried in an oven
at 200°C for 2 h.

Similarly, a single cell was assembled. The GDC electrolyte
sheet was polished to ~250 μm and ultrasonically cleaned to
obtain the required electrolyte sheet. NiO-GDC anode was
prepared by mixing NiO and GDC at a mass ratio of 6:4. The
required PSFN113, PSFN214, PSFN113-214 (5:5) cathode slurry, and
NiO-GDC anode slurry were constructed as described above.
First, NiO-GDC anode paste was screen printed on one side of the
GDC electrolyte. After calcination at 1250°C for 4 h, the cathode
slurry was symmetrically coated on the other side of the
electrolyte. After calcinating at 900°C for 2 h, current collector
silver paste was coated on both sides of the cell to form a grid
structure.

Characterization
An X-ray diffractometer with a Cu Kα X-ray source (λ =
0.15406 nm, 40 kV, 200 mA) was used to collect the X-ray
diffraction (XRD) data from 20° to 80°, so as to determine the

FIGURE 1 | (A) XRD of cathode powder; (B) infrared spectrum of
cathode powder; (C) XRD of PSFN113-214 mixed in equal proportion at
different calcination temperatures.

FIGURE 2 | After calcination at 1000°C for 10 h, (A) XRD patterns of
PSFN113-214 and GDC mixed in equal proportions and (B) XRD patterns of
NiO and GDC mixed in equal proportions.
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purity, thermal stability, crystal structure and chemical
compatibility of the synthetic powder. Fourier infrared
spectrometer was utilized to characterize the functional group
structure of the synthesized powder in the range of
400–4000 cm−1. A field emission scanning electron microscope

equipped with an X-ray spectrometer (EDS) was utilized to
observe the cathode powder morphology and cathode/
electrolyte interface adhesion. A high-resolution transmission
electron microscope was utilized to further verify the existence
of a heterointerface. Under the condition of degassing at 180°C

FIGURE 3 | FE-SEM images of (A) PSFN113, (B) PSNF214, (C) PSFN113-214 (6:4), (D) PSFN113-214 (5:5), and (E) PSFN113-214 (4:6) cathode microstructure. (F)
Specific surface area of all samples.

FIGURE 4 | XPS spectra of PSFN113, PSFN214 and PSFN113-214 (5:5) cathode materials obtained for (A–C) O1s and (D–F) Sr 3d.
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for 12 h, a rapid specific surface area analyzer was utilized to
measure the specific surface area of the material. X-ray
photoelectron spectrometer was utilized to determine the
oxygen vacancy content on the surface and valence state change.

Electrochemical Test
The symmetrical cell was tested by electrochemical impedance
spectroscopy (EIS) at 500–800°C using an electrochemical
workstation. The current-voltage (I-V) and current-power
density (I-P) curves of the single-cell were measured at
500–800°C using the SI 1287 electrochemical interface.
Ultimately, the long-term stability of the single-cell was

evaluated under the condition of a constant current density of
0.3 A cm−2 at 700°C.

RESULTS AND DISCUSSION

Phase Analysis
To study the structure and phase purity of obtained cathode
powder, XRD tests are performed on PSFN113, PSFN214, and
PSFN113-214, as shown in Figure 1A. PSFN113 powder showed a
good orthorhombic perovskite structure with a space group of
Pbnm, which matched well with the crystal structure of
La0.7Sr0.3Co0.5Fe0.5O3 (PDF#89-1267) (Ajaa et al., 2020).
PSFN214 had a typical K2NiF4 type tetragonal structure with a
space group of I4/mmm, which matched well with the crystal
structure of Sr2FeO4 (PDF#82-0414) (Giuliano et al., 2017; Miao
et al., 2019). The diffraction peaks of PSFN113-214 heterogeneous
composites were entirely in accordance with the above-
mentioned two single-phase cathode, and no other impurity
peaks were observed. In addition, corresponding characteristic
peak intensity raised little by little with the increase of PSFN214

TABLE 1 | The percentage of Osurface, Olattice, Srsurface, and Srlattice in PSFN113,
PSFN214, and PSFN113-214 (5:5).

