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Pyrite (FeS2) is one of the potential candidates for advanced rechargeable Li-ion batteries
(LIBs) owing to its inherent capacity (849 mAh g−1), environmental friendliness, and
abundant natural resources. However, the volume expansion of FeS2 and the
dissolution of polysulfide in the electrochemical reaction severely limit its application in
the field of energy conversion and storage. Herein, FeS2 nanoparticles are encapsulated in
S/N co-doped three-dimensional multi-channel structural carbon nanofibers (FeS2@
CNFs) through the electrospinning method. As a cathode material for LIBs, FeS2@
CNFs demonstrated excellent rate property and cyclic stability. The 3FeS2@CNFs
(weight ratio of FeS2 is 30%) present the initial capacity of 1,336.7 mAh g−1 and the
remaining 856.5 mAh g−1 at 0.02A g−1 after 100 circles. The favorable electrochemical
properties have confirmed that carbon nanofibers can enhance the electroconductivity of
electrodes, reduce the volume collapse of FeS2, and remit the dissolution of polysulfide
during the Li+ ions insertion/de-insertion process. In addition, co-doped S/N can supply
abundant active sites for electrochemical reactions, providing enough space for Li+ ion
storage. The results indicate that 3FeS2@CNFs is a cathode with a developmental
prospect for LIBs.
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1 INTRODUCTION

As the population continues to increase, the energy demand is also growing rapidly (Zhao et al., 2015;
Chi et al., 2018; Teng et al., 2019; Kesavan et al., 2020). The overexploitation of non-renewable fossil
fuels has seriously polluted the environment (Zhang et al., 2019; Fang et al., 2021; Yang et al., 2021).
Compared to traditional fossil fuels, electricity is a green, low-carbon, environment-friendly, and
efficient energy system. To date, researchers have conducted numerous studies on electric energy
storage. The common commercial electronic storage devices currently used contain nickel–cadmium
batteries, lead–acid batteries, nickel–metal hydride batteries, Li-ion batteries (LIBs), fuel cells, etc.
Among them, LIBs have been universally used in various fields such as manned crafts and small
equipment because of their advantages of high energy density, excellent cyclic stability, and low self-
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discharge. Therefore, LIBs have attracted great attention. For
instance, Gou et al. (2021) prepared Li3VO4/C through a facile
agitation–drying method combined with subsequent calcination.
The as-prepared composites were used as anode materials for
LIBs and exhibited outstanding electrochemical properties.
Zhong et al. (2018) synthesized a sandwich-type sulfur@Co/
N-doped carbon ternary composite for Li–S batteries. The
assembled Li–S batteries display excellent energy storage
performance and provide the possibility of realizing
industrially practical energy. Jiang et al. (2020) encapsulated
NaTi2(PO4)3 nanoparticles in N/S dual-doped carbon (NTP@
CNS) as the anode for LIBs via the sol–gel method followed by
calcination treatment. The NTP@CNS shows excellent
electrochemical property. According to daily needs and the
rate of production, various types of LIBs are prepared.
Recently, Li–FeS2 batteries are considered to be one of the
power batteries having the most potential. However, the
volume expansion of FeS2 during the intercalation and de-
intercalation of Li+ ions lead to a structural collapse, reducing
the cycle life of LIBs (Zhang et al., 2016; Wang et al., 2021).
Meanwhile, the conversion process is accompanied by accessory
substances such as lithium polysulfides (Li2Sx, 2 < x < 8). These
accessory substances can make the conductivity between the
anode and current collector worse. In addition, the lithium
polysulfides also dissolve in the electrolyte and can gradually
migrate to the cathode, leading to an increase in the impedance of
the cathode (Wang et al., 2019; Li et al., 2021).

To overcome these existing issues, researchers have also
attempted to nanosize FeS2. Nanocrystallization can effectively
alleviate the damage caused by Li+ ions insertion/de-insertion of
active materials during the charge and discharge processes,

