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A series of novel α-aminophosphonate derivatives containing hydrazone were designed
and synthesized based on active fragments. Bioassay results demonstrated that title
compounds possessed good activities against tobacco mosaic virus. Among them,
compounds 6a, 6g, 6i, and 6j were equivalent to the commercial antiviral agents like
dufulin. On structure optimization-based molecular docking, compound 6k was
synthesized and displayed excellent activity with values of 65.1% curative activity,
74.3% protective activity, and 94.3% inactivation activity, which were significantly
superior to the commercial antiviral agents dufulin and ningnanmycin. Therefore, this
study indicated that new lead compounds could be developed by adopting a joint strategy
with active fragments and molecular docking.
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1 INTRODUCTION

Tobaccomosaic virus (TMV) is one of themost widely studied plant viruses that can cause deformation
and stunting of the leaves, flowers, and fruits of infected plants (Ritzenthaler, 2005). Plant diseases
caused by tobacco mosaic virus (TMV) are difficult to control because TMV is absolutely parasitic, and
transmissibility to host cells and plantsmay completely suppress immune system (Bos, 1982). Although
several commercial antiviral agents against TMV have been used, efficient and practical varieties are
few. The widely used antiviral agent ribavirin only gave less than 50% anti-TMV effect at 500 μg/ml
(Hansen and Stace Smith, 1989). The developing novel structure, remarkable effect, and
environmentally friendly anti-TMV agents are needed urgently. At present, the main
representative research groups are Wang Qingmin’s group and Song Baoan’s group on domestic
development of anti-plant virus agents. In 2019–2021, Song Baoan’s group mainly designed and
synthesized antiviral compounds based on active fragments through in vitro activity screening by
microscale thermophoresis (MST) (He et al., 2019; Zan et al., 2020; Liu et al., 2021; Zhang et al., 2021).
During the same period, Wang Qingming’s group mainly designed and synthesized new and efficient
antiviral lead compounds based on natural products through traditional in vivo activity screening by
using the half leaf dry spot method (Li et al., 2019; Hao et al., 2020a; Chen et al., 2020; Li et al., 2021).
Then, the primary actionmechanism of antiviral agents was studied by the vivo interaction of viral coat
protein and drug molecules. These results indicated that viral coat protein was a key target protein for
antiviral agents. Therefore, molecular docking could accelerate the development of antiviral agents.
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α-Aminophosphonates are considered to be structural analogs
of α-amino acids. Compounds bearing the α-aminophosphonate
moiety play an important role in biochemical and medicinal
chemistry such as antitumor activity (Liu et al., 2010; Ye et al.,
2014; Fang et al., 2016; Ewies et al., 2019; Zhang et al., 2020),
antivirus activity (Zhang et al., 2010; Zhang and Liu, 2016; Zhang
et al., 2017; Lan et al., 2017; Poola et al., 2020; Zhou et al., 2021),
antimicrobial activity (He et al., 2015), and antibacterial activity
(Dake et al., 2011; Hellal et al., 2017). In recent years, Song and
coworkers (Chen et al., 2009; Yang et al., 2011; Zhang et al., 2016)
reported that many α-aminophosphonates with anti-TMV and
anti-CMV activity were synthesized via substructural splicing.
Among them, dufulin (Figure 1), a new commercially registered
plant antiviral product, was developed, which belongs to the α-
aminophosphonate family (Song et al., 2006). In addition, it has
been highly effective in preventing infection caused by rice viruses
and tobacco mosaic virus and, as a result, has obtained a national
invention patent in the People’s Republic of China. It was
registered by the Ministry of Agriculture of China (LS
20071280, 20071282, and 20130359) and was subsequently
industrialized for large-scale field application. It has been
widely used to prevent and control rice, vegetable, and tobacco
viral diseases in China. This may provide some useful
information for the future design of novel structural
aminophosphonates.

Hydrazone derivatives are biologically interesting compounds
known for their antiviral (Massarani et al., 1970; Wang et al.,
2019), anticancer (Mehlika et al., 2012), insecticidal (Liu et al.,
2010b), and antimicrobial (Martin et al., 2021) effects. Among
them, hydrazones with promising antiviral activity have attracted
our attention. In order to discover new molecules with antiviral
effects, we sought to incorporate the active substructural unit
hydrazone into the backbone structure of α-aminophosphonate.
Based on the aforementioned facts, we designed and synthesized
the title compounds by a joint strategy with active fragments and
molecular docking (Figure 2). This article describes the syntheses
and bioactivities of the designed compounds. The
structure–activity relationships of these
phosphonate–hydrazone analogs are examined in comparison
with their parent aminophosphonate analogs to further the
design of more effective antiviral compounds.