Cathode Osurface (%) Srsurface (%) Srlattice (%)

PSFN113 64.61 56.42 43.59
PSFN214 83.96 47.84 52.16
PSFN113-214 90.61 49.88 50.12

FIGURE 5 | (A) TEM image, (B) HR-TEM image, and (C) performance improvement mechanism diagram of PSFN113-214 (5:5) heterocomposite cathode.
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mass ratio, indicating that three different proportions of
heterogeneous composite cathodes had been synthesized.

To further verify the (PSFN113:PSFN214) ratios of heterogeneous
composite oxides, Fourier transforms infrared spectroscopy (FT-
IR) tests are performed on all samples. Unlike simple ABO3

perovskites, A2BO4 consists of alternating perovskite (ABO3)
and salt rock formations (AO) in the c-axis direction.
Therefore, A2BO4 contains the characteristic peaks of ABO3

and AO formations. As shown in Figure 1B, the absorption
peak intensity of the AO formation at 667 cm−1 gradually
increased in proportion to the increase of PSFN214 content. It
showed that the heterogeneous compositematerial had beenmixed
uniformly and satisfied the expected ratio change, which was
consistent with the above-mentioned XRD peak intensity change.

To determine the stability of the PSFN113-214 heterogeneous
composite cathode material, we mixed the quality mass of
PSFN113 and PSFN214. After calcination at 900°C for 2 h and
1000°C for 10 h, XRD test is performed, as shown in Figure 1C.

These results showed that the PSFN113-214 heterogeneous
composite cathode still maintained its single-phase structure
without any change in composition, which met the
requirements of long-term operation.

Chemical Compatibility
In addition, the long-term stable operation of the cell is affected
via chemical compatibility of the electrode and the electrolyte
(Zhang et al., 2021). Therefore, PSFN113-214 (5:5) and GDC
electrolyte oxides were mixed with equal mass in an ethanol
medium, and the compatibility of the two was tested by
calcination at 1000°C for 10 h, as shown in Figures 2A,B.
XRD pattern only contained the characteristic peaks of the
PSFN113-214 cathode/NiO anode component and the GDC
electrolyte, and no other impurity peaks are detected. This
showed that the electrode and the electrolyte existed stably
with each other during the calcination process and could be
used for long-term operation.

FIGURE 6 | Electrochemical impedance spectrum of a symmetrical cell: (A) PSFN113, (B) PSFN214, (C) PSFN113-214 (6:4), (D) PSFN113-214 (5:5), (E) PSFN113-214

(4:6), and (F) polarization resistance varies Arrhenius curve of temperature change.

TABLE 2 | Rp values of PSFN113 and PSFN214 cathode oxides with different mass ratios.

Temperature/°C 1:0 RP/Ω·cm2 0:1 RP/Ω·cm2 6:4 RP/Ω·cm2 5:5 RP/Ω·cm2 4:6 RP/Ω·cm2

800 0.12 0.075 0.047 0.029 0.042
750 0.17 0.10 0.067 0.040 0.060
700 0.24 0.15 0.098 0.059 0.089
650 0.36 0.23 0.15 0.098 0.14
600 0.61 0.40 0.26 0.18 0.26
550 1.16 0.72 0.61 0.42 0.59
500 2.77 1.61 1.58 1.14 1.70
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Microstructure Analysis
Electrode microstructure is one of the important factors
affecting cell performance, which is closely related to
material porosity and the three-phase interface (TPB) area
(Han et al., 2021). The microstructure of the cathode
material is shown in Figure 3A–E. All samples had a small
and uniform particle size, good connectivity between the two-
phase particles, and a porous structure. The porous structure
facilitates gas diffusion and oxygen ion transport and also
provides adequately active sites for ORR. In addition,
heterocomposite cathode had no obvious bidirectional
characteristics in appearance, indicating that the two single
phases constituting the composite cathode were fully mixed
and tightly wound together.