improving the cyclic stability (Lei et al., 2016). Meanwhile, the
nanoscale of active substances also effectively shortens the ion
transmission path, accelerates the Li+ ions diffusion rate, and
improves the rate property (Polishchuk et al., 2019). Li et al.
(2014) reported the synthesis of phase-pure FeS2 nanowires
through thermal vulcanization of the precursor α-FeF3 3H2O
nanowires. The nano-FeS2 cathode retained 350 mAh g−1 after
50 circles at 0.1°C. Liao et al. (2013) fabricated macroporous FeS2
nanotubes through a solvothermal method. The macroporous FeS2
nanotubes exhibited 925.2 mAh g−1 and retained 439 mAh g−1 at
0.2°C after 60 cycles. Nevertheless, the preparation of
nanostructured single-phase FeS2 has long-term challenges due
to the presence of many substoichiometric Fe–S phases and
orthorhombic FeS2 (Ennaoui et al., 1993). Therefore, researchers
began to attempt to hybrid nanostructured FeS2 with carbon
materials. Carbon materials can not only improve the electrical
conductivity and relieve the volume expansion of electrodes but
also delay the damage of polysulfides during charge and discharge
processes (Xu et al., 2016; He et al., 2017). For instance, Xu et al.
(2016) synthesized a FeS2@HPC composite through the formation
of FeS2 nanocrystals in hierarchical porous carbon. The as-
fabricated FeS2@HPC presented 907 mAh g−1 and maintained
720mAh g−1 after 100 circles at 1°C. XuQ.-T. et al. (2018) prepared
the biomass-carbon@FeS2 composites from auricularia auricula
after the carbonization and sulfidation procedure. The as-
synthesized composite demonstrated 850 mAh g−1 after
80 circles at 0.5°C. Wang et al. (2021) reported a raspberry-like
hierarchical-structured FeS2 cathode modified by the dual-carbon
framework. The as-prepared cathode delivered 566 mAh g−1 and
maintained a capacity reduction rate of 0.014% for each circle at
1°C. These studies demonstrate that the development of

GRAPHICAL ABSTRACT | Graphical Abstract Novel FeS2@CNFs nanocomposites with the multi-channel structure were successfully prepared using the
electrospinning method. The three-dimensional interlinked multi-channel carbon nanofibers can facilitate the diffusion of Li+ ions and electrons. Meanwhile, the FeS2

nanoparticles are distributed on the inner wall of the carbon nanofibers, improving the phenomenon of volume expansion for FeS2 and preventing the dissolution of
polysulfide during the cycling process. In addition, co-doped S/N can supply abundant active sites for electrochemical reactions, providing enough space for Li+ ion
storage. The FeS2@CNFs and the preparation method have exceptional applications in the field of energy storage.
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nanocomposites combining FeS2 with carbon can improve the
electrochemical properties of electrodes.

Herein, a type of FeS2@carbon nanofiber (FeS2@CNF)
nanocomposites with a multi-channel structure was
successfully prepared using the electrospinning method. The
three-dimensional interlinked multi-channel and S/N co-doped
carbon nanofibers can improve the electroconductivity of
cathodes. Meanwhile, the lotus-like structure can ameliorate
the phenomenon of volume expansion for FeS2 and prevent
the dissolution of polysulfide during the cycling process. The
effect of the FeS2 content on properties was studied through
examining the performances of FeS2@CNFs nanocomposites
with different contents of FeS2. The application feasibility of
FeS2@CNFs as cathodes for LIBs was also explored in detail.

2 EXPERIMENT

2.1 Material Preparation
A total of 340mg iron acetate, 400mg polystyrene, and 500mg
polyacrylonitrile (PAN) were poured into 5mlN,
N-dimethylformamide and mixed at 65°C for 12 h. The
aforementioned mixture was then electrospun with a single
nozzle (21 gauge needle). The distance between the syringe and
the receiver was 15 cm, the voltage was 17 kV, and the injection rate
was 1 mlh−1. The as-prepared precursor film was stabilized at 200°C
for 2 h and then calcined at 800°Cwith 5°Cmin−1 for 4 h in anAr/H2

atmosphere. After reducing to 30°C, the film was sealed with sulfur
powder in a quartz tube (Vproduct: Vsulfur = 1:2). Subsequently, the
quartz tube was heated to 600°C and kept for 6 h. After that, the
product was dissolved in CS2 to eliminate redundant sulfur. Finally,
it was dried in vacuum at 100°C to obtain a lotus root–like FeS2@
CNFs with many channels. The preparation process of FeS2@CNF
nanocomposites based on the electrospinning approach is illustrated
in Figure 1. The content of FeS2 in FeS2@CNFs nanocomposites
prepared by this process was 20 wt%, which was named 2FeS2@
CNFs. Samples with contents of 30, 40, and 50 wt% were also
synthesized in the same way and named 2FeS2@CNFs, 3FeS2@
CNFs, 4FeS2@CNFs, and 5FeS2@CNFs, respectively.

