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The ionisation of molecules by attosecond XUV pulses is accompanied by complex
correlated dynamics, such as the creation of coherent electron wave packets in the
parent ion, their interplay with nuclear wave packets, and a correlated photoelectron
moving in a multi-centred potential. Additionally, these processes are influenced by the
dynamics prior to and during the ionisation. To fully understand and subsequently control
the ionisation process on different time scales, a profound understanding of electron and
nuclear correlation is needed. Here, we investigate the effect of nuclear–electron
correlation in a correlated two-electron and one-nucleus quantum model system.
Solving the time-dependent Schrödinger equation allows to monitor the correlation
impact pre, during, and post-XUV ionisation. We show how an initial nuclear wave
packet displaced from equilibrium influences the post-ionisation dynamics by means of
momentum conservation between the target and parent ion, whilst the attosecond
electron population remains largely unaffected. We calculate time-resolved
photoelectron spectra and their asymmetries and demonstrate how the coupled
electron–nuclear dynamics are imprinted on top of electron–electron correlation on the
photoelectron properties. Finally, our findings give guidelines towards when correlation
resulting effects have to be incorporated and in which instances the exact correlation
treatment can be neglected.

Keywords: ultrafast phenomena, XUV, attosecond dynamics, photoionisation, TDSE, correlation effects,
entanglement, photoelectron spectrum

1 INTRODUCTION

The fact that, if formerly non-interacting particles have interacted at some time, their wave function
can no longer be expressed in a simple product form (Blum, 2012), has far-reaching consequences in
many particle systems. For example, this situation appears in electronic structure calculations and
there is termed electron–electron correlation (Kutzelnigg, 1994). The latter determines—to a great
deal—the structure and behaviour of matter. In the field of quantum information, this correlation
effect is associated with the entanglement of particles (Nielson and Chuang, 2000; Horodecki et al.,
2009). As for molecules, not only electron–electron but also electron–nuclear and nuclear–nuclear
interactions are of importance. Here, nuclear geometry deformations, in general, lead to the
modification of the electronic density, which is responsible for chemical bonding.
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The interaction of molecules with strong and ultrashort laser
pulses leads, besides many other strong-field phenomena (Wolter
et al., 2015; Pukhov, 2002; Krausz and Ivanov, 2009; Corkum and
Krausz, 2007; Joachain et al., 2012), to single or multiple ionisation.
A single XUV pulse is able to directly produce photoelectrons with
different kinetic energies. With respect to the particle correlations
mentioned previously, several questions arise where some of these
are:What does a coupled electronic–nuclear motion look like during
and after the ionisation process? Can features appearing in
photoelectron spectra be related to electron–electron and
electron–nuclear correlation? What characteristics appear in the
post-ionisation dynamics of the charged particles?

Such fundamental issues will be taken up in the present work.
Naturally, regarding the complexity of a molecule possessing many
electronic and nuclear degrees of freedom, a complete quantum
description of a field-triggered ionisation is simply out of reach
today. One may then search for physically reasonable models to
address the questions posed. It should be clear that they have to go
beyond single active electron approximations and include the
motion of the nuclei, most desirably on the same level as the
electrons. In an early study, Lein et al. (2002) studied the single
and double ionisation of the hydrogen molecule involving the
motion of all particles in a single dimension and Sukiasyan et al.
(2012) described the one-electron photoionisation for a 1D-Helium
atom with two active electrons. To understand the impact of
ionisation on the parent ion dynamics in real molecules,
approximated quantum chemical methods neglecting the explicit
ionisation pump can be applied and are powerful tools to unravel
electron dynamics post ionisation (Ayuso et al., 2017; Nisoli et al.,
2017) and study the nuclear decoherence effect on electronic wave
packets (Vacher et al., 2015, 2017).

A useful model to study electron–nuclear correlation effects is the
so-called Shin–Metiu model (Shin andMetiu, 1995, 1996). It consists
of an electron and a nucleus that move in one dimension in an
additional field of two positive charges. Originally devised to describe
charge-transfer processes, it was later used to illustrate features of, e.g.,
coupled electronic–nuclear quantum (Hader et al., 2017; Albert et al.,
2017; Schaupp and Engel, 2019b, 2022) and classical dynamics
(Schaupp and Engel, 2019a) or two-dimensional coherent
femtosecond spectroscopy (Albert et al., 2015). The model was
also used to study photoionisation (Falge et al., 2011, 2012a, 2017).

The simple Shin–Metiu model was later extended to include the
motion of a second electron, which made it possible to introduce
time-dependent electron localisation functions (ELF) and
characterise the influence of nuclear motion on these (Erdmann
et al., 2004). Also, the wave-packet dynamics in spin-coupled
electronic states could be described (Falge et al., 2012b).

Here, we extend ourwork onXUV ionisation in amolecularmodel
system comprised of fully correlated two electrons and one nucleus
(Fröbel et al., 2020). We study the impact of electron–nuclear
correlation upon electron–electron correlation on the complete
XUV ionisation process monitoring the influence pre, during, and
post ionisation. Consequently, we dissect the effects on the parent
ion, as well as on the photoelectron. Finally, we report on an imprint
of the two-electron correlated bound dynamics on the photoelectron
spectrum’s asymmetry, thus yielding an observable to measure the

electrons’ density behaviour caused by nuclear correlation. This is a
natural extension of our former work limited to a single active
electron system (Falge et al., 2012a, 2017) and shows that the concept
also holds for more complex systems. Moreover, by thoroughly
dissecting the different effects present in a full quantum dynamical
study with correlated particles, we provide guidance for future
investigations resting on more approximated methods.