To further clarify the microstructure of cathode material, N2

adsorption-desorption test is carried out, as shown in Figure 3F.
The results showed that the specific surface area of the five
samples with mass ratios of PSFN113 and PSFN214 of 1:0, 0:1,
6:4, 5:5, 4:6 was 3.5399 m2 g−1 and 4.6552 m2 g−1 4.1249 m2 g−1,
5.1687 m2 g−1 and 4.5906 m2 g−1, respectively. It can be seen that
when PSFN113 and PSFN214 particles were tightly wound to form
a heterointerface, the specific surface area of the composite
cathode oxides was greater than PSFN113, and the
corresponding ORR reaction active sites were increased. When
the mass ratio of PSFN113 to PSFN214 was 5:5, the specific surface
area value was the largest, which was expected to have the best
electrochemical performance.

Surface Chemical Environmental Analysis
To further investigate the influence of the presence of
heterointerfaces on the oxygen reduction catalytic activity and

structural stability of the cathodematerial, the orbitals of O 1s and
Sr 3d were collected by XPS, as shown in Figure 4. Previous
studies have shown that the O element can be separated into
lattice oxygen (Olattice, ~528.5 eV) and surface oxygen (Osurface)
(Wang H. et al., 2019). Surface oxygen includes three types: O2−

(~529.6 eV), O− (~531.1 eV), and O−
2 (~532.4 eV) (Bai et al.,

2021). Among them, the content of Osurface (O−
2 O−) mainly

affects the surface oxygen vacancies on the cathode and the ORR
activity (Wang J. et al., 2019; Bai et al., 2021). So, the higher the
content, the stronger the ORR catalytic activity. As shown in
Table 1, the presence of heterointerface increased Osurface from
64.61% (PSFN113) and 83.96% (PSFN214) to 90.61% (PSFN113-

214). It can be concluded that the existence of the heterointerface
has a beneficial influence on the catalytic activity of oxygen
reduction.

Similarly, Sr elements can be separated into lattice
strontium (Srlattice) and 1Q (Srsurface). Srlattice in perovskite
lattices have less binding energies (~131.7 eV, 3d5/2,
~133.5 eV, 3d3/2) (Wang H. et al., 2019). Srsurface on
perovskite surfaces has large binding energies (~133.8 eV,
3d5/2; ~135.2 eV, 3d3/2), such as Sr(OH)2, SrCO3, or SrO
barrier layers (Bai et al., 2021). The higher the surface
strontium content, the greater the degree of segregation of
the Sr element, which will impair the electrical activity of the
cell. Therefore, the less the content of Srsurface, the better the
stability of the cathode (Wang J. et al., 2019; Bai et al., 2021).
As shown in Table 1, the presence of heterointerfaces
neutralized Srsurface from 56.42% (PSFN113) and 47.84%
(PSFN214) to 49.88% (PSFN113-214). It can be concluded that
the existence of the heterointerface has a neutralizing effect on
the structural stability. Whether it can meet the requirements

FIGURE 7 | After the EIS test, the cross-sectional SEM of the symmetrical cell with (A) PSFN113, (B) PSFN214, (C) PSFN113-214 (6:4), (D) PSFN113-214 (5:5), and (E)
PSFN113-214 (4:6) as the cathode.
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for long-term operation of cathode oxides will be confirmed in
the follow-up long-term stability test.

High-Resolution Transmission Electron
Microscope Analysis
To determine the micromorphology of the heterocomposite cathode
material in one step, a high-resolution transmission electron
microscope (HR-TEM) is utilized to observe the

FIGURE 8 | (A) Cross-sectional morphology of a single cell and I-V-P curves: (B) PSFN113, (C) PSFN214, and (D) PSFN113-214 (5:5).

TABLE 3 | OCV (V) and PPD (W·cm−2) of Cell-I, Cell-II, and Cell-III in the range of
650–800°C.

