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We ponder over how an electrochemical cell conforms itself to the open-circuit voltage
(OCV) given by the Nernst equation, where properties of the electrodes play no role. We
first show, via a pedagogical derivation of the Nernst equation, how electrode properties
are canceled and then take a closer look into the electrode–electrolyte interface at one
electrode by linking charge and potential distributions. We obtain an equilibrium
Poisson–Nernst equation that shows how the charge distribution across an
electrode–electrolyte interface can be dictated by the chemical potentials of redox
species. Taking a H2/O2 fuel cell as an example, we demystify the formal analysis by
showing how the two electrodes delicately regulate their “electron tails” to abide by the
Nernst equation. In this example, we run into a seemingly counterintuitive phenomenon
that two electrodes made of the same transition metal display two distinct potentials of
zero charge. This example indicates that the double layer at transition metals with
chemisorption can display distinct behaviors compared to ideally polarizable double
layers at sp metals.
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Many concepts in electrochemistry appear simple, but they are more complicated than they
seem. One example is the electrode potential, which is among the first concepts we will encounter
when opening any introductory electrochemistry textbook. However, the definition of absolute
electrode potential had been extensively discussed in the 1970s–1980s (Trasatti, 1980; 1982;
Trasatti, 1986a;b; Trasatti, 1986c; 1990). To illustrate, Trasatti (1990) stated that “the present
author has considerably contributed to the discussion with several papers during the last 15 years
in an attempt to bring the various views back to a unifying approach.” Trasatti’s formal theory
states that “the absolute electrode potential is the difference in electronic energy between a point
inside the metal (Fermi level) and a point outside the solution.” This definition has been adopted
in the recommendation of The International Union of Pure and Applied Chemistry (IUPAC)
(Trasatti, 1986a).

There is another “familiar stranger,” namely, the open-circuit voltage (OCV) of an
electrochemical cell, which is simply the potential difference between two terminals of the cell
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under the open-circuit condition. Though the definition is
unequivocal and the measurement easily accessible, the
obtained value can be elusive and its interpretation disputed.
A famous example is the OCV of a hydrogen/oxygen fuel cell at
rest, also called the rest potential: why is the measured value
significantly lower, by several hundreds of millivolts, than the
thermodynamic value of 1.23 V versus the standard hydrogen
electrode (SHE)?

James Hoare systematically investigated this problem in the
1960s–1970s (Hoare, 1962; Hoare, 1963; Hoare, 1964a; Hoare,
1964b; Hoare, 1964c; Thacker and Hoare, 1971; Hoare, 1974;
Hoare, 1978). He concluded that the measured rest potential is a
mixed potential of the oxygen reduction reaction and another
parasitic reaction, namely, water dissociation reaction forming
adsorbed hydroxyl. There are continued interests in
understanding the rest potential of practical fuel cells beyond
the glass cells used in Hoare’s experiments (Zhang et al., 2006;
Vilekar and Datta, 2010; Reimer et al., 2019). In these practical
situations, other factors such as hydrogen crossover come
into play.

As an established fact, the OCV of the full cell calculated by the
Nernst equation is independent of electrode properties, such as
the chemical potential of electrons, the work function, and the
valency electron density. For example, the OCV of a hydrogen/
oxygen fuel cell under standard conditions is 1.23 V, regardless of
the electrode materials. A seemingly naïve question might be
asked:

How does the OCV of an electrochemical cell abide by
the Nernst equation by canceling off all electrode-
specific properties in an amazingly precise manner?

Though the answer to this question is self-evident, as
thermodynamic quantities should be path-independent, a
revisit of it from an alternative view is not meaningless. It
may reveal something interesting. This question is discussed
herein by first presenting a pedagogical derivation of the OCV of
a general electrochemical cell. By decomposing the OCV into
several parts, we show explicitly how electrode-specific
properties cancel each other. Further delving into the
electrode–electrolyte interface at one electrode, we link the
potential difference between electrode and electrolyte phases
with the net charge distribution at the electrode–electrolyte
interface, which is then correlated with the chemical
potentials of redox species involved in the reaction occurring
on this electrode. The formal analysis is then demystified by
taking an H2/O2 fuel cell as an example. In this example, we run
into a weird point that two identical platinum electrodes
constituting a hydrogen-oxygen fuel cell have different
potentials of zero charge. We close this essay by commenting
on why Trasatti’s relationship between the potential of the zero
charge of an electrochemical interface and the work function of
metals does not apply to the present case.

