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Two-dimensional van derWaals (vdW) heterostructures reveal novel properties due to their
unique interface, which have attracted extensive focus. In this work, the first-principles
methods are explored to investigate the electronic and the optical abilities of the
heterostructure constructed by monolayered MoTe2 and PtS2. Then, the external
biaxial strain is employed on the MoTe2/PtS2 heterostructure, which can persist in the
intrinsic type-II band structure and decrease the bandgap. In particular, the MoTe2/PtS2

vdW heterostructure exhibits a suitable band edge energy for the redox reaction for water
splitting at pH 0, while it is also desirable for that at pH 7 under decent compressive stress.
More importantly, the MoTe2/PtS2 vdW heterostructure shows a classy solar-to-hydrogen
efficiency, and the light absorption properties can further be enhanced by the strain. Our
results showed an effective theoretical strategy to tune the electronic and optical
performances of the 2D heterostructure, which can be used in energy conversion such
as the automotive battery system.
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INTRODUCTION

Graphene shows unique electronic and thermal performances after being prepared as a two-
dimensional (2D) material (Geim and Novoselov, 2007), which has also attracted other layered
materials (Cui et al., 2021a; Cui et al., 2021b; Ren et al., 2022a; Wang et al., 2022a). However, its
zero bandgap restricts the applications as electronic switch and other devices. Therefore, 2D
semiconducting materials include transition metal dichalcogenides (TMDs) (Shen et al., 2022),
phosphorene, and MXenes. MoS2 possesses excellent electronic and photoelectric properties
similar to or even more advantageous than graphene in some aspects (Butler et al., 2013; Zhang
et al., 2018). After the successful synthesis of graphene and MoS2, more and more 2D materials
have been found and synthesized. Its direct bandgap is about ~1.8 eV (Wickramaratne et al.,
2014), which can be widely used in transistors, optoelectronics, and photocatalysts
(Radisavljevic et al., 2011; Qiu et al., 2013; Ma et al., 2020). Black phosphorene has intrinsic
direct bandgap and high carrier mobility (Li et al., 2014). Due to the anisotropic structure, black
phosphorene shows remarkable anisotropic electronic, mechanical, and thermal properties. All
these excellent properties endow its application in high-performance photovoltaic (Liu et al.,
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2017), spin-filter devices (You et al., 2016), thermal rectifiers
(Ren et al., 2020a), field-effect transistors (Hong et al.,
2014), etc.

To expand the family of 2Dmaterials, tremendous investigations
have been conducted to predict the structure and properties of these
layered materials (Sun et al., 2020; Sun and Schwingenschlögl, 2020;
Sun et al., 2021; Sun and Schwingenschlögl, 2021). In addition, the
formation of the van der Waals (vdW) heterostructure by different
2D materials is also a popular strategy to extend the applications of
the 2D materials (Wang et al., 2022b). The vdW interactions in the
heterostructure result in novel interfacial performances, which can
improve the electronic (Ren et al., 2021a), optical (Ren et al., 2019a),
and catalytic (Wang et al., 2018a; Wang et al., 2020a; Wang et al.,
2020b) characteristics. Furthermore, such excellent properties of the
heterostructure can even be tuned by the electric field (Sun et al.,
2017a), strain (Ren et al., 2019b; Wang et al., 2020c; Wang et al.,
2020d), stacking (Ren et al., 2022b), doping (Ren et al., 2022c),and
defect (Sun et al., 2017b). When applied, the external strain is an
effective tactic; for example, the band structure of the MXene/blue
phosphorene vdW heterostructure can result in the transformation
from type-I to type-II by the strain (Guo et al., 2017). The external
strain also possesses a significant influence on the layer distance,
which further decides the interfacial performances (Guo et al., 2020).
Under the strain, the evolution of Schottky barriers of the GaN/
graphene heterostructure can be converted from the n-Schottky to
Ohmic type (Deng and Wang, 2019). Recently, the TMD materials
of MoTe2 and PtS2 monolayers have been prepared experimentally
(Qu et al., 2017; Zhao et al., 2019). The MoTe2 and PtS2 monolayers
present the novel electronic (Qu et al., 2017; Sajjad et al., 2018) and
thermoelectric (Shi et al., 2017) properties, which have been widely
studied. The 2D MoTe2 can be obtained from mechanically
exfoliated bulk crystals (Chang et al., 2016), which have potential
usages in electronics, such as inverters and amplifiers, and in logic
and digital circuits. Moreover, the electronic property of MoTe2 is
sensitive to atomic doping (Kanoun, 2018), suggesting tunable
electronic and optical performances. The PtS2 monolayer also
presents tunable properties by the strain (Liu et al., 2018) and
electric field (Nguyen et al., 2019). In addition, the PtS2
monolayer is reported to be formed as a vdW heterostructure
such as PtS2/arsenene (Ren et al., 2020b), PtS2/InSe (Nguyen
et al., 2019), and HfS2/PtS2 (Colibaba et al., 2019). Furthermore,
the MoTe2 and PtS2 monolayers share a honeycomb hexagonal
structure with a small lattice mismatch, explaining the advantage to
be formed as a heterostructure. Therefore, the MoTe2 and PtS2
monolayers have been decided to be used for constructing the
heterostructure in this work. The first-principles calculations are
developed to investigate the band structure of the MoTe2/PtS2 (MP)
heterostructure. Importantly, the tunable electronic, charge density,
potential, light absorption ability, and the solar-to-hydrogen
efficiency (STH) by the external biaxial strain are addressed.