2.2 Characterization
The crystal structure information was obtained on a Rigaku
diffractometer with Cu Kα radiation (λ = 1.5418) within
10–90°. Raman measurements were performed on an
HR800 spectrophotometer from 400 cm−1 to 2400 cm−1. The
information of the valence states was acquired using a Thermo
ESCALAB 250 X-ray photoelectron spectrometer (XPS) with
monochromatic Al Kα (1486.6 eV). The surface morphologies
were observed using scanning and transmission electron
microscopes (SEM, Ultra Plus, ZEISS and TEM, Talos F200X).
The SEM was obtained at 10 kV. TEM was acquired at 200 kV
accelerating voltage.

2.3 Electrochemical Measurements
The synthesized FeS2@CNFs nanocomposites were directly used
as the cathodes of LIBs without any conductive agent, binder, and
metal collector. The film of FeS2@CNFs was cut into a circle with
a diameter of 1 cm. The mass of each cathode was about
1 mg cm−2. A total of 1 M LiPF6 in a mixture of vinyl
carbonate/dimethyl carbonate (1:1 in volume) was used
directly as the electrolyte. Lithium disks were used as the
anode, and the Celgard 2400 microporous polypropylene
membrane was employed as the separator. The
aforementioned materials were assembled into CR2032 coin-
type cells in an argon-filled glovebox and tested for
electrochemical properties. The electrochemical properties
were tested by using a CHI760E workstation and a Land CT
2001A battery testing system. The cyclic voltammetry (CV) and
the galvanostatic charge and discharge (GCD) performances were
determined between 1.0 and 3.0 V. Electrochemical impedance
spectroscopy (EIS) was conducted at the frequency of
105–10–2 Hz.

3 RESULTS AND DISCUSSION

The structures and phase purities of FeS2@CNFs were
characterized by XRD patterns, as presented in Figure 2A.
The diffraction peaks of FeS2@CNFs were consistent with the

FIGURE 1 | Illustration of the procedure for the preparation of FeS2@CNFs.
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FIGURE 2 | (A) XRD patterns and (B) Raman spectra.

FIGURE 3 | XPS of 3FeS2@CNFs: (A) survey spectra, (B) Fe 2p, (C) S 2p, (D) C1s, and (E) N1s.
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pure phase of pyrite FeS2 (JCPDS Card No. 65-3321). No
diffraction peaks of the marcasite FeS2 and other impurities
were observed. There is no diffraction peak of CNFs, indicating
the formation of disordered layered graphite structures during
the carbonization of PAN. This structure is composed of tiny

crystals of layered graphite. The chemical composition of
different FeS2@CNFs nanocomposites was determined using
the Raman spectrum (Figure 2B). Two notable peaks at
1,352 cm−1 and 1,594 cm−1 in each spectrum match well
with the D band and G band, respectively (Lu et al., 2020).

FIGURE 4 | FESEM images of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs (The figure is a high-magnification image).

FIGURE 5 | Elemental mapping and distribution of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs.
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The D band illustrates the defects of the carbon atom lattice,
and the G band indicates the first-order scattered E2g vibration
mode (Xu X. et al., 2018). The ratio (ID/IG) is higher suggesting
that there are more defects on the surface of CNFs (Huang
et al., 2018). The values of ID/IG for 2FeS2@CNFs, 3FeS2@
CNFs, 4FeS2@CNFs, and 5FeS2@CNFs were calculated to be
1.36, 1.35, 1.33, and 1.27, respectively. As the content of FeS2
increases, the value of ID/IG gradually decreases, indicating
that the FeS2@CNFs composites transform from a disordered
structure to an ordered structure. The chemical composition of
3FeS2@CNFs was analyzed using the XPS spectrum (Figure 3).
The survey spectrum (Figure 3A) displays four typical peaks of
Fe2p, O1s, C1s, and S2p, respectively. The high-resolution
spectrum of Fe2p is demonstrated in Figure 3B, the two
feature peaks at 707.2 and 720.3 eV belong to Fe2p3/2 and
Fe2p1/2 of pyrite FeS2, while the two peaks at 712.3 and
725.4 eV belong to slight Fe3+-S or Fe3+-O on the surface of
FeS2@CNFs (Chen et al., 2019). The XPS spectra of S displayed
in Figure 3C are fit into six peaks. The peaks at 163.8 and
165.1 eV match well with the S2p3/2 and S2p1/2 of FeS2, the
binding energy at 164.1 and 165.3 eV are assigned to S2p3/2
and S2p1/2 of S

2-, and the higher binding energy at 168.7 and
169.9 eV match well with S2p3/2 and S2p1/2 of SO4

2- (Zhao
et al., 2017; Lin et al., 2019). In the high-resolution spectrum of
C 1s (Figure 3D), C-N, C=C/C-C, and C = N peaks are
displayed (Ma et al., 2018). The production of C=N and
C-N bonds is due to the addition of PAN in the
electrospinning process (Huang et al., 2020). The S/N co-
doped FeS2@CNFs can provide abundant active sites for

redox reactions, improving the electronic conductivity of
FeS2@CNFs (Lu et al., 2018).