This study is organised as follows: In Section 2, we briefly introduce
the model system, its potential energy surface, the numerical details for
solving the time-dependent Schrödinger equation (TDSE), and
different analysis tools. In presenting our results, we start by
introducing the laser-free non-equilibrium dynamics and,
subsequently, report on the impact of correlation effects on 1) the
attosecond electron dynamics during ionisation, 2) the post-ionisation
dynamics in the parent ions, and 3) the photoelectron. In the last
section, we discuss how the asymmetry of the integrated photoelectron
spectra shows imprints of resonance dependencies into the continuum
and the coupled electron–nuclear dynamics.

2 THEORETICAL BACKGROUND

In the following, we briefly describe the model system and
numerical procedure. For more details, we refer to our recent
work (Fröbel et al., 2020), where we introduce the model in the
context of ionisation. Atomic units are used throughout the study.

2.1 Molecular Model System
2.1.1 Full Three-Dimensional Model
To capture electron–nuclear and electron–electron correlation in
molecular XUV ionisation, we use the one-dimensional extended
Shin–Metiu model system, which includes two electrons (x, y) and a
central nucleus with coordinate R (Shin and Metiu, 1995, 1996;
Erdmann et al., 2004). Furthermore, two fixed nuclear point
charges (Z1, Z2) at ± L/2 define the outer potential barriers. The
particle configuration is sketched in Figure 1A. The molecular
Hamiltonian reads:

H0 � P̂
2

2M
+ P̂

2

x

2
+ P̂

2

y

2
+ V̂

2e
x, y, R( ), (1)

whereM is the nuclear mass, P̂ the nuclear momentum operator,
and p̂x, p̂y the electron momentum operators. The potential is
defined as:

V̂
2e

x, y, R( ) � Z1Z

|L/2 − R| +
Z2Z

|L/2 + R| −
Z erf |R − y|/Rc( )

|R − y|
−Z1 erf |L/2 − y|/Rf( )

|L/2 − y| − Z2 erf |L/2 + y|/Rf( )
|L/2 + y|

−Z erf |R − x|/Rc( )
|R − x| − Z1 erf |L/2 − x|/Rf( )

|L/2 − x|
−Z2 erf |L/2 + x|/Rf( )

|L/2 + x| + erf |x − y|/Re( )
|x − y| .

(2)
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Here, we set the charges Z1 = Z2 = Z = 1,M to the proton mass,
the screening parameters Rc = Rf = Re = 1.5 Å and L = 10 Å for the
outer point charges. The potential contains soft Coulomb
interactions between the moving particles, parameterised by
error functions (erf). The model mimics a generic molecular
system leading to a qualitative description of processes. It does
not represent a specific class of molecules, such as linear
molecules, especially since the central moving nucleus has
unscreened interactions with the outer fixed nuclei preventing
dissociation. Such effect would be essential for strong-field
interactions with seemingly similar linear triatomic systems,
but they are not in the scope of this work. Moreover, we are
restricted to one nuclear degree of freedom, thus, not
investigating nuclear–nuclear correlation. Since the model is
one-dimensional, effects of the orbital angular momentum of
the electrons are not regarded. We note that the system is already
of ionic type. Nevertheless, in what follows, we will refer to the
removal of an electron by the external field as an ionisation
process.

While the reduced dimensionality of the model allows for
solving the dynamics of all three particles, for interpretation, it is
useful to obtain the electronic eigenstates and the potential energy
curves (PECs) of the two-electron (2e) system. Therefore, we
solve the time-independent electronic Schrödinger equation:

P̂
2

x

2
+ P̂

2

y

2
+ V̂

2e
x, y, R( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦φ2e

n x, y;R( ) � V2e
n R( ) φ2e

n x, y;R( ).
(3)

where p̂x and p̂y are the electronic momentum operators. This
yields the adiabatic electronic eigenstates φ2e

n (x, y;R) and the
potentials V2e

n (R). All our calculations are restricted to the singlet
case, i.e., the appearing wave functions are symmetric upon
exchanging x and y. Upon removal of an electron through the
XUV interaction, the remaining one-electron (1e) parent ion
system has the potential:

V̂
1e

y, R( ) � Z1Z

|L/2 − R| +
Z2Z

|L/2 + R| −
Z erf |R − y|/Rc( )

|R − y|
−Z1 erf |L/2 − y|/Rf( )

|L/2 − y| − Z2 erf |L/2 + y|/Rf( )
|L/2 + y| .

(4)
The respective electronic eigenstates (φ1e

n (y;R)) and the PECs
(V1e

n (R)) are determined by the time-independent electronic
Schrödinger equation

p̂2
y

2
+ V̂

1e
y, R( )⎡⎣ ⎤⎦φ1e

n y;R( ) � V1e
n R( ) φ1e

n y;R( ). (5)

The PECs of both the 2e and 1e systems are shown in
Figure 1B for the lowest four electronic eigenstates. It is
important to point out that for the 1e system (parent ion),
and R < 0 (which is the case throughout this work), the
electron resides either left, at negative y values (stronger