COMPUTATIONAL METHODS

In this investigation, the Vienna ab initio simulation software
package (VASP) was used to find the first-principles simulations
by the density functional theory (DFT) (Kresse and Furthmüller,

1996a; Kresse and Furthmüller, 1996b). In the generalized
gradient approximation (GGA), the projector augmented wave
(PAW) potentials were used with the Perdew–Burke–Ernzerhof
(PBE) functional to describe the core electrons and the
exchange–correlation functional (Perdew et al., 1996; Kresse
and Joubert, 1999). The cut-off energy was used by 550 eV,
and the Monkhorst–Pack k-point was 15 × 15 × 1 in the
calculations. Furthermore, the Heyd–Scuseria–Ernzerhof
hybrid method was adopted to calculate the electronic and
optical properties (Heyd et al., 2005). The weak dispersion
forces were described by the DFT-D3 method proposed by
Grimme et al. (2010). Due to the ignorable effect of the
spin–orbit coupling (SOC) on the electronic properties of the
studied system, shown in Supplementary Figure S1, the SOC is
not employed in the calculations. The vacuum thickness was set
as 25 Å to prohibit the interaction adjacent layers. Besides, the
convergence criterion of the force in the simulations was 0.01 eV
Å−1, while the energy was controlled in 0.01 meV.

RESULTS AND DISCUSSION

The lattice parameters of the MoTe2 and PtS2 monolayers are
optimized as 3.564 and 3.529 Å, respectively, showing a low
lattice mismatch of about 0.1%, which are suitable to be
constructed as a heterostructure. Supplementary Figure S2
shows the band structures of the pristine MoTe2 and PtS2
monolayers calculated using the HSE06 functional with the
indirect and direct bandgaps of 1.22 and 2.60 eV, respectively,
demonstrating an agreement with the previous reports (Shao
et al., 2022). Then, the MP heterostructure is constructed by
considering six different highly symmetrical structures, as shown
in Supplementary Figure S3. By calculating the binding energy, the
most stable stacking configuration is decided, as shown in
Figure 1A, that the Mo atoms are located on top of the upper S
atoms, while the Te atoms are set on top of the lower S atoms. The
MoTe2/PtS2 heterostructure is built by vdW forces because of the
weak binding energy of about −28.10meV Å−2 (Ren et al., 2022b),
which is lower than that in graphites (about −18meV Å−2) (Chen
et al., 2013). The projected band structure of the MP vdW
heterostructure is obtained in Figure 1B, suggesting an indirect
bandgap of about 1.26 eV. The CBM and the VBM of the MP vdW
heterostructure result from the PtS2 and MoTe2 monolayers,
respectively, showing a type-II band alignment, which can
separate the photogenerated electrons and holes using as a
photocatalyst for water splitting (Ren et al., 2021b). In detail,
when the MP vdW heterostructure obtains the energy from the
light, the photogenerated electrons will move to the conduction band
of theMoTe2 and PtS2 monolayers, as shown in Figure 1C, resulting
in photogenerated holes staying at the valence band. Then, the
conduction band offset (CBO) can promote the photogenerated
electrons from MoTe2 to PtS2 at the conduction band, while the
photogenerated holes will be transferred from PtS2 to MoTe2 at the
valence band. Thus, the photogenerated charges in the MP vdW
heterostructure are prevented from recombination.

Next, the external biaxial strain is applied in the MP vdW
heterostructure to explore its effect on the electronic structure.
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In Figure 2, the projected band structure of the MP vdW
heterostructure under the external biaxial strain from –4 to 2%
is obtained, where negative and positive values represent
pressure and tension, respectively. One can see that the
type-II band structure is retained in the MP vdW
heterostructure with that strain, which still can separate the
photogenerated electrons and holes, while the bandgap
decreased from 1.454 to 1.150 eV by the external biaxial
strain from –4 to 2%, as shown in Figure 3A. In addition,

the binding energy (Eb) is also investigated, which is
decided by

Eb � EH − EM − EP, (1)
where EH, EM, and EP represent the total energy of the MP vdW
heterostructure, pristine MoTe2, and PtS2, respectively. The
calculated binding energy change of the MP vdW
heterostructure applied by different external biaxial strains is
demonstrated by Figure 3B, which shows the stability of the MP

FIGURE 1 | (A) Geometric and (B) band structure of the MP heterostructure with the lowest binding energy. (C) Photogenerated charge migration path in the MP
vdW heterostructure. The yellow, gray, orange, and blue spheres represent the Te, Mo, S, and Pt atoms, respectively. The Fermi level is decided as 0 shown by the gray
dashed line.