The morphology characterizations of different FeS2@CNFs
were carried out by SEM and TEM. Figure 4A displays the
SEM image of 2FeS2@CNFs. There are many pore channels in
the CNFs (the inset of Figure 4A) and Figure 5A. As the
content of FeS2 increases to 30%, there are many pore channels
with different diameters inside the nanofibers parallel to the
radial direction of the nanofibers. Meanwhile, many holes
appear on the surface of the CNFs, as demonstrated in
Figure 4B and Figure 5B. This structure can reduce
diffusion resistance and facilitate the diffusion of Li+ ions.
At the same time, FeS2 nanoparticles can be firmly loaded on
the inner wall of the CNFs to prevent the structure from
collapsing caused by volume expansion during cycling. This
multi-channel structure can also effectively prevent the
dissolution of intermediate products generated during
electrochemical reactions (Li et al., 2015). In the SEM and
TEM images of 4FeS2@CNFs (Figure 4C and Figure 5C), it
can be observed that the shape of CNFs becomes irregular and
the phenomenon of bending and entanglement bonding
appears. Furthermore, the pores inside the nanofibers are
also significantly reduced. When the FeS2 content is 50%,
the shape of CNFs is more irregular and the agglomeration
phenomenon is more serious. There are no obvious pores
inside the CNFs (Figures 4D, 5D). In summary, as the
proportion of FeS2 increases, the structure of CNFs changes.
This phenomenon can be attributed to the growth and
aggregation of FeS2 particles during the reaction of iron and

FIGURE 6 | TEM images of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs.
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sulfur to form FeS2, occupying the space of the pores in the
nanofibers. EDS measurements of the samples were
investigated, as shown in Figure 6. EDS mappings present
that Fe, S, C, and N are evenly distributed on their inherent
positions. The Fe element originates from the addition of iron
acetate during the process of experiment. The C and N
elements come from PAN. The presence of S element is due
to the addition of sulfur powder.

CV is an important method to study the lithium storage
behavior of FeS2@CNF cathodes. As shown in Figures 7A–D,
CV tests were carried out for different FeS2@CNF cathodes at
0.5 mV s−1 within 1–3 V. The CV curves of 2FeS2@CNFs show
two oxidation peaks at 2.0 and 2.6 V, and two reduction peaks
at 2.1 and 1.8 V. There are two oxidation peaks at 2.1 and
2.7 V and a reduction peak at 1.8 V in the CV curves of
3FeS2@CNFs and 4FeS2@CNFs. However, no notable redox

peaks can be observed in the CV curves of 5FeS2@CNFs.
Figure 7E shows the CV curves of the first cycle for different
FeS2@CNFs cathodes. Taking the CV curve of the 3FeS2@
CNFs cathode as an example, the electrochemical is analyzed.
The reduction peak at about 1.8 V can correspond to the
below formula:

FeS2 + 2Li++ 2e− → Li2FeS2 (1)
Li2FeS2+ 2Li+ + 2e− → 2Li2S + Fe (2)

The aforementioned reactions are conducted simultaneously
with reaction (3). But reaction (3) can be attributed to the fact that
Li+ ions show relatively slow diffusion in pyrite FeS2 at room
temperature.

FeS2 + 4Li++4e+ → Fe + 2Li2S (3)

FIGURE 7 | CV curves of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs in the initial 3 cycles at 0.5 mV s−1; (E) CV curves of the
first cycle for different electrodes at 0.5 mV s−1.
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The oxidation peak at around 2.0 V is related to the generation
of Li2-xFeS2 according to reactions (4) and (5).

2Li2S + Fe → Li2FeS2 + 2Li+ + 2e− (4)
Li2FeS2 → Li2−xFeS2 + xLi+ + xe− (5)

The peak at around 2.6 V can be put down to the generation of
FeSy and S according to formula (6).