Temperature (°C) Cell-I Cell-II Cell-III

OCV PPD OCV PPD OCV PPD

800 0.748 0.485 0.779 0.562 0.733 0.699
750 0.777 0.235 0.801 0.481 0.755 0.586
700 0.778 0.146 0.856 0.409 0.801 0.528
650 0.807 0.103 0.898 0.347 0.836 0.333

TABLE 4 | Comparison table of PPD value of PSFN cathode and other cathode reported in literature.

Cathode Cell configuration PPD/
(W·cm−2)

Temperature/
°C

Reference

Ba0.5Sr0.5Fe0.8Cu0.2O3-δ NiO-GDC|GDC|BSFC 0.51 700 Bai et al. (2021)
Pr0.5Ba0.5Fe0.8Ni0.2O3-δ NiO-GDC|GDC|PBFN 0.52 700 Meng et al. (2021)
Pr1.91Ni0.71Cu0.24Ga0.05O4-Ba0.5La0.5CoO3 Ni-Fe|LSGM| PNCG-BLC 0.117 400 Xie et al. (2013)
La0.6Ca0.4Fe0.8Ni0.2O3-δ-Sm0.2Ce0.8O1.9 LCFN-30SDC/SDC/LCFN-30SDC 0.303 800 Ding et al. (2017)
PrLaNiO4-(La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891 NiO-SDC|SDC| PLNO-LSBC 0.606 800 Chiu et al. (2017)
Pr2NiO4-Pr0.2Ce0.8O1.9 NiO-GDC|GDC|PNO-PCO 0.57 800 Chen et al. (2020)
Ce0.8Sm0.2O2-δ-La0.25Sr0.75Ti1O3-δ-
Ni0.8Co0.15Al0.05LiO2-δ

Ni-LST-SDC-NCAL|LST-SDC-NCAL|LST-SDC-
NCAL-Ni

0.222 550 Gao et al. (2020)

Pr0.8Sr0.2Fe0.7Ni0.3O3-δ-Pr1.2Sr0.8Fe0.4Ni0.6O4+δ (5:5) NiO-GDC|GDC|PSFN113-214 (5:5) 0.699 800 This work
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micromorphology of the PSFN113-214 (5:5) heterocomposite cathode,
as shown in Figures 5A,B. It can be seen from Figure 5A that the
PSFN113-214 heterocomposite cathode particles were tightly
entangled and had a good contact area. Two distinct diffraction
fringes can be observed in Figure 5B. The diffraction fringe with a
pitch of 0.274 nm matched the orthogonal (112) plane of PSFN113,
while the diffraction fringe with a pitch of 0.366 nm matched the
(101) plane of the tetragonal phase of PSFN214 (Yu et al., 2019).
There was an obvious interface between PSFN113 and PSFN214

nanoparticles. The electrons in PSFN113 could be transferred to
PSFN214 through the heterointerface, and the oxygen ions in
PSFN214 could also be transferred to PSFN113 through the
heterogeneous interface. This synergistic effect of the two was
expected to promote the catalytic activity of oxygen reduction.
The above mechanism is shown in Figure 5C.

Electrochemical Impedance Spectroscopy
Spectra
To research the effect of the presence of heterointerface on
electrochemical activity, we constructed five symmetrical cells

with mass ratios of PSFN113 and PSFN214 of 1:0, 0:1, 6:4, 5:5, and
4:6. At 500–800°C, the EIS test is performed on three symmetrical
batteries at intervals of 50°C, as shown in Figures 6A–E. The
cathodic polarization resistance (Rp) is the difference between the
real axis intercepts of the impedance diagram (Li et al., 2017), and
the corresponding values are shown in Table 2. Within the above
temperature range, the RP of the three materials all followed the
following sequence: PSFN113-214 (5:5)< PSFN113-214 (4:6)

FIGURE 9 | (A) The long-term stability test of a single cell constructed via
PSFN113-214 (5:5) cathode (B) cross-sectional view of it.