2 MATERIALS AND METHODS

2.1 Chemicals
All reagents were purchased from commercial suppliers and used
without further purification.

2.2 Instruments
1H NMR and 13C NMR spectra of the compounds were obtained
using a Bruker DPX 400 MHz (Bruker, Germany) and Bruker
DPX 600 MHzin CDCl3 or DMSO-d6 solution. HRMS was
performed with a Thermo Scientific Q Exactive (Thermo
Scientific, United States ). Infrared (IR) spectra were recorded
on a Bruker VECTOR 22 spectrometer using KBr disks. The
melting points of the compounds were measured using WRX-4
equipment.

2.3 General Procedures
2.3.1 Procedures for the Synthesis of Intermediates
(4a–4h)
Aromatic aldehyde containing a hydroxyl group (1, 100 mmol)
was added to a vial containing acetonitrile (50 ml) and potassium
carbonate (100 mmol), and then ethyl bromoacetate (2,
110 mmol) was added in the reaction vessel. After the mixture
was stirred and refluxed for 12 h, the solvent was removed in
vacuo. The reaction mixture was poured into water (100 ml) and
extracted with dichloromethane (50 ml×3). The dichloromethane
solution was dried with anhydrous Na2SO4 and evaporated in a
vacuum. The residue was recrystallized from acetonitrile to
obtain the intermediates (3a~3 h). A solution of intermediates
3 (80 mmol) and 2-amino-4-methylbenzothiazole (80 mmol) in
toluene (50 ml) was refluxed for 3 h. Then, diethyl phosphite
(120 mmol) was added to the reaction solution and refluxed for
6–12 h. The crude product was afforded through removing the
solvent and recrystallized from acetonitrile to obtain the
intermediates (4a~4 h). Characterization data of the
intermediate 4a are given as follows, and the data of other
compounds are listed in Supplementary Material S1.

4a: Yield 78%,m. p. 128–130°C; 1HNMR (600 MHz, DMSO) δ
8.89 (dd, J = 9.6, 2.9 Hz, 1H), 7.43 (dd, J = 14.9, 7.5 Hz, 3H), 7.01
(d, J = 7.3 Hz, 1H), 6.96–6.84 (m, 3H), 5.58 (dd, J = 21.0, 9.6 Hz,
1H), 4.73 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 4.08–3.96 (m, 2H),
3.94–3.86 (m, 1H), 3.84–3.76 (m, 1H), 2.41 (s, 3H), 1.16 (t, J = 7.1
Hz, 3H), 1.13 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H). 13C NMR
(151 MHz, DMSO) δ 169.13 (s), 164.99 (d, J = 9.7 Hz), 157.67 (s),
150.92 (s), 130.76 (s), 129.91 (d, J = 5.7 Hz), 129.01 (s), 128.00 (s),
126.68 (s), 121.69 (s), 118.86 (s), 114.75 (s), 65.13 (s), 63.07 (d, J =
6.7 Hz), 62.86 (d, J = 6.8 Hz), 61.09 (s), 54.84 (s), 53.81 (s), 18.41
(s), 16.72 (d, J = 5.4 Hz), 16.53 (d, J = 5.4 Hz), 14.48 (s). IR (thin
film, cm−1): 3233.5 (s), 2982.6 (s), 2928.9 (s), 1753.3 (s), 1587.9
(s), 1534.9 (s), 1446.3 (s), 1197.7 (s), 1053.1 (s), 1018.7 (s), 976.1
(s). HRMS (ESI) m/z for (C23H29N2O6PS [M + H]+ cacld.
493.1557, found 493.1553.

2.3.2 Procedures for the Synthesis of Intermediate 5a
The intermediate 4a (60 mmol) was added to the reaction flask
with ethyl alcohol (50 ml), and then hydrazine hydrate (70 mmol)
was added to the reaction mixture. After the mixture was stirred

FIGURE 1 | Structure of dufulin.
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and refluxed for 12 h, ethyl alcohol was evaporated under reduced
pressure to afford the crude product. The residue was purified by
recrystallization affording acyl-hydrazine (5a) using alcohol.
Characterization data of the intermediate 5a are given as follows.