FIGURE 1 | (A) Extended Shin–Metiu model system: two electrons (x, y)
and one nucleus I move in one dimension in the field of the two outer fixed
(point charge) nuclei (R). For R < 0 as in the focus of investigation here, the left
electron (here: y) is stronger bound, while the right electron (here: x) is
weaker bound. The electrons are indistinguishable and are just given defined
labels here for visualisation purposes. (B) PECs of the 2e system, V2e

n (R), and
the 1e parent ion,V1e

n (R). The vertical line indicates one-photon ionisation and
the population of the parent ion states. As an example, the nuclear wave
packet in the n = 1 ion state is shown together with the gradient exerted by the
PEC on it (grey shaded Gaussian). In the 2e system ground state (n = 0), the
three different initial nuclear wave packets investigated in this work are shown.
The nuclear wave packet near the equilibrium position of R0,m = −2.05 Å (blue
shaded Gaussian), and the two non-equilibrium starting wave packets starting
at the isopotential turning points left, R0,l = −2.79 Å (green shaded Gaussian),
and right, R0,r = −0.90 Å (red shaded Gaussian), of the equilibrium. (C) The
absolute square of the first three 1e parent ion wave functions shows that n = 2
(blue dotted) is located at y > 0 (weaker bound).
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bound), or right, at positive y values (weaker bound), of the
central nucleus depending on its electronic state. For the n = 2 1e
state, the electronic eigenfunction’s probability density,
|φ1e

2 (y;R)|2, is located at the weaker bound site. The other 1e
states shown in Figure 1C are located left of the central nucleus
(stronger bound site).

We define the initial wave function as the product of the 2e
adiabatic ground state (n = 0) and a Gaussian-shaped vibrational
wave packet, χ(R):

χ R( ) � N0 e
−βR R−R0,l/m/r( )2 , (6)

Ψ x, y, R, t0( ) � φ2e
0 x, y;R( ) χ R( ), (7)

with the normalisation constant N0 and βR = 7.14 Å−2. As shown
in Figure 1B, we regard three different initial vibrational wave
packets, which differ with respect to the centre of the Gaussian in
Eq. 6. In particular, we use the equilibrium configuration
R0,m = −2.05 Å (blue shaded Gaussian), and two non-
equilibrium configurations, where one is placed to the left
R0,l = −2.79 Å (green shaded Gaussian) and the other to the
right R0,r = −0.90 Å (red shaded Gaussian) of R0,m. The two non-
equilibrium positions were chosen isopotentially.

The system interacts with a linearly polarised XUV pulse
defined via its vector potential, A(t), with polarisation aligned
along with the molecular axis of the model:

A t( ) � E0

ω
g t + t0( ) sin ω t + t0( )( ). (8)

We use an electric field strength of E0 = 0.169 a.u.
(corresponding to an intensity of I = 1015 W/cm2), an angular
frequency ofω = 0.570 a.u. (λ = 80 nm = 15.5 eV), and a full-width
at half-maximum (FWHM) of τ = 5 fs for the Gaussian pulse
envelope function g(t). The comparatively long FWHM was
chosen to avoid possible few-cycle effects leading to pulse-
dependent intrinsic asymmetries in the photoelectron
spectrum (PES). For the parameters chosen here, the light
pulse does not influence the asymmetry of the PES, and
despite the high field strength, the simple one-photon picture
of energy conservation between light pulse, parent ion, and
photoelectron holds. The different pulse interaction times t0,
for different simulation setups are discussed and introduced as
follows: the propagation starts at t = t0 − 2τ. The full time-
dependent Hamiltonian in velocity gauge and dipole
approximation reads:

H t( ) � P̂
2

2M
+ p̂2

x

2
+ p̂2

y

2
+ V̂

2e
x, y, R( ) + eA t( ) − P̂

M
+ p̂x + p̂y( ),

(9)

2.1.2 Approximations: Frozen and Single Point Charge
Nucleus
In order to understand the role of the nuclear degree-of-freedom
in the quantum dynamical simulations, we compare the complete
electron–nuclear dynamics to the case of 1) a frozen nuclear wave
packet and 2) a single point charge calculation. In the frozen
nuclear wave packet approximation, 1), the nuclear dimension

becomes parametric and is only used to sample the nuclear wave
packet on the grid by several 2D simulations of the electronic
degrees of freedom. Hence, the Hamiltonian, Eq. 9, is missing the
nuclear kinetic energy and XUV interaction term. The R-
dimension in the potential and the wave function becomes
parametric. The single point calculation, 2), completely
neglects the wave packet nature of the central nucleus and
treats the central nucleus as a point charge at a fixed position
leading to a single 2D simulation of the electronic degrees of
freedom. This leaves the Hamiltonian of Eq. 9 without any
explicit or parametric R dependence, yielding a two-
dimensional wave function depending on x, y.

2.2 Numerical Details
The time-dependent Schrödinger equation is as follows:

i
z

zt
Ψ x, y, R, t( ) � H t( )Ψ x, y, R, t( ), (10)

with theHamiltonian defined in Eq. 9 is solved numerically on a grid
of dimensions [ − 240, 240]Å with 1,024 grid points for x and y
(electronic dimensions) and [ − 4.99, 4.99]Å with 128 grid points for
R (nuclear dimension). The integration is performedwith a time step
of 5as using the split-operator technique (Feit et al., 1982) and the
FFTW three libraries (Frigo and Johnson, 1998) for Fourier
transforms. This setup is used for all calculations unless stated
otherwise. The time-independent 2e and 1e Schrödinger
equations defined in Eqs. (3) and (5), respectively, are
numerically solved with the relaxation method, solving the TDSE
in imaginary time (Kosloff and Tal-Ezer, 1986).

To avoid grid reflection, cut-off functions are applied each
time step to the full wave function in the asymptotic region of the
molecular potential

f x, y( ) � 1 + eζ1 |x|−ζ2( )[ ]−1 1 + eζ1 |y|−ζ2( )[ ]−1 (11)
with the parameters ζ1 = 0.085 a.u. and ζ2 = 492 a.u. (Heather
and Metiu, 1987).

