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Editorial on the Research Topic

Biomass Resources Utilization

Biomass utilization is one of the pivotal loops in many biorefinery schemes for the production of
value-added chemicals and biofuels (Huber et al., 2006; Alonso et al., 2012; Hu et al., 2021). The
effective utilization of biomass resources including the understanding of complex structures and
mild fractionation into individual components is a profound challenge for the development of
biorefinery (Climent et al., 2010; Hu et al., 2019; Abu-Omar et al., 2020). Challenges are often
associated with secondary pollution in the pretreatment as well as the utilization process, whereas
harsh reaction conditions, low product selectivity, and poor catalyst stability are also major
headaches (Climent et al., 2014; Liu et al., 2021a; Yan et al., 2021). Developing a green and
efficient catalytic system to improve conversion efficiency and reduce environmental pollution is
crucial (Akhtar and Amin 2011; Alonso et al., 2013; Wang et al., 2019; Yi et al., 2019; Liu et al.,
2021b). Moreover, using a biorefinery approach to achieve the integration of the process of biomass
conversion with the production of biofuels and chemicals is more practical (Gallezot 2012; Huang
et al., 2020; Li et al., 2021; Li et al., 2022a; Li et al., 2022b). This special issue mainly focuses on the
pretreatment of biomass, conversion of biomass waste or biomass-based sources or platform
chemicals to value-added products and biofuels, highly valued materials in various
environmental remediation.

BIOMASS PRETREATMENT

Dong et al. firstly used a two-step pretreatment process to increase the digestibility of Brewer’s spent
grains (BSG), high-fiber meal (HFM), and dry distillers grains and solubles (DDGS). BSG, HFM, and
DDGS were treated with alkali at 100°C for breaking the ester linkages, followed by an ammonia fiber
expansion (AFEX) process. The effect of the alkali amount was investigated, and the use of 4% alkali
was favorable to de-esterify biomass. It was of greater importance that the content of carboxamide
was similar to the untreated biomass, which was 0.04 mg/g. In addition, the two-step pretreatment
process enhanced the glucan conversion. It provided a feasible idea for the treatment of industrial
lignocellulosic biomass byproducts.

Tan et al. reviewed various methods (chemical, physical, biological, and combined treatments) for
the pretreatment of straw biomass for fermentable sugars production. They evaluated each treatment
method in detail, and their advantages and disadvantages were given. Chemical pretreatment was
economic but harmful to the environment. Biological pretreatment was environmentally benign but
the process was too long. The combined treatments were more efficient than the single method due to
synergies. They suggested that the future pretreatments should focus on the following traits: 1)
strengthening the basic research on the structure of lignocellulosic biomass at the molecular level, 2)
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Identifying and analyzing the unknown inhibitory components in
the biomass for decreasing the pretreatment cost, 3) using
computational tools to optimize the pretreatment process, 4)
exploring the novel treatment approaches to improving the
conversion of lignocellulosic biomass, 5) investigating the
reaction mechanism of emerging methods for the treatment of
biomass.

BIO-OIL PRODUCTION

Zhao et al. reported that phenol-rich bio-oil was selectively
generated by the thermal pyrolysis of corn straw in a
homemade microwave. A measure of 46.7 wt% bio-oils was
selectively produced and the experimental results confirmed
temperature versus heating rate had deciding effects on the
selectivity of phenolic oil with the optimal selectivity of 49.4
area%. Photocatalysis was an environmentally friendly and
energy-saving biodiesel production method. Huang et al.
reviewed the latest progress in photocatalytic biodiesel
production from three aspects: transesterification mechanism,
photocatalytic type, and modification strategy. At the same time,
some problems in the production of biodiesel by the
photocatalytic method are highlighted. For example, the
mechanism of photocatalytic (trans) esterification had not
been systematically studied, and photocatalysts usually contain
expensive precious metals. Overall, photocatalytic biodiesel
production is still in its infancy, but opens a new door for
green biofuel production.

Value-Added Chemicals
A variety of biomass-derived chemicals (e.g., furfural, 5-
hydroxymethyfurfural (HMF), levulinic acid (LA)) can be
selectively produced from biomass and further upgraded into
highly value-added furfuryl alcohol (FOL), γ-valerolactone
(GVL) and 2,5—dimethylfuran (DMF). Gao et al. prepared a
bimetallic PtNi/SBA-15 catalyst for the hydrogenation of furfural
and HMF by a two-step method. After calcination at 500°C in air,
PtNi/SBA-15 was obtained without reduction, achieving 77.9%
FOL yield and 81.9% DHMF yield. The electron-rich Ptδ− species
on PtNi/SBA-15 not only favored the adsorption and activation
of the carbonyls in FF/HMF but also promotes the activation of
the hydrogen molecule, which was of great significance for the
upgrading and transformation of aldehydes. Hu et al. developed a
post-synthetic strategy to synthesize ZrY for the efficient
hydrogenation of LA into fine chemical GVL, whereas over

95% yield of GVL was obtained. The parameters of acidity
and the metal-support interaction were the deciding factors in
the production of GVL.

ENVIRONMENTAL APPLICATION

Liu et al. successfully recovered Ni from laterite ore efficiently by
H2 reduction with sodium thiosulfate (Na2S2O3). They found that
the use of 20 wt% Na2S2O3 could efficiently recover Ni from
laterite ore, achieving a Ni content of 9.97% and a Ni recovery of
99.24% at 1,100°C. They investigated the effects of reaction
conditions (temperature, reduction time, and Na2S2O3) on the
nickel laterite reduction, and the mechanism of Na2S2O3 in
promoting the reduction of laterite ore by H2 was concluded.

In the process of removing antibiotics in wastewater treatment,
many factors affect the adsorption efficiency of biochar (Chen et al.,
2021; Li et al., 2021). Sun et al. proved that coconut shell biochar after
KOH activation and FeCl3 magnetization had a strong removal
effect on sulfonamide antibiotics (SA). The maximum adsorption
capacities for sulfadiazine, sulfamethazine, and sulfamethoxazole
were 294.12, 400.00, and 454.55mg g−1, respectively, five to seven
times higher than those achieved with raw biochar. They found that
the SAs were adsorbed on the modified biochar via hydrogen bonds
between SA molecules and -OH/-COOH groups in the biochar.
Mechanistic analysis showed that π+-π EDA, CAHB, electrostatic,
and Lewis acid-base interactions may be the main reasons for
adsorption of SAs on 50MBC-KOH2.5. It provides a new way to
utilize biochar for wastewater treatment.
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