FIGURE 2 | Band structures of the MP vdW heterostructure under the external strains of (A) –4%, (B) –3%, (C) –2%, (D) –1%, (E) 1%, and (F) 2%.
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vdW heterostructure, and the lowest binding energy of the MP
vdW heterostructure is the unstressed state.

The band edge positions of the MP vdW heterostructure under
different strains are also calculated by the HSE06 functional,
demonstrated in Figure 3B. The potential energy values of the
oxidation and reduction reactions for water splitting are –5.67 eV
and –4.44 eV, respectively, at pH 0. The energy of the redox
potential can be decided by the pH level with: E = −4.44 eV +
pH × 0.059 eV for the reduction reaction, while the potential of the
oxidation is obtained by E = −5.67 eV + pH × 0.059 eV. Thus, the
calculated potentials of the oxidation and reduction reactions at pH
0 are −5.26 eV and −4.03 eV, respectively, at pH 7. As a decent
photocatalyst, the band edge positions of the CBM (or VBM) of the
heterostructure should be higher (or lower) than the potential of the
reduction (or oxidation) for water splitting (Ren et al., 2021c). In
Figure 3B, one can see that the MP vdW heterostructure possesses
suitable band edge positions to promote the redox reaction at pH 7
for water splitting by the external biaxial strains of –3% and –2%,
while the MP vdW heterostructure can be used as a promising
photocatalyst for water splitting at pH 0 without the external strain.

The charge density difference (Δρ) of the MP vdW
heterostructure tuned by the strain is also investigated, which
is calculated as follows:

Δρ � ρH − ρM − ρP, (2)
where ρH, ρM, and ρP are used as the charge densities of the MP
vdW heterostructure, pristine MoTe2, and PtS2, respectively.
Under these strains, the PtS2 layer still gains the electrons
from the MoTe2 layer, and the charge density difference
between the interface of the MP vdW heterostructure under
–4%, –2%, and 2% is demonstrated in Figures 4A–C,
respectively. In addition, the quantitative analysis of the charge
transfer in the MP vdW heterostructure is explored by the Bader
charge method (Sanville et al., 2007). The calculated charge
transfers between the interface of the MP vdW heterostructure
under –4%, –2%, and 2% are 0.0463 |e|, 0.0475 |e|, and 0.052 |e|,
respectively.

The charge density difference between the interface of the
MoTe2 and PtS2 monolayers can induce a potential drop. The
potential energy of the MoTe2 and PtS2 in the heterostructure by
the different strains is investigated in Figure 5, showing that the
strain can increase the potential energy of the MoTe2 and PtS2
from pressure to tension. The potential drop across the interface
of the MP vdW heterostructure is obtained as 4.962, 4.720, 4.672,
and 4.500 eV by the external biaxial strains of –4%, –2%, –0%,
and 2%, respectively, which demonstrates the decreased charge
density difference. It is worth emphasizing that such a potential

FIGURE 3 | (A) Band alignment of the MP vdW heterostructure by the external strain comparing the energy potential of the redox reaction at pH values 0 and 7. (B)
Binding energy and the bandgap difference of the MP vdW heterostructure tuned by the external strain.

FIGURE 4 | Isosurface of the charge density difference of the MP vdW heterostructure under the strains of (A) –4%, (B) –2%, and (C) 2%; red and green marks
demonstrate the losing and gaining of electrons, respectively. The isosurface parameter is 0.001 |e|.
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drop in the MP vdW heterostructure can also provide a critical
boost for the separation of the photogenerated electrons
and holes.