Li2−xFeS2 → FeSy + (2 − y)S + (2 − x)Li+ + (2 − x)e− (6)

Figures 8A–D are the GCD curves of the first three circles for
different FeS2@CNFs cathodes at 20 mA g−1. It can be observed
that the charge and discharge platforms of each cathode are
matched well with the CV curves. Figure 8E shows the GCD
profiles of the initial cycle for different cathodes at 0.02 A g−1. The
initial discharge capacity of 2FeS2@CNFs, 3FeS2@CNFs, 4FeS2@
CNFs, and 5FeS2@CNFs is 905.8, 1,336.7, 520.3, and 400.9 mAh
g−1, respectively. It is obvious that 3FeS2@CNFs composites show
a relatively high specific capacity. This is mainly because CNFs
can not only improve the conductivity of the electrodes, but its

internal pores can also facilitate the reversible embed/de-embed
of Li+ ions. In addition, FeS2 nanoparticles can be uniformly
distributed in the pores, increasing the contact area between the
FeS2 and Li+ ions, and effectively prevent the dissolution of
polysulfides generated during the discharge process (Li et al.,
2020). 2FeS2@CNFs also have many pores, but the content of
FeS2 is relatively low, so the specific capacity is less than that of
3FeS2@CNFs. As the content of FeS2 increases, the resistance of
4FeS2@CNFs and 5FeS2@CNFs increases, so their specific
capacitances decrease.

The cyclic performance of the samples was also determined, as
presented in Figure 9A. The specific capacity of 2FeS2@CNFs,
3FeS2@CNFs, 4FeS2@CNFs, and 5FeS2@CNFs is 674.6, 856.5,
440, and 370 mAh g−1 at 20 mA g−1 after 100 cycles. The specific
capacities of 2FeS2@CNFs and 3FeS2@CNFs decay during the
cycling, which can be attributed to the dissolution of polysulfides
during the electrochemical reaction and leading to the loss of
active materials. As the proportion of FeS2 increases, the FeS2 in
the pores of carbon fibers can build up and agglomerate.
Therefore, the space of the pores becomes less and less,

FIGURE 8 | Discharge–charge profiles of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs 20 mA g−1 between 1 and 3 V; (E) the
initial discharge-charge profiles of different electrodes at 20 mA g−1.
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resulting in a reduction in the contact area between Li+ ions and
active materials so that the phenomena of 4FeS2@CNFs and
5FeS2@CNFs are not obvious. Figure 9B shows the rate
performance curves of different samples at 20, 40, 80, 100, and
200 mA g−1, respectively. It is evident that the 3FeS2@CNFs
cathode exhibits the highest rate performance at various
current densities among the four cathodes. The excellent
electrochemical performances of the 3FeS2@CNF cathode can
be attributed to the multi-channel structure of CNFs, which can
supply abundant paths for ion and charge transfers. The EIS of
2FeS2@CNFs, 3FeS2@CNFs, 4FeS2@CNFs, and 5FeS2@CNFs was
confirmed, as displayed in Figure 9C. The values of the
equivalent series resistance and the charge transfer resistance
for 3FeS2@CNFs are the smallest. The results indicate that the
ratio of FeS2 and CNFs is appropriate, which allows the cathode
materials possess more three-dimensional hollow channels.
Therefore, numerous paths are provided to promote the
transport of Li+ ions and electrons, improving the
electroconductivity of the cathodes.

4 CONCLUSION

In summary, the novel FeS2@CNFs nanocomposites with the
multi-channel structure are successfully prepared by the
electrospinning method. The 3FeS2@CNFs cathode exhibits
an admirable capacity of 856.5 mAh g−1 at 20 mA g−1 after
100 cycles. The excellent electrochemical properties can be
attributed to the right ratio of FeS2 and carbon nanofibers

that can produce lots of hollow channels. The three-
dimensional interlinked multi-channel carbon nanofibers can
facilitate the diffusion of Li+ ions and electrons, improving the
electroconductivity of cathodes. Meanwhile, the FeS2
nanoparticles are distributed on the inner wall of the carbon
nanofibers, improving the phenomenon of the volume
expansion for FeS2 and preventing the dissolution of
polysulfides during the cycling process. In addition, S/N co-
doped FeS2@CNFs can supply abundant active sites for
electrochemical reactions, providing enough space for Li+ ion
storage. Thus, the as-prepared 3FeS2@CNFs are a splendid
cathode material for lithium-ion batteries, and it can be one
of the promising candidates for next-generation secondary
batteries.
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