In the following, we introduce three analysis tools of the full-wave
function,Ψ(x, y, R, t), in order to arrive at a deeper understanding of
the ionisation dynamics. The exact ionised wave function comprised
of having one electron in the continuum, whilst the other electron is
still bound in the parent ion is unknown for such molecular, many-
particle, and multi-centred systems. The following approaches
circumvent this problem by using grid-based functions and
projection operators.

2.2.1 Outer Wave Functions, Ψfwd/bwd
out (px, y, R, t), Long-

Time Limit
To obtain the part of the wave function representing the ionised
system at long times, the outgoing parts of the wave function in x
direction are collected. Since the wave function is fully mirror
symmetric in x and y, we arbitrarily choose x as a dimension of
ionisation, while y characterises the bound electron in the parent
ion. To this end, we define a mask function in forward (fwd),
x > 0, and backward (bwd), x < 0, direction using the same values
of ζ1, ζ2 as mentioned previously.
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~f
fwd

x, y( ) � 1 − 1 + eζ1 x−ζ2( )[ ]−1( )Θ 25�A − |y|( ), (12)
~f
bwd

x, y( ) � 1 − 1 + eζ1 −x−ζ2( )[ ]−1( )Θ 25�A − |y|( ), (13)

where the Heaviside function restricts the outer wave function to
grid values of −25 Å <y< 25Å, thus, neglecting double

ionisation. At each time step, ~f
fwd/bwd(x, y) is applied to the

total wave function, Fourier-transformed (FT) with respect to the
electronic coordinate x and added coherently to the parts already
localised in the outer regions in order to yield the outer wave
functions:

Ψfwd/bwd
out px, y, R, t( ) � Ψfwd/bwd

out px, y, R, t − Δt( )
+ FT x

~f
fwd/bwd

x, y( )Ψ x, y, R, t( )[ ].
(14)

Consequently, Ψfwd/bwd
out (px, y, R, t) is only propagated in

momentum space in x dimension. The outer wave functions
are used to calculate the PESs, state resolved to particular 1e states
in the parent ion, σfwd/bwdn (px), and to obtain the total integrated
asymmetry A. The former is obtained by projection on the
adiabatic 1e states at the end of the time propagation, in the
limit t → ∞

σ fwd/bwd
n px( ) � ∫ ∫φ1e

n y;R( )Ψfwd/bwd
out px, y, R, t → ∞( ) dy∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

dR.

(15)
The total integrated asymmetry of the PES is calculated as

A � ∑
n

∫ σ fwdn px( ) − σbwd
n px( )

σ fwdn px( ) + σbwd
n px( ) dpx. (16)

2.2.2 Channel Wave Functions, Ψfwd/bwd
ch (x, y, R, t),

Intermediate Times
In order to investigate the ionised system at intermediate times in
fwd and bwd directions, we define the channel wave functions.

Ψfwd
ch x, y, R, t( ) � Θ −25�A + x( )Θ 25�A − |y|( )Ψ x, y, R, t( ),

(17)
Ψbwd

ch x, y, R, t( ) � Θ −25�A − x( )Θ 25�A − |y|( )Ψ x, y, R, t( ).
(18)

Again, these wave functions represent the ionised system and
monitor the parent ion electron (y) located in the grid range
−25 Å <y< 25 Å, while the photoelectron (x) is at larger position
values on the grid, |x| > 25 Å.

2.2.3 Bound/ContinuumWave Function, Ψ1b/1c (x, y, R,
t), Early Times
Additionally, to understand the attosecond electron dynamics
at early times during XUV pulse interaction, the exact 1e-
bound/1e-continuum (1b/1c) wave function is needed. For
this, we define a bound/continuum wave function, i.e., 1e-

bound/1e-continuum, by projecting out the 2e bound states at
each time step

Ψ1b/1c x, y, R, t( ) � Ψ x, y, R, t( )
−∑19

n�0
∫∫φ2e

n x′, y′;R( )Ψ x′, y′, R, t( )dx′ dy′( )φ2e
n x, y;R( ).

(19)
This procedure is computationally very demanding and,

therefore, limited to the early few femtoseconds. A maximum
of 20 2e bound states has shown to be sufficient to obtain
convergence. The as such calculated wave function can be
used to identify trends in the integrated asymmetry of the PES
without having to propagate the full wave function for long times.
This is achieved by integrating the bound/continuum wave
function once over positive (fwd) and once over negative
(bwd) x direction, yielding the asymmetry as:

nfwd t( ) � ∫120 �A

0
dx∫∫Θ 25�A − |y|( ) Ψ1b/1c x, y, R, t( )∣∣∣∣ ∣∣∣∣2dy dR,

(20)
nbwd t( ) � ∫0

−120 �A
dx∫∫Θ 25�A − |y|( ) Ψ1b/1c x, y, R, t( )∣∣∣∣ ∣∣∣∣2dy dR,

(21)
~A t( ) � nfwd t( ) − nbwd t( )

nfwd t( ) + nbwd t( ). (22)

Hereby, the grid boundaries and grid points of the
electronic grid where halved to reduce the computational
costs. Because this procedure is only performed to
investigate the very early attosecond dynamics, the shorter
grid is sufficient to get an insight into the early ionisation
dynamics. As will be seen, the asymmetry defined by Eq. 22
produces quantitatively similar results to the asymmetry given
by Eq. 16.