We also studied the light absorption coefficient (α) of the MP
vdW heterostructure by external strain using the HSE06 method,
which is calculated as follows:

α(ω) �
�
2

√
ω

c
{[ε21(ω) + ε22(ω)]1/2 − ε1(ω)}1/2, (3)

where ω is the angular frequency, and c is the speed of light. The
real and imaginary parts are represented by ε1(ω) and ε2(ω),
respectively. Moreover, ε1(ω) and ε2(ω) can be obtained as
follows:

ε2(q → Oû, Zω) � 2e2π
Ωε0

∑
k,v,c

∣∣∣∣〈Ψc
k

∣∣∣∣û · r∣∣∣∣Ψv
k〉
∣∣∣∣2 × δ(Ec

k − Ev
k − E),

(4)
ε(ω) � ε1(ω) + iε2(ω), (5)

where Ψk, Ek, and û are the wave function, energy, and unit
vector of the electric field of the incident light, respectively.
The superscripts (v and c) in Ψk and Ek are labeled as the
conduction bands and valence bands, respectively. The
calculated light absorption performance of the strained MP
vdW heterostructure is explained by Figure 6 marked by a
visible spectrum (Wang et al., 2018b). Evidently, applying the
external compressive stress can improve the light absorption
capacity at the absorption wavelength ranging from 480 to
550 nm. In detail, the light absorption peaks of the MP vdW
heterostructure are obtained as 3.79 × 105 cm−1, 3.13 ×
105 cm−1, and 2.60 × 105 cm−1 locating the wavelength at
509 nm, 519, and 527 nm, respectively, by the strains of
–0.04, –0.02, and 0, while the light absorption performance
of the MP vdW heterostructure can be enhanced by tensile
stress when the absorption wavelength exceeds 550 nm.

Furthermore, these obtained absorption performances are
also higher than those of other 2D heterostructures, such
as CdO/HfS2 (3.51 × 105 cm−1) (Zhang et al., 2022), arsenene/
PtSe2 (2.23 × 105 cm−1) (Zheng et al., 2021), and MoSSe/GaN
(2.74 × 105 cm−1) (Ren et al., 2020c).

Furthermore, the solar-to-hydrogen efficiency of the MP vdW
heterostructure is calculated by ηSTH = ηabs × ηcu (Fu et al., 2018),
where ηabs is the efficiency of light absorption, and ηcu
demonstrates carrier utilization. As for the light absorption, it
can be decided by

ηabs �
∫∞

Eg
P(Zω)d(Zω)

∫∞

0
P(Zω)d(Zω) , (6)

where Eg means the bandgap of the studied material. Zω is used to
explain the photon energy, while the AM1.5G solar energy flux is
P(hω). The carrier utilization is obtained by

ηcu �
ΔG∫∞

E
P(Zω)
Zω d(Zω)

∫∞

Eg
P(Zω)d(Zω) . (7)

To describe the potential difference in water splitting, ΔG is
used by 1.23 eV here. Importantly, the photon energy of E is
calculated by

E �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eg, (χ(H2)≥ 0.2, χ(O2)≥ 0.6),
Eg + 0.2 − χ(H2), (χ(H2)< 0.2, χ(O2)≥ 0.6),
Eg + 0.6 − χ(O2), (χ(H2)≥ 0.2, χ(O2)< 0.6),

Eg + 0.8 − χ(H2) − χ(O2), (χ(H2)< 0.2, χ(O2)< 0.6).
(8)

The overpotential for the reduction and oxidation reactions
for water splitting is explained by χ(H2) and χ(O2), respectively.
In addition, previous experimental investigations provide the
necessary overpotentials for the reduction and oxidation
reactions as 0.2 and 0.6 eV (Fu et al., 2018), respectively. The
efficiencies of light absorption of the MP vdW heterostructure

FIGURE 5 | Potential drop of the MP vdW heterostructure across the
interface by different external strains.

FIGURE 6 | Calculated optical absorption of the MP vdW
heterostructure under the external strain.
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under the strains of –0.03, –0.02, and 0 are calculated by 89.44,
89.80, and 93.26%, respectively. Furthermore, the carrier
utilization of the MP vdW heterostructure is 33.66, 33.53, and
32.28%, respectively, by the strains of –0.03, –0.02, and 0. Thus,
the solar-to-hydrogen efficiencies are obtained as 30.10, 30.11,
and 30.10%, respectively, at pH values 7, 7, and 0, as shown in
Table. 1, which is higher than other 2D heterostructures such as
CdO/arsenene (about 11.67%) (Ren et al., 2021b) and GaS/
arsenene (about 25.46%) (Li et al., 2021).

CONCLUSION

In this work, the first-principles method is employed to
investigate the electronic and optical performances of the MP
vdW heterostructure. The external strain is also applied on the
MP vdW heterostructure, and the results show that the MP vdW
heterostructure maintains the type-II band alignment and
decreased bandgap. In addition, the external compressive
stress can tune the MP vdW heterostructure as a potential for
water splitting at pH 7 because of the decent band edge positions.
The strain also has a significant influence on the interfacial

properties of the MP vdW heterostructure. Furthermore, the
MP vdW heterostructure possesses excellent light absorption
capacity and light conversion efficiency, which can also be
enhanced by the strain. The results show that the MP vdW
heterostructure possesses potential energy conversion used in the
automotive battery system.
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