5a: Yield 71%,m. p. 126–128°C; 1HNMR (600MHz, DMSO-d6) δ:
9.29 (s, 1H), 8.92–8.85 (m, 1H), 7.49–7.38 (m, 3H), 7.01 (d, J = 7.4 Hz,
1H), 6.96–6.87 (m, 3H), 5.57 (dd, J = 21.0, 9.5 Hz, 1H), 4.44 (s, 2H),
4.32 (s, 2H), 4.08–3.95 (m, 2H), 3.93–3.87 (m, 1H), 3.83–3.77 (m, 1H),
2.40 (s, 3H), 1.13 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.0 Hz, 3H); 13C NMR
(151MHz, DMSO-d6) δ: 167.03 (s), 165.00 (d, J = 9.8Hz), 157.87 (s),
150.92 (s), 130.76 (s), 129.87 (d, J = 5.6Hz), 128.94 (s), 127.99 (s),

126.68 (s), 121.69 (s), 118.87 (s), 114.88 (s), 66.74 (s), 63.07 (d, J =
6.7Hz), 62.87 (d, J = 6.7Hz), 56.50 (s), 54.89 (s), 53.86 (s), 19.03 (s),
18.41 (s), 16.73 (d, J=5.2Hz), 16.55 (d, J=5.4Hz). IR (thinfilm, cm−1):
3231.8 (s), 3037.2 (s), 2984.6 (s), 1671.9 (s), 1590.3 (s), 1536.9 (s), 1510.7
(s), 1446.6 (s), 1239.3 (s), 1050.8 (s), 1024.6 (s), 973.9 (s). HRMS (ESI)
m/z for (C21H27N4O5PS [M + H]+ cacld. 479.1513, found. 479.1509.

2.3.3 Procedures for the Synthesis of Title Compounds
(6a~6m)
The intermediate 5a (2.0 mmol) and aldehyde (2.0 mmol) were
added to 5 ml of alcohol. The mixture was stirred at 80°C for 6 h.

FIGURE 2 | Synthetic routes of novel α-aminophosphonate derivatives with hydrazone.
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The resulting mixture was concentrated under reduced pressure
to give the crude product. A total of 5 ml of water was added to the
crude product and stirred for 0.5 h. The crude product was
purified by column chromatography using hexane/EtOAc (1:2,
v/v) or recrystallization with alcohol. The data for the title
compound 6a are shown as follows, and the data of other
compounds are listed in Supplementary Material S1.

6a: Yield 86%, m. p. 184–186°C; 1H NMR (400 MHz, DMSO-
d6) δ: 11.56 (trans), 11.51 (cis) (s, 1H, CONH), 8.90 (d, J = 9.6 Hz,
1H, NH-Hetero), 8.30 (cis), 7.97(trans) (s, 1H, CH = N),
7.74–7.60 (m, 2H, Ar-H), 7.47–7.36 (m, 6H, Ar-H), 7.07–6.84
(m, 4H, Ar-H), 5.58 (dd, J = 21.0, 9.6 Hz, 1H, CHP), 5.10 (trans),
4.63(cis) (s, 2H, COCH2O), 4.10–3.96 (m, 2H, CH2OP),
3.95–3.87 (m, 1H, CHOP), 3.86–3.75 (m, 1H, CHOP), 2.41 (s,
3H, CH3-Hetero), 1.13 (t, J = 7.0 Hz, 3H, CH3), 1.04 (t, J = 7.0 Hz,
3H, CH3). trans:cis=(0.61:0.39);

13C NMR (151 MHz, DMSO-d6)
δ: 169.03 (s), 164.61 (d, J = 9.6 Hz), 164.25 (s), 157.89 (s), 157.43
(s), 150.55 (s), 148.04 (s), 143.86 (s), 134.18 (s), 134.04 (s), 130.37
(s), 130.24 (s), 130.01 (s), 129.56 (d, J = 5.3 Hz), 129.44 (d, J =
5.3 Hz), 128.88 (d, J = 4.6 Hz), 128.72 (s), 128.12 (s), 127.60 (s),
127.21 (s), 127.00 (s), 126.28 (s), 121.28 (s), 118.47 (s), 114.54 (s),
114.35 (s), 66.63 (s), 64.84 (s), 62.66 (d, J = 6.9 Hz), 62.46 (d, J =
6.5 Hz), 54.48 (s), 53.45 (s), 18.04 (s), 16.34 (d, J = 5.2 Hz), 16.16
(d, J = 5.3 Hz). IR (thin film, cm−1): 3273.9 (s), 3106.5 (s), 2979.7
(s), 2914.9 (s), 1695.5 (s), 1612.8 (s), 1586.6 (s), 1534.4 (s), 1511.5
(s), 1430.5 (s), 1229.8 (s), 1047.5 (s), 1023.7 (s); HRMS (ESI) m/z
for (C28H31N4O5PS [M + H]+ cacld. 567.1826, found. 567.1824.