3 RESULTS

3.1 Laser-Free Dynamics
In Figures 2A,B, we show the nuclear coordinate and
momentum expectation values obtained for the three
different initial nuclear wave packet starting positions R0,l/m/r. In
3), the corresponding mean electron momentum is displayed.
Starting with the nuclear case, we see that for Rr an oscillating
dynamics within the left potential well takes place (recall Figure 1B)
with the nuclear momentum behaving accordingly. For Rl, there is
partial nuclear density transfer to the right potential well after
approximately t > 25 fs, destroying the simple oscillatory motion
of the nucleus. This is due to higher momenta being present in the
nuclear wave packet that originate from the steep gradient left of the
centre of R0,l. The electron response, i.e., the electron density’s
momentum 〈Ψ(t)|px|Ψ(t)〉, follows qualitatively the nuclear
momentum, 〈Ψ(t)|P|Ψ(t)〉, however, with small discrepancies.
For both non-equilibrium starting positions, the maximum
nuclear and electron momentum expectation value is reached
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when the nucleus passes the minimum of the potential well, as
indicated with the vertical, dashed lines in Figure 2.

3.2 Attosecond Dynamics
We aim at investigating the impact of nuclear motion and
nuclear–electron correlation on the ultrafast ionisation
dynamics. For this, we compare the ionisation process of the
nuclear equilibrium configuration (R0,m) with ionisation of the
initial non-equilibrium nuclear configuration (R0,l/r) with the
pulse centred around the time of equilibrium passage,
i.e., when 〈Rl/r(t0)〉 = R0,m. These times are indicated
previously in Figure 2 with the dashed vertical lines and
correspond to a maximum positive (negative) nuclear and
electron momentum for Rl(Rr). The times are t0 = 12.30 fs for

Rl(t0) = R0,m and t0 = 24.405 fs for Rr(t0) = R0,m. From now on,
referring to Rl and Rr implicates this procedure, while R0,l/r/m
refers to the initial nuclear positions.

First, we analyse the attosecond dynamics during the XUV
pulse interaction leading to the population of the parent ion
states, φ1e

n (y;R). Thus, we project the 1e states on the bound/
continuum wave function

a1en t( ) � ∫∫ ∫φ1e
n y;R( )Ψ1b/1c x, y, R, t( )dy∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

dx dR. (23)

Figure 3A shows the population of the first three electronic
parent ion states for the equilibrium and non-equilibrium
cases (Rl, Rr). It can be seen that the previously discussed

FIGURE 3 | Population, a1en (t), of the first three parent ion states,
φ1e
n (y;R) (n = 0 (violet), n = 1 (green), n = 2 (blue)), during the XUV ionisation,

Eq. 23. Panel (A) shows the comparison of equilibrium (solid lines), i.e., zero
nuclear and electron momentum at time of ionisation, and non-
equilibrium configuration (dashed/dotted lines), i.e., Rl/Rr: positive/negative
nuclear and electron momentum at time of ionisation. (B) comparison of Rr

and frozen nucleus Rr, i.e., no quantum mechanical nuclear degree-of-
freedom but sampled nuclear wave packet (see Subsection 2.1.2). (C)
comparison of Rm, frozen nucleus Rm, and a single 2D purely electronic
calculation with a point charge central nucleus at R0,m.

FIGURE 2 | Laser-free dynamics in the 2e ground state for different initial
wave functions (see Eq. 7): Rm for starting in equilibrium position
R0,m = −2.05 Å (blue), Rl and Rr for starting in non-equilibrium positions
R0,l = −2.79 Å (green) and R0,r = −0.90 Å (red), respectively. (A) Nuclear
coordinate expectation values, (B) nuclear momentum expectation values,
and (C) electron momentum expectation values. The vertical dashed lines
indicate the time when the nuclear wave packets reach the equilibrium
position. This corresponds to the time of maximum nuclear and electron
momentum, and the times around which the XUV pulse is centred in
Subsection 3.2 and following.
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dynamics prior to ionisation, which leads to non-zero electron
momentum at the time of ionisation, have almost no impact on
the attosecond electronic population dynamics. The only small
difference is visible for the n = 2 state in the case of Rr (blue
dotted line). However, this difference does not originate from
the nuclear–electron correlation but is rather due to the
deformation of the nuclear wave packet prior to ionisation,
see Figure 4, depicting the nuclear wave packet at the time of
ionisation for Rm(t0), Rl(t0), and Rr(t0). The deformation of the
Rr nuclear wave packet, caused by the anharmonic PEC, leads
to a small change in resonance conditions into the 1e-bound/
1e-continuum and, consequently, to a slight change in the 1e
state population. This becomes also evident by comparing the
attosecond dynamics of Rr with a frozen nucleus calculation
using the nuclear wave packet obtained at the time of
ionisation from the 3D Rr simulation (recall Subsection
2.1.2, see Figure 3B). Although in the frozen nuclear wave
packet simulation no nuclear or electron momentum is
present, it shows identical attosecond dynamics. The frozen
nuclear wave packet calculation without intrinsic quantum
mechanical nuclear dimension reproduces the attosecond
dynamics also for the other two investigated cases (Rm, Rr).
More so, Figure 3C shows that for Rm, a single 2D calculation
with the classical point charge nucleus centred at −2.05 Å (the
centre of the Rm wave packet) is sufficient to reproduce the
attosecond dynamics and population of ionic states.