For an overall electrochemical reaction aA + bB � cC + dD,
the Nernst equation for the cell relates the OCV under any
condition (E) to that under standard conditions (E0) and the
species activities (ai, i � A, B, C, D), written as

E � E0 − RT

nF
ln

acCa
d
D

aaAa
b
B

(1)

with n being the number of electrons transferred, and E0 is
calculated by

E0 � −ΔG
0
r

nF
(2)

ΔG0
r is the Gibbs energy change under standard conditions,

calculated by

ΔG0
r � cμ0C + dμ0D − aμ0A − bμ0B (3)

where μoi (i � A, B, C, D) is the chemical potential of species i
under standard conditions. Indeed, there is no electrode-specific
property in the above equations for OCV.

Now, we will formulate the OCV in another way and decouple
it into a serial connection of several potential differences. OCV is
measured by connecting the cathode and anode with a voltmeter,
as shown in Figure 1. The voltmeter has extremely high
resistance, so a circuit connected with it allows for negligible
current and thereby can be taken as an open circuit. The wires
that connect the voltmeter with the two electrodes are of the same
metal. The value on the voltmeter, herein the OCV, is expressed
by the difference in the Fermi levels of these two wires:

E � ϵF,wc − ϵF,wa
−e (4)

with ϵF,wi � μe,wi − eϕwi and ϕwi (i = a, c) denote the respective
inner potential of the metal wires at the cathode side and
anode side. As, for the same material, μwc � μwa, we arrive at
the OCV:

E � ϕwc − ϕwa (5)
The difference in the potential in two metal wires can be

decoupled into a serial connection of four potential differences:

ϕwc − ϕwa � Δwcϕc + Δcϕs + Δsϕa + Δaϕwa (6)
with Δxϕy � ϕx − ϕy. These four Δxϕy in Eq. 6 correspond to the
four circles in Figure 1. The first and the last terms are the metal
contact potential difference, whereas the other two are the

FIGURE 1 | Schematic of an electrochemical cell. A voltmeter connects
the cathode and anode tomeasure the open-circuit potential. The twowires of
the voltmeter are made of the same metal.
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potential difference at the metal–solution interface. We will
express them one by one.

The metal contact potential difference can be formulated with
the condition that the electrons in connected metals are in
electrochemical equilibrium (or Fermi levels align):

μe,wc − Fϕwc � μe,c − Fϕc (7)
μe,wa − Fϕwa � μe,a − Fϕa (8)

Combining Eqs 7, 8, the two chemical potentials inmetal wires
are canceled:

Δwcϕc + Δaϕwa � μe,a
F

− μe,c
F

(9)

We update Eq. 5 with the help of Eqs 6, 9:

E � (Δcϕs − μe,c
F
) − (Δaϕs − μe,a

F
) (10)

where (Δiϕs − μe,i
F ) (i = a, c) is one definition of absolute

electrode potential (Trasatti, 1990). We are left with two
potential differences at the metal–solution interface: Δcϕs

and Δaϕsa.
Considering a redox couple in equilibrium on the cathode side,

O + ne− � R. The charges bore in O and R are not explicitly
expressed, but their sum must cancel the n electrons. Therefore,
equilibrium gives

μO,c + nFϕs + nμe,c − nFϕc � μR,c (11)
Some rearrangements give

Δcϕs � μO,c − μR,c
nF

+ μe,c
F

(12)

In the same vein, Δaϕs reads

Δaϕs � μO,a − μR,a
nF

+ μe,a
F

(13)

Inserting Eqs 12, 13 back to Eq. 10, μe,c and μe,a are canceled:

E � μO,c − μR,c
nF

− μO,a − μR,a
nF

(14)

Shown above is how all electrode-specific properties, namely,
μe,mc and μe,ma, are canceled in the expression of OCV. If the
chemical potential is expressed by the standard chemical
potential and correction for the species activity is applied, Eq.
14 reduces back to Eq. 1.

