AUTHOR=Jones Michael D. K. , Dawson James A. , Campbell Stephen , Barrioz Vincent , Whalley Lucy D. , Qu Yongtao TITLE=Modelling Interfaces in Thin-Film Photovoltaic Devices JOURNAL=Frontiers in Chemistry VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2022.920676 DOI=10.3389/fchem.2022.920676 ISSN=2296-2646 ABSTRACT=
Developing effective device architectures for energy technologies—such as solar cells, rechargeable batteries or fuel cells—does not only depend on the performance of a single material, but on the performance of multiple materials working together. A key part of this is understanding the behaviour at the interfaces between these materials. In the context of a solar cell, efficient charge transport across the interface is a pre-requisite for devices with high conversion efficiencies. There are several methods that can be used to simulate interfaces, each with an in-built set of approximations, limitations and length-scales. These methods range from those that consider only composition (e.g. data-driven approaches) to continuum device models (e.g. drift-diffusion models using the Poisson equation) and