In other words, to describe the correct attosecond dynamics of
the parent ion population upon ionisation, the quantum
mechanical description of the nuclear degree of freedom can
be neglected—a frozen nucleus approach of sampling the nuclear
wave packet is sufficient. Moreover, if the nuclear dynamics prior
to ionisation only proceeded on a harmonic PEC, leading to a
compact Gaussian-like nuclear wave packet, a purely electronic
TDSE simulation is able to reproduce the correct behaviour. This
is an important finding for future approximations in the field of
attosecond ionisation dynamics.

3.3 Momentum Conservation in Parent Ion
Dynamics
As seen in the previous section, within the first 4 fs upon XUV
pulse interaction, the population in the parent ion is created and

reaches stable values. Subsequently, in the parent ion, the nuclear
wave packet moves on the corresponding PECs contained in the
electronic wave packet acquiring momenta determined by the
PEC’s gradients. In particular, the nuclear wave packet
propagating on n = 2 and moving towards R = 0 undergoes a
pronounced non-adiabatic transition with n = 1. Passing through
R = 0 will lead to a change in the population of the parent ion
states in the electronic wave packet. If ionisation into n = 2 and
the subsequent nuclear relaxation would be independent of the
initial nuclear momentum at t0, P2e(t0), gained during
propagation in the 2e electronic ground state (cf. Figure 2),
the crossing at R = 0 would always be reached approximately 17fs
after ionisation. However, if this initial nuclear momentum is
retained upon ionisation, this will become visible through the
timing of the non-adiabatic transition. Thus, the time at which
the non-adiabatic crossing occurs is a direct measurement for
pre-ionisation momentum dynamics. Figure 5 shows the parent
ion state-resolved population obtained in bwd direction using the
channel wave function

b1en t( ) � ∫∫ ∫φ1e
n y;R( )Ψbwd

ch x, y, R, t( )dy∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

dx dR (24)

for Rm, Rl, and Rr. The non-adiabatic transition leading to
depopulation of n = 2 and population of n = 1 is clearly
visible for all three cases. Moreover, the time of the transition
is shifted to earlier (later) times for Rl (Rr) demonstrating that the
pre-ionisation momentum acquired by the nuclear wave packet
propagating in the electronic ground state is retained upon
ionisation. This is even more evident in Table 1 where the
nuclear momentum expectation value of the individual nuclear

FIGURE 4 | Nuclear wave packet at the time of ionisation, t0, for Rm(t0),
Rl(t0), Rr(t0), see text.

FIGURE 5 | Population of parent ion 1e states using the bwd channel
wave function (Eq. 24) to visualise the timing of the non-adiabatic transition
between the n = 2 (blue) and n = 1 (green) state for Rm (solid lines), Rl (dashed
lines), and Rr (dotted lines). The n = 0 population (violet) decreases as the
channel wave function for this ion ground state with corresponding highest
photoelectron momenta reaches the absorber after 15 fs. The difference in
population of the n = 2 state for Rr compared to Rm is based on the nuclear
wave packet deformation as discussed in the text for the bound/continuum
wave function.
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wave packet propagating on one of the first three parent ion states
is shown at t = t0 + 2.5 fs for the three initial starting positions.
This is calculated by projecting bwd channel wave function on the
corresponding ionic state and calculating the momentum
expectation value:

Ψbwd, 1e
ch, n x, R, t( ) � ∫φ1e

n y;R( )Ψbwd
ch x, y, R, t( )dy, (25)

P1e
n t( ) � ∫∫Ψbwd, 1e p

ch, n x, R, t( )PΨbwd, 1e
ch, n x, R, t( )dR dx.

(26)
It can be gathered from Table 1 that the nuclear momentum is

different depending on the PEC the nuclear wave packet evolves
on, e.g., for Rm (first row) the momentum is negative for n = 0,
while it is positive for n = 1 and further increased for n = 2 as
expected from the PEC gradients (Figure 1). Second, the
momenta for the non-equilibrium cases Rl (Rr) (second and
third row) are uniformly shifted to higher (lower) momentum
values. The lower rows, Rl–Rm and Rr–Rm, quantify the difference
to the equilibrium case (no initial momentum). These concur
with the momentum in the bound 2e system at time of ionisation,
which is for Rl: P

2e(t0) = 7.6 a.u. and for Rr: P
2e(t0) = −6.4 a.u (seen

vertical dashed lines in Figure 2B). Therefore, we have
unambiguously shown that the nuclear momentum in the
bound 2e system is conserved upon ionisation manifesting
itself in a change in timing for the non-adiabatic transition.

3.4 Photoelectron Spectra and Asymmetry
We now investigate to which extent these nuclear–electron
correlation dynamics impact the PES. It has been reported
that for simple one active electron systems, the coupled
nuclear–electron dynamics are imprinted in the integrated
photoelectron asymmetry (Falge et al., 2012a, 2017). So far, it
is an open question, whether this also holds for multi-electron
systems.

3.4.1 Resonance Condition
The major difference to our previous work using single active
electron systems is that upon ionisation, there is no ionisation
into a single continuum state but rather complex transitions into
several 1e-bound/1e-continuum states depending on the XUV
pulse’s central frequency. Moreover, ionisation into these
different states features varying resonance conditions for the

various ion states. The resonance conditions are visualised in
Figure 6A as a function of the parametric nuclear position

