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via simple hydrothermal method, CeO2 was in-situ grown onto the CNTs to form CeO2/
CNTs nanocomposites were synthesized with cerium nitrate as Ce resource. The
morphology and structure were characterized by transmission electron microscopy
and X-ray diffraction. The characterizations reveal that CeO2 nanoparticles are
uniformly dispersed onto the surface of the pre-acidified CNTs. The electrochemical
property of the synthesized nanocomposite was investigated in 0.1 M KCl electrolyte
containing 2 mM [Fe(CN)6]

3-/4-. The nanocomposites were employed to fabricate
electrochemical sensor for phenol detection. The linear range for phenol detection
measured by the differential pulse voltammetry method is 1–500 μM. The sensor also
exhibits good selectivity, reproducibility and stability. When applied for the river and tap
water analysis, it shows good recovery rate.
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INTRODUCTION

At present, human life is inseparable from chemical products. As the chemical industry brings great
convenience to our daily lives, it also damages our environment, making the global water pollution
problem more and more serious (Lopez-Pacheco et al., 2019; Liu J. et al., 2021). Phenol is such a
common pollutant in the chemical industrial wastewater, which can cause pollution to water bodies
and the atmosphere, and also has strong chemical toxicity to human beings (Gruzdev et al., 2015;
Singh and Chandra, 2019; Wang and Chen, 2020). Excessive exposure to water containing phenol
can cause damage to the skin and eyes, and it also causes nerve damage and increases the risk of
cancer (Singh and Chandra, 2019). Not only the World Health Organization (WHO) lists it as the
third category of carcinogens, the European Union (EU) and the US Environmental Protection
Agency also list it as an important environmental pollutant (Diaz-Gonzalez et al., 2016). What’s
more, because phenol is difficult to degrade in the natural environment, its environmental pollution
will eventually destroy the ecology system. Therefore, it is urgent to develop a technology that can
quickly detect the phenol content in river water. At present, the main methods for detecting phenol
includes spectrophotometry, gas chromatography-mass spectrometry, liquid/solid phase extraction/
microextraction, high-performance liquid chromatography, etc (Alcudia-Leon et al., 2011; Jaworek,
2018; Liu W. et al., 2021) However, the operations for these methods are relatively complex, and the
instruments are expensive, which limit their rapid and wide detection. Compared with the previous
analysis methods, electrochemical analysis has the advantages of good stability, high sensitivity, low
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cost, and easy operation (Curulli, 2020; Tajik et al., 2020). Owing
to these advantages, it is widely employed for the electrochemical
detection of inorganic ions, small organic molecules and bio-
molecules, etc.

One key factor in improving the performance of
electrochemical sensors is to find suitable materials for
modifying working electrodes (Ferrier and Honeychurch,
2021). So far, scientists have done a lot of research on this,
and many materials with excellent electrochemical properties
have been used to improve the performance of sensors (Abbas
and Amin, 2022; Shao et al., 2022). Among them, the carbon
nanotube is treated as an ideal material for the chemical
modified electrode owing to excellent performance (Zhang
and Du, 2020; Billing, 2021). Carbon nanotubes are
composed of pure carbon atoms that interact through strong
sp2 carbon-carbon bonds. They exhibit the unique carbon
network geometry of tubular structures in nanoscale
diameters and microscale lengths. The strong chemical bonds
in the carbon network make CNTs the most fascinating
nanomaterials. Because of the unique physical and chemical
properties such as high mechanical strength, large surface area
and electrical conductivity, it is widely utilized in the
electrochemical fields such as electrochemical sensor (Wang
J. et al., 2018), electrochemical catalyst (Tafete et al., 2022),
supercapacitor (Yang et al., 2020), etc.

Due to the unique electronic configuration, rare earth
elements are currently the hot-topic research materials (Huang
and Zhu, 2019). Take Cerium (Ce) as an example, Ce is a member
of the lanthanide family of metals, and it is the most abundant
element of the rare earth metals found in the earth crust
(Algethami et al., 2018). It is easy to lose outer electrons to
form compounds of different valence states, thus making its
chemical properties very active. The