Of note, a usual misunderstanding of the OCV reads
OCV � Δcϕs − Δaϕs. Eq. 6 reminds us that the two contact
potentials should never be forgotten. The correct equation for
the OCV is Eq. 10.

Next, we look further into Δiϕs (i � a, c). The distribution of
electric potential from the electrode phase to the solution phase is
governed by the Poisson equation:

∇.(ϵ(r)∇ϕ(r)) � −ρ(r) (15)
where ϵ(r) is the dielectric permittivity, which is spatially
inhomogeneous in the EDL and ρ(r) the net charge

distribution, which can be decomposed into an electrode part
ρM(r) and a solution part ρS(r):

ρ(r) � ρM(r) + ρS(r) (16)
We take some more lines to explain Eq. 16. This

electrode–solution dichotomy of the net charge distribution is
proper for the case without ion-specific adsorption. ρM(r) is the
sum of the negative charge carried by valence electrons of the
electrode material and the positive charge of cationic cores of the
electrode material. A small portion of valence electrons of the
electrode will enter into the solution counterpart, termed the
electron spillover phenomenon and called vividly “electron tail.”
It can be modeled by the Thomas–Fermi theories (Badiali, 1987;
Kornyshev, 1989; Schmickler, 1996; Huang, 2021; Huang et al.,
2021). ρS(r) is the sum of negative charge of anions and positive
charge of cations in solution.

For the cases with ion-specific adsorption, chemical bonds are
formed between the electrode and specifically adsorbed ions. In
general, the specifically adsorbed ions are not electroneutral but
still possess a fraction of charge (Schmickler and Guidelli, 2014).
It then becomes principally difficult to separate ρM(r) and ρs(r)
because ions, originally belonging to ρs (r), are now adsorbed
onto the electrode with residual charge. A possible scheme is to
treat the electrode together with the specifically adsorbed ions as a
whole, whose net charge is denoted by ρM(r). This way, ρs(r) is
limited to the net charge of the nonspecifically absorbed ions in
solution; see a recent Minireview on the surface charging
behavior of EDLs with chemisorption (Huang, 2022).

For a one-dimensional case without ion-specific adsorption,
where r is replaced with x, Eq. 15 reads

d(ϵ(x) dϕ(x)dx )
dx

� −ρ(x) (17)

In bulk solution, ρ(xs) � 0 and thus dϕ(xs)
dxs

� 0. Integrating
from xs to x gives

ϵ(x) dϕ(x)
dx

� ∫x

xs

− ρ(x)dx (18)

Integrating again from xs to xi gives the potential difference
across each electrode–electrolyte interface (i � a, c):

Δiϕs � ∫xi

xs

dx
1

ϵ(x)∫
x

xs

dx′ρi(x′) (19)

with xs being the location of solution bulk and xi the location of
the electrode bulk. Provided that dielectric properties of the
electrode–solution interface are known a priori, Δiϕs is
exclusively determined by the net charge distribution ρi(x).

As no assumption on the condition of the interfacial reaction
is made in the derivation, Eq. 19 is valid under both equilibrium
and nonequilibrium conditions.

It has been established that the potential difference across the
electrode–solution interface Δiϕs is related to the chemical
potentials of the redox species in solution via Eqs 12, 13.
Now, with the help of Eq. 19, we arrive at an equilibrium
Poisson–Nernst formula that bridges the net charge
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distribution at the electrode–electrolyte interface ρi(x) with the
chemical potentials:

∫xi

xs

dx
1

ϵ(x)∫
x

xs

dx′ρi(x′) � μO,i − μR,i
nF

+ μe,i
F

(20)

Eq. 20 implies that ρi(x) can be tuned by the chemical
potentials of redox species and also the electrons. Eq. 20 is
valid under the equilibrium condition only due to the use of
Eqs 12, 13.