2.3.4 Evaluation of Phytotoxic Activities Against
Tobacco and Anti-TMV Activity
Phytotoxic activities against tobacco and anti-TMV activity were
assessed according to the aforementioned method (Ji et al., 2019;
Wang et al., 2012). Tobacco mosaic virus (TMV) was purified.
The biological activity of the compounds against TMV was
evaluated by using a half-leaf method.

2.4 Molecular Docking
Molecular docking with AutoDock 4.0 (Huey et al., 2007; Trott and
Olson, 2010) between compound 6a and TMV-CP was performed.
The X-ray crystal structure of TMV-CP used for the computation
was downloaded from RCSB (Bhyravbhatla et al., 1998). Most of the
parameters for the docking calculation were set to the default values.
Each docked structure was scored by the built-in scoring function
and was clustered by 1 Å of RMSD criteria. Finally, the enzyme
ligand complex structures were selected according to the criteria for
autodocking score.

3 RESULTS AND DISCUSSION

3.1 Synthesis and Spectroscopy
The synthetic route of the target compounds (6a~6m) is shown in
Figure 2. 4-hydroxybenzaldehyde 1) reacted with ethyl
bromoacetate, 2) in acetonitrile to give aldehyde with an ester
group, and 3) compound 3 condensed with 2-amino-4-
methylbenzothiazole via a Schiff base condensation to give the
intermediate of imine, which was followed by phosphine

hydrogenation with diethyl phosphite to afford the compound
4. Compound 4 continued to react with hydrazine hydrate in
alcohol to give the intermediate compound 5. Title compound 6
was smoothly prepared by the reaction of an aromatic aldehyde
with the corresponding hydrazides. The chemical structures of
these compounds were identified by NMR, IR, and HRMS
(Supplementary Material). In 1H NMR of the title compounds,
the CH-P proton appeared at δ 5.58–5.63 as dd, the NH-Ar proton
appeared at δ 8.89–8.93 as double, and the CH = N proton of cis-
isomer appeared at the higher magnetic field (8.17–8.70) than
trans-isomer (7.85–8.34), the ratio of which was 3:2. In the 13C
NMR spectra of compound 6, the typical carbon resonance at δ169
was indicative of a carbonyl group (C═O). The IR spectra of
compound C showed bands at 1684–1701 cm−1 for C═O stretching.

3.2 Phytotoxic Activities and Antivirus
Activities
First, the data on phytotoxic activity against tobacco indicated that
compounds 6a–6k at 500 μg·mL− showed no toxicity. Then, the
tested concentration of the compounds at 500 μg/ml was chosen,
and the biological activities against TMVwere evaluated. The results
of anti-TMV activity are shown in Table1. The intermediates
(4a~4h) exhibited lower antiviral activities against TMV in vivo.
Among them, the intermediate 4a displayedmoderate activities, with
values of 33.2% curative activity, 45.7% protective activity, and 78.7%
inactivation activity. The intermediate 5a exhibited higher activities
than compound 4a, especially in curative activity. The title
compounds 6a, 6g, 6i, and 6j derived from α-aminophosphonate
possessed good activities, which were similar to those controls of
ningnanmycin and dufulin. Compound 6k exhibited excellent
activity, with the values of 65.1% curative activity, 74.3%
protective activity, and 94.3% inactivation activity, which were
significantly greater than those of controls. Compounds 6b, 6f,
and 6h possessed slightly lower activity than these controls.
Other compounds showed lower activities. The antiviral activity
results of the intermediates 4a~4i and intermediate 5a suggest that
the structure of α-aminophosphonate with benzothiazole is critical
for the activity, and generally, in addition, the R2 substituted phenyl
series of the title compounds influenced the antiviral activity for the
derivatives (6a~6m). The R2 substitutions at the ortho-position of
the phenyl ring connected to the hydrazone moiety (6b, 6c, and 6d)
showed weaker curative activity than the R2 = H of the phenyl ring.
As for the para-substituted derivatives, it is clear to see that the order
of the curative activity against TMV was NO2-substituted (6g) >
CH3-substituted (6f) > Br-substituted (6e). When the R2 group was
at the meta-position of the phenyl ring, the compounds (6h~6j)
exhibited relatively similar curative activities to compound 6a (R2 =
H). Fortunately, 2-OH-5-CH3-substituted compound 6k showed the
best curative activity (65.1%) against TMV, which was significantly
better than that of ningnanmycin (53.3%). Considering the prior
discussion, we found that the antiviral activities of our designed
compounds could be increased by the introduction of 2-OH and 5-
CH3 on benzene rings. The results further suggested that small
differences of substituted position on the phenyl ring could lead to
large differences in the overall activities, which implies further
possibilities for lead compound development.
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3.3 Molecular Modeling Analysis
TMV-CP is an important protein involved in plant virus
infections and is being studied as a potential protein target to
develop effective antivirus agents (Hao et al., 2020b; Kang et al.,
2020). In order to gain more understanding of the
structure–activity relationships and further structure