FIGURE 10 | (A) XRD comparison pattern of PSFN113-214 (5:5) cathode
before and after long-term stability test and SEM images of PSFN113-214 (5:5)
cathode: (B) before long-term stability test; (C) after long-term stability test.
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<PSFN113-214 (6:4)<PSFN214 < PSFN113. It showed that the
existence of heterointerface would promote the cathodic
oxygen reduction reaction, and the catalytic activity of
PSFN113-214 oxygen reduction was significantly enhanced,
which greatly improved the performance of IT-SOFCs (Zhao
et al., 2019). Among them, the PSFN113-214 (5:5) cathode
exhibited the lowest polarization resistance. Its RP value
(0.029Ω cm2) at 800°C was only 24% of PSFN113 (0.12Ω cm2)
and 39% of PSNF214 (0.075Ω cm2). It can be seen that the
heterointerface of PSFN113-214 (5:5) could be maximized,
which was consistent with the above-mentioned specific
surface area analysis and oxygen vacancy content. To compare
the RP changes of the three samples more intuitively, we made the
Arrhenius curve of RP and temperature, as shown in Figure 6F.
As shown in the figure, the activation energy of PSFN113-214

heterocomposite cathode was greater than PSFN113

(74.65 kJ mol−1) and PSFN214 (74.16 kJ mol−1), indicating that
the catalytic activity of the composite oxide was more sensitive to
temperature (Li et al., 2017; Kuzmin et al., 2020), but still much
smaller than La0.5Sr0.5CoO3−δ-LaSrCoO4±δ (121.25 kJ mol−1) (Li
et al., 2020), (PrSr)Ni0.5Mn0.5O3−δ-PrOx-(PrSr)2(MnNi) O4−δ
(147.5 kJ mol−1) (Wang et al., 2020). Therefore, PSFN113-214 (5:
5) has the potential as a SOFC cathode material.

Interface Microstructures
To research the thermal compatibility of cathode material and
electrolyte material in symmetrical cells, the cross-section FE-
SEM of cathode and electrolyte is observed, as shown in Figure 7.
It can be seen from the figure that both the electrolyte GDC and
the cathode material had a clear interface. Particles were evenly
distributed and very tightly attached to the GDC electrolyte,
without obvious delamination and cracks, which was conducive
to gas transmission and oxygen diffusion.

Single Cell Performance
To further evaluate the effect of the heterointerface on the cathodic
oxygen reduction reaction, an electrolyte-supported NiO-GDC/
GDC/[PSFN113/PSFN214/PSFN113-214 (5:5)] single cell was
constructed, denoted as Cell-I, Cell-II, and Cell-III. Figure 8A
represents the cross-sectional morphology of a single cell. As
shown in the figure, the thickness of the GDC electrolyte was
about 250 μm, and the thickness of the cathode and anode was
between 20 and 30 μm.The current-voltage (I-V) and current-power
density (I-P) curves between 650 and 800°C are shown in Figures
8B–D. These corresponding values are displayed in Table 3. The
maximum open-circuit voltage (OCV) of Cell-I, Cell-II, and Cell-III
were 0.807, 0.898, and 0.836 V, respectively, which were all lower
than the theoretical value of 1.04–1.1 V (Wang H. et al., 2019; Chen
et al., 2020). In the high-temperature range, the OCV was further
reduced. This was due to the partial reduction of Ce4+to Ce3+in the
high-temperature reduction atmosphere, and the GDC electrolyte
had a certain n-type conductivity, resulting in the internal short
circuit of the cell and the decrease of OCVvalue (Bai et al., 2021; Han
et al., 2021). At 650–800°C, the power densities of the threematerials
all followed the following order: PSFN113 < PSFN214 < PSFN113-214

(5:5), which corresponded to the above-mentioned RP results. At
800°C, the maximum power density (PPD) of Cell-III

(0.699W cm−2) was 1.44 times that of Cell-I (0.485W cm−2) and
1.24 times that of Cell-II (0.562W cm−2). Cell performance was
significantly enhanced. The PPD value of the PSFN113-214 (5:5)
cathode was compared with the cathode performance reported in
the literature, which further illustrated the superiority of its
performance, as shown in Table 4.