IPn R( ) � V2e
0 R( ) − V1e

n R( ). (27)
For the three initial nuclear positions (R0,m, R0,l, R0,r),

respectively, 3, 2, or 4 parent ion states are energetically
accessible for the XUV pulse used in this work (Zω = 15.5 eV).
Figures 6D–F show the respective PES with exactly those 3, 2, or
4 peaks. Additionally, ionisation in these ionic states comes
together with static and dynamic electron–electron correlation
effects on top of any electron–nuclear correlation due to
coupled dynamics. Therefore, depending on the position of the
nuclear wave packet at the time of ionisation, there is a state-
intrinsic inherent fwd/bwd asymmetry independent of any
nuclear–electron coupling, originating from electron–electron
interaction. Thus, each peak in the PES has a unique fwd/bwd
asymmetry (see Figures 6D–F) leading to the overall
photoelectron integrated asymmetry. The origin of the
asymmetry for each peak is rooted in the different ionisation
processes that lead to its population and are purely based on
electron-electron interaction as reported in Fröbel et al. (2020) (see
scheme in Figure 6C): n = 0 is predominantly populated via direct
ionisation of the weaker bound electron (right of the central
nucleus), which is favourable in fwd direction since it does not
have to pass the other electron. n = 2 is the respective direct
ionisation of the stronger bound electron (left of nucleus), which
proceeds predominantly into bwd direction. n = 1 is in a bwd
direction dominated knock-up ionisation process with smaller
parts as knock-down process in fwd direction. As for
different (parametric) R values, a different number of ionic
states is accessible, with each of them featuring this intrinsic
preference in the emission direction of the photoelectron, this
leads to the overall parametric R-dependent asymmetry
behaviour shown in Figure 6B. These results have been
obtained by frozen nucleus calculations using Eq. 16 to
calculate the asymmetry, thus, showing that it is a purely
electron-electron correlation driven inherent asymmetry. Its
R-dependency can be easily understood: starting from R0,m,
the asymmetry rises for more negative R positions since the
bwd-dominated n = 2 state becomes energetically inaccessible
(Eq. 27). Equally, the overall asymmetry rises for larger R as the
fwd/bwd neutral n = 3 state becomes energetically accessible.
For a nuclear wave packet rather than a point-like R-value (see
Figure 1) these two effects are smeared.

3.4.2 Nuclear–Electron Correlation Imprint
The procedure to visualise the imprint of pre-ionisation
nuclear–electron correlation dynamics on the photoelectron is
the following: we start at R0,r and probe the integrated asymmetry
by scanning the time delay of the XUV pulse interaction from
T = [7, 100]fs in 1 fs interval steps. We start the integrated
asymmetry calculation earliest at 7 fs to ensure sufficient time
for the 5 fs broad XUV pulse. R0,r was chosen as a starting point
since the nuclear dynamics are constricted to the left potential
well exhibiting a more distinct dynamics with larger imprinted
momenta (see Figure 2). During the propagation, the nuclear

TABLE 1 | Nuclear momentum expectation value of the different nuclear wave
packets on different parent ion states, see Eq. 26, for the three different initial
nuclear positions (first to third row). The fourth and fifth rows show the difference of
non-equilibrium to equilibrium momentum, emphasising momentum conservation
upon ionisation.

Starting position P0
1e(t0 + 2.5 fs) P1

1e(t0 + 2.5 fs) P2
1e(t0 + 2.5 fs)

Rm −0.24 2.92 5.42
Rl 6.95 10.23 12.87
Rr −6.38 −3.57 −1.28

Rl—Rm 7.18 7.30 7.45
Rr–Rm −6.15 −6.49 −6.70
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wave packet propagates on the 2e electronic ground state PEC from
the inner turning point R0,r (right) to the outer turning point R0,l
(left) and back to R0,r, corresponding to the time-delay intervals of
T = [7, 37]fs and T = [37, 74]fs, respectively (see Figures 1, 2). To
save computational cost, we calculate the asymmetry from the
bound/continuum wave function using Eq. 22, since it allows us
to obtain converged asymmetries with fewer time steps and compare
with some selected calculations using Eq. 16 that require
propagation for long times. As is seen in Figure 6B, due to the
changing resonance conditions, the inherent electron–electron
correlation-based asymmetry varies for different parametric
nuclear positions. The nuclear–electron correlation-based
asymmetry is, thus, imprinted on top of the inherent
electron–electron correlation-based asymmetry. Consequently, to
extract the nuclear–electron correlation-based asymmetry, a
“baseline” of the electron–electron correlation-based asymmetry
during the nuclear propagation is required. This is carried out
here in two approaches whose merits and shortcomings we will

discuss shortly: 1) a mean baseline is obtained from relating the
asymmetry from forth and back movement of the nucleus (right to
left vs left to right, Figure 7A). 2) A baseline is calculated for each
interval step using frozen nuclear wave packet calculations with the
nucleus set to its position at the time of ionisation. Approach 1)
resembles more an experimental setup where a nuclear wave packet
could be propagated forth and back in a potential, whereas a baseline
by frozen nucleus calculations (approach 2) cannot be obtained in
the experimental setup, however, is not restricted to a forth and back
movement of the nucleus in the same potential.