optimization, molecular docking was performed on the
binding mode of compound 6a into the binding pocket of
TMV-CP using AutoDock 4.0 software. The 3D binding
models of compound 6a with TMV-CP are shown in
Figure 3. Results showed that the benzothiazole ring of 6a fit
into the binding pocket, surrounded by the amino acid residues of
SER138. Detailed analysis of the binding mode showed that the
hydrazone of 6a was surrounded by the amino acid residues of
ARG134 and ASP224. These docking results suggested that the
benzothiazole ring in the title compound was critical for the
activity and the phenyl ring of hydrazone influenced the antiviral
activity. On structure optimization-based molecular docking,
compound 6k was synthesized and displayed excellent activity,
with values of 65.1% curative activity, 74.3% protective activity,
and 94.3% inactivation activity, which were significantly superior
to the commercial antiviral agents dufulin and ningnanmycin.
Therefore, molecular docking could accelerate the development
of lead compounds.

4 CONCLUSION

A series of α-aminophosphonate-hydrazone derivatives were
synthesized and evaluated for antiviral activities. Some derivatives
showed good inhibitory activity. The SARS analysis showed that the
volume and position of the substituted groups at the phenyl ring of
hydrazones had significant influences on inhibitory activity. The
docking studies showed that compound 6a was well bound to the
TMV-CP via one hydrogen bond with SER 138, ARG 134, and ASP

TABLE 1 | Antiviral activity of the compounds (4a~6m) against TMV at 500 μg/mLa.

Compound Curative activitya (%) Protective activitya (%) Inactivation activitya (%)

4a 33.2 ± 2.6 45.7 ± 2.1 78.7 ± 2.2
4b 21.2 ± 3.1 35.6 ± 2.7 48.6 ± 1.8
4c 26.3 ± 3.3 37.1 ± 2.6 52.2 ± 2.4
4d 0 9.1 ± 3.4 0
4e 0 0 0
4f 23.6 ± 2.8 43.3 ± 2.1 57.4 ± 2.3
4g 27.5 ± 3.2 44.1 ± 1.6 67.6 ± 2.1
4 h 22.2 ± 2.4 34.6 ± 1.9 51.3 ± 2.8
5a 50.3 ± 1.6 49.7 ± 1.9 83.1 ± 2.6
6a 51.3 ± 1.4 54.1 ± 1.7 90.3 ± 1.3
6b 47.6 ± 2.1 35.8 ± 3.3 49.3 ± 2.7
6c 41.6 ± 1.9 34.8 ± 3.5 51.3 ± 3.1
6d 39.1 ± 2.8 53.3 ± 1.4 77.6 ± 1.9
6e 29.3 ± 3.6 32.5 ± 2.7 45.3 ± 2.4
6f 48.6 ± 2.3 31.3 ± 3.1 43.1 ± 2.9
6g 56.7 ± 1.3 38.5 ± 2.9 49.3 ± 2.6
6 h 48.1 ± 2.1 45.0 ± 2.3 77.3 ± 2.3
6i 54.2 ± 1.8 56.6 ± 1.3 81.5 ± 1.7
6j 55.5 ± 1.8 60.0 ± 1.2 88.7 ± 2.7
6k 65.1 ± 1.2 74.3 ± 1.5 94.3 ± 1.1
6L 32.2 ± 3.3 35.4 ± 3.7 60.1 ± 1.8
6 m 31.4 ± 2.9 33.7 ± 3.4 57.3 ± 2.1
Dufulin b 50.3 ± 2.6 54.3 ± 1.9 87.6 ± 2.2
Ningnanmycin c 53.3 ± 2.3 58.3 ± 1.7 92.3 ± 1.4

aAverage of three replicates.
bDufulin was also used as the control.
cNingnanmycin was used as the control.

FIGURE 3 | 3D mode of the interaction of compound 6a and receptor
TMV-CP analyzed by AutoDock 4.0 software. Conventional hydrogen bond,
carbon–hydrogen bond, and alkyl, as well as Pi–alkyl, are shown by green,
light green, and pink, respectively.
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224. This also indicated that the structures of benzothiazole and
hydrazone play a key role in the activity of the title compound.
Among them, compound 6k displayed excellent activity, with values
of 65.1% curative activity, 74.3% protective activity, and 94.3%
inactivation activity. Therefore, the basic motif of compound 6k
can be used as a lead compound for further development.
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