Based on Eq. 20, two corollaries can be made: 1) for two
electrodes of the same material where different redox species
are in equilibrium, the net charge distribution will be different
and 2) for two electrodes of different materials, even if the
redox species—with whom they have established
equilibrium—are the same, the net charge distribution will
be different.

In order to understand the first corollary from a microscopic
perspective, it is instructive to consider an H2/O2 fuel cell,
schematically shown in Figure 2. Both electrodes made of

platinum are immersed in an acidic solution with pH = 0. The
cell is kept under the open-circuit condition.

At the outset, no H2/O2 gas has been injected into the cell and
dissolved in the solution. Therefore, the anode and cathode sides
are totally symmetric in terms of electrode material and
electrolyte component. Therefore, regardless of any reaction
that may occur at both interfaces, we can safely state that Δcϕs �
Δaϕs and the cell voltage is exactly zero, as schematically shown in
Figure 2A.

Meanwhile, dashed lines in Figures 2B,C show schematically
the electron density distribution at both electrodes for this
symmetric case. The detailed charge distributions can be
calculated using first-principles simulations based on the
density-functional theory (DFT) (Le et al., 2017; Sakong and
Groß, 2018, 2020; Le et al., 2021).

From now on, let oxygen and hydrogen gas come in the
cathode and anode compartments while the external electric
circuit is still kept open. The redox couple of O2, H+, and
H2O occupies the cathode side, whereas that of H+ and H2

FIGURE 2 | (A) Layout of an H2/O2 fuel cell under the standard condition (1 atm O2, 1 atm H2, 1M H+, and 25 °C). The solid and dashed gray lines denote,
respectively, the potential distribution before and after H2 and O2 are injected into the cell. PEM is short for the proton exchange membrane. The schematically shown
E � Δcϕs − Δaϕs is only valid for the case of two electrodes made of identical material and thus μe,c � μe,a. (B) and (C) show the pullout and pushback effects by oxygen
and hydrogen on the metal electron density distribution, respectively. The dashed and solid red lines denote the electron density distribution before and after the
injection of H2 and O2.
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occupies the anode side. When the equilibrium for each redox
couple is established respectively at the cathode and the anode,
Δcϕs and Δaϕs are determined by Eqs 11, 12. Under standard
conditions, the Nernst equation, Eq. 1, gives E � 1.23V. Any
parasitic reaction that results in a mixed potential is not
considered here.

Using Eq. 9 and recalling the two electrodes as both made of
Pt, that is, μe,c � μe,a, we have

Δcϕs − Δaϕs � 1.23 V (21)
The differences between Δcϕs and Δaϕs must be ascribed to the

difference in the net charge distribution ρ(x), according to Eq. 19,
which, in turn, is tuned by the chemical potentials of redox species,
according to Eq. 20. As the electrochemical cell is kept under the
ideal open-circuit condition, electrons cannot be exchanged between
the two electrodes. On the cathode side, after oxygen gas is
introduced, oxygen reduction reaction, O2 + 4H+ + 4e → 2H2O,
must occur until it equilibrates with the reverse reaction. In other
words, some electrons have been consumed in the cathode platinum
to establish the equilibrium. Since the circuit is open and there is no
way to compensate the electron consumption, the cathode platinum
must be positively charged. Following the same line of reasoning, the
anode platinum must be negatively charged due to excess electrons
generated from hydrogen oxidation, H2 → 2H+ + 2e. However, the
amount of excess on both electrodes is unknownwithout amodel for
the electrochemical double layers. Moreover, the presence of H2 and
O2 also contribute to the change of net charge distribution, as shown
in the dashed and solid curves in Figures 2B,C.