Furthermore, to study the stability of Cell-III, a 100-h long-term
stability test was conducted under the conditions of 0.3 A cm−2 and
700°C, as shown in Figure 9A. These results showed that the initial
voltage of Cell-III decreased from 0.738 to 0.712 V after 100 h of
polarization, and the degradation rate of OCV was about 0.0352%
h−1. Figure 9B shows the change in electrochemical impedance
spectrum of cell-III before and after the stability test. Simultaneously,
the XRD and SEM of PSFN113-214 (5:5) cathode after the long-term
stability test were tested, as shown in Figure 10. The results showed
that the XRD pattern only contained the characteristic peaks of
cathode and electrolyte, and there was no impurity peak. And the
cathode morphology had no obvious change. These results further
proved that PSFN113-214 (5:5) could be used for long-term operation.
PSFN113-214 (5:5) had good single-cell activity and stability, so it had
broad application prospects in the intermediate temperature range.
Afterward, cell activity can be improved via applying anode-
supported single cells or diminishing the thickness of the electrolyte.

CONCLUSION

Herein, new Pr0.8Sr0.2Fe0.7Ni0.3O3−δ-Pr1.2Sr0.8Fe0.4Ni0.6O4+δ
(PSFN113-214) cathode materials were prepared. The effect of the
existence of heterointerfaces on the structures and properties of
Pr0.8Sr0.2Fe0.7Ni0.3O3-δ (PSFN113) and Pr1.2Sr0.8Fe0.4Ni0.6O4+δ
(PSFN214) was systematically studied. PSFN113 showed a good
orthorhombic perovskite-type structure. PSFN214 showed a typical
K2NiF4-type tetragonal structure. They were stable to each other and
compatible with GDC electrolytes. Two single phases that make up
the composite cathode were well mixed and tightly intertwined.
When the heterocomposite cathode obtained by mixing at a mass
ratio of 5:5 had the largest oxygen vacancy content (0.9836%) and
specific surface area (5.1687m2 g−1), the heterointerface was
maximized. At 800°C, the RP value of the heterocomposite
cathode PSFN113-214 (5:5) was down to 0.029Ω cm2 and the PPD
for the corresponding single cell was as high as 0.699W cm−2. The
voltage decay rate was merely 0.0352% h−1 after 100 h. Therefore,
PBFN113-214 (5:5) has broad application prospects.
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NOMENCLATURE

SOFCs, solid oxide fuel cells; IT-SOFCs, intermediate-
temperature solid oxide fuel cells; ORR, oxygen reduction
reaction; Olattice, lattice oxygen; Osurface, surface oxygen; Srlattice,
lattice strontium; Srsurface, surface strontium; RP, polarization
resistance; I-V, current-voltage; I-P, current-power density;
OCV, open circuit voltage; PPD, maximum power density;
XRD, X-ray diffraction; FT-IR, Fourier transform infrared
spectroscopy; FE-SEM, field emission scanning electron
microscope; XPS, X-ray photoelectron spectrometer; HR-TEM,

high-resolution transmission electron microscope; EIS,
electrochemical impedance spectroscopy; PSFN113,
Pr0.8Sr0.2Fe0.7Ni0.3O3-δ; PSFN214, Pr1.2Sr0.8Fe0.4Ni0.6O4+δ;
PSFN113-214 (4:6), samples with mass ratios of PSFN113 and
PSFN214 of 4:6; PSFN113-214 (5:5), samples with mass ratios of
PSFN113 and PSFN214 of 5:5; PSFN113-214 (6:4), samples with
mass ratios of PSFN113 and PSFN214 of 6:4; GDC, Ce0.8Gd0.2O1.9;
Cell-I, an electrolyte-supported NiO-GDC/GDC/PSFN113 single
cell; Cell-II, an electrolyte-supported NiO-GDC/GDC/PSFN214

single cell; Cell-III, an electrolyte-supported NiO-GDC/GDC/
PSFN113-214 (5:5) single cell
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