Figure 7A shows how the nuclear–electron correlation-based
asymmetry is imprinted on top of the purely electron–electron
correlation-based inherent asymmetry baseline that shows the same
behaviour as shown in Figure 6B. The right to left (blue) and left to
right (orange) curves are obtained by relating the corresponding time
intervals T = [7, 37]fs and T = [37, 74]fs to the R value at the time of
ionisation. In Figure 7B, the difference of the asymmetry to the two
baselines 1) mean (dashed) and 2) frozen (dotted) is shown with

FIGURE 6 | (A) Ionisation potential (Eq. 27) for different parent ion states and XUV pulse energy Zω =15.5 eV (horizontal dashed line) with FWHM in light red. Vertical
green, blue and red lines indicate the three initial nuclear positions,R0,m,R0,l, andR0,r, respectively. (B) Asymmetry is calculated with frozen nucleus simulation at different
parametric R values (Eq. 16). (C) Scheme of the relevant ionisation pathways and the resulting ion state: direct ionisation of the weaker (stronger) bound electron
dominant in fwd (bwd) direction leads to population of n = 0 (violet) (n = 2 (blue)) parent ion state; n = 1 parent ion state is populated via knock-up of weaker bound
electron in bwd direction or via knock-down of stronger bound electron in fwd direction. Panels (D), (E), and (F) show the PES (solid lines: fwd, dashed lines: bwd)
for frozen nucleus calculations at R0,m, R0,l, and R0,r, respectively. The dashed vertical lines indicate the expected peak position based on the resonance condition
E = Zω − IPn(R0,l/m/r).
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respect to the time-delay T. Comparison with the electron density’s
momentum in the 2e bound system (solid blue line) shows very good
agreement.

Thismeans that starting the nucleus in a non-equilibriumposition,
which experimentally could be realised, e.g., by a first pump pulse,
leads to coupled nuclear–electron bound dynamics that are imprinted
on the electron density’s momentum. That, in turn, is imprinted on
the photoelectron spectrum. Thus, we have demonstrated here that
imprints of both, nuclear–electron and electron–electron correlated
dynamics, are visible in the photoelectron spectra and the asymmetry
of the photoelectron emission direction.We have generalised previous
work and analysis on single-electron systems for the here investigated
correlated system involving two electrons.

4 SUMMARY

We set out to answer questions of particle correlation in
molecular XUV ionisation and shed light on how these
effects manifest in observables. To this end, we have

employed a fully correlated molecular quantum model
system comprised of two active electrons and one active
nucleus that mimics a generic molecular system and allows
us to report qualitative effects.

First, we examine what a coupled electronic–nuclear motion
looks like in the bound system and showed the adiabatic imprint
of the nuclear motion on the electronic momentum. Next, we
focused on the implication of these coupled dynamics on the
molecular XUV ionisation process, in particular to answer the
question regarding characteristics in the attosecond population
dynamics and post-ionisation dynamics. We report that the
nuclear momentum is conserved during the XUV ionisation
from the target to the parent ion and impacts the post-ionisation
dynamics. On the other hand, the attosecond electron
population dynamics are largely unaffected by the coupled
nuclear–electron dynamics in the bound system. Finally, we
turned towards features appearing in the photoelectron spectra
and their relation to electron–electron and electron–nuclear
correlation. The results drastically show how all particles are
strongly correlated and imprint each other’s properties. Each
photoelectron peak has an inherent asymmetry rooted in its
electron–electron correlation-based ionisation pathways with
its bound counterpart. The underlying complex bound/
continuum resonances change when the nucleus is displaced
leading to a change in electron–electron correlation-based
photoelectron properties. On top of this, the initial coupled
nuclear–electron momentum in the bound system is imprinted
on the entangled photoelectron via its spectrum’s asymmetry
and could be used as an experimental observable. While we have
seen that correlation impacts pre, during, and post ionisation in
various ways, well-designed approximations can be introduced
at different stages depending on the intended outcome of the
simulation. For example, the attosecond population dynamics
are only influenced by a deformation of the nuclear wave
packet pre-ionisation, which is not based on
nuclear–electron correlation and can be reproduced by a
sampling approach to the nuclear wave packet. In the case
of harmonic PECs yielding a compact Gaussian-like nuclear
wave packet, the nuclear degree of freedom can be safely
ignored and a purely electronic description of the system
with single-point nuclei reproduces the correct electronic
parent ion wave packet population. Moreover, the
momentum conservation in the nuclei between target and
parent ion can be incorporated into classical
approximations. Combining these ideas will be the subject
of future research. The photoelectron asymmetries are purely
based on the correlation effects of all particles and, thus, can
only be observed when treating all particles quantum
dynamically and with the corresponding exact correlation.
However, approximated methods could be used to calculate
the effect that is imprinted in the photoelectron asymmetry
rather than the full correlated XUV ionisation process. For
example, approximate theories can calculate the change in
continuum resonances that lead to a change in the
electron–electron correlation-based asymmetry, or the
nuclear dynamics in the bound state that are imprinted on
the spectrum via nuclear–electron correlation.

FIGURE 7 | Imprint of nuclear–electron correlation in the asymmetry of
the PES for a non-equilibrium starting position of R0,r probed by a XUV pulse at
different time-delays T: (A) Asymmetry calculated according to Eq. 22 at time
of ionisation in dependence of the nuclear position R at time of ionisation,
t0. Right to left and left to right refer to the time-delay intervals of T = [7,37]fs
and T = [37,74]fs, respectively. The baseline is calculated using approach 1)
explained in the text as mean between left to right and right to left. (B) The
nuclear–electron correlation-based asymmetry, Δ~A, as a function of the time
delay T obtained with the mean baseline (1, dashed) and the calculated frozen
nucleus baseline (2, dotted). As explained in the text, the mean basline can
only be obtained if forth and back propagation in the same potential is
available (T = [7,37]fs and T = [37,74]fs), whereas the frozen nucleus baseline
is available for all time delay points. The red dots stem from the asymmetry
calculated with the more computationally demanding Eq. 16. The electron
mean momentum is also shown, for comparison (solid blue line).
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We are confident that our findings not only widen our
understanding of fundamental correlation-driven processes in
XUV ionisation but will also guide future experiments and
approximated theory towards which effects have to be taken
into account to properly describe correlation in molecular
ionisation.
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