After introducing hydrogen and oxygen into the anode and
cathode, hydrogen repels metal electrons back into the metal
skeleton, while oxygen pulls more metal electrons out of the metal
skeleton. The pullout effect by oxygen increases the surface dipole
moment by increasing the distance between positively charged
ionic cores and negatively charged “electron tails.” The pushback
effect by the hydrogen, on the contrary, does the opposite. The
uplift of Δcϕs is a combined effect of positively charged electrode
and the raised dipole moment due to the pullout effect. In the
same logic, the suppression of Δaϕs is a combined effect of
negatively charged electrode and reduced dipole moment due
to the pushback effect. The ultimate thrust for adjusting the free
charge distribution is the thermodynamic requirement expressed
in Eq. 20.

Theory and experiment revealed that the pushback effect of
adsorbed hydrogen decreases the work function of Pt(111) (Li
et al., 2021), whereas the pullout effect of adsorbed oxygen
increases it (Malek and Eikerling, 2018). As regards the EDL
at Pt(111) contacted with an acidic aqueous solution, a mean-field
model has shown that chemisorption of partially charged
hydroxyl and oxygen contributes an additional surface dipole
moment, leading to a second pzc and an overall nonmonotonic
surface charging behavior (Huang et al., 2016; Huang et al., 2018),
which are confirmed in atomistic simulations (Fernandez-
Alvarez and Eikerling, 2019; Tesch et al., 2021; Braunwarth
et al., 2022).

Let us relook at this problem from the perspective of pzc. The
pzc is defined as the potential at which no net charge is
accumulated on the electrode. The anode herein is actually the

standard hydrogen electrode (SHE). It has a potential of 0 V with
reference to the SHE because it takes itself as the reference. Since
the anode is negatively charged, it has a pzc higher than 0 V. The
cathode has a potential of 1.23 V with reference to the SHE. Since
it is positively charged, it has a pzc lower than 1.23 V. Due to the
pullout and pushback effects, the two pzc are arguably not equal
to each other.

Ostensibly, it is strange that the two electrodes, made of the
same metal platinum, could have so different pzcs. The point is
that the pzc is not a property of the electrode itself but a property
of the electrode–electrolyte interface; the latter could be
significantly changed by the electrolyte composition. That has
been demonstrated in several experimental works (Smalley, 2017;
Shatla et al., 2021) and discussed in a recent modeling work
(Huang et al., 2020). As an immediate implication, it is
ambiguous to say the pzc of an electrode material without
specifying the adjacent electrolyte solution.

As a final remark, the present case where platinum can have
two different pzcs contradicts Trasatti’s relationship between the
pzc of an EDL and the work function of the metal constituting the
EDL (Trasatti, 1971). It should be noted that Trasatti’s
relationship was established for “clean” metal surfaces without
adsorption or chemisorption. However, chemisorption occurs on
the surfaces of two Pt electrodes for the present case where the
surface structure of the metal changes from its original state.
Therefore, our analysis indicates that Trasatti’s relationship does
not apply to electrocatalytic EDLs, which display distinct
behaviors compared to ideally polarizable EDLs at “clean”
metal surfaces. For instance, no Gouy–Chapman minimum
was observed in the differential double-layer capacitance
curves of Pt(111), even in the so-called pure double-layer
region (Pajkossy and Kolb, 2007; Ojha et al., 2020; Ojha et al.,
2022). It is also important to notice that the usual pzc is measured
under a closed-circuit condition, whereas the two platinum
electrodes in our case are under open-circuit condition.
Therefore, the pzc under the open-circuit condition could be
different from that under the closed-circuit condition because the
surface state of the electrodes changes.

In conclusion, we have touched upon the seemingly trivial
question that how the electrochemical cell conforms itself to the
OCV stipulated by the Nernst equation. We have obtained an
equilibrium Poisson–Nernst equation in Eq. 20 relating the net
charge distribution across the electrode–electrolyte interface to
chemical potentials of redox species. Furthermore, an H2/O2 fuel
cell has been used to illustrate how the OCV is generated
microscopically via tuning the “electron tail,” namely, the spillover
electron, in the EDL. It is important to note that the analysis has been
limited to the equilibrium state under the open-circuit condition. The
closed-circuit condition with charge transfer reactions occurring at
both electrodes will be addressed in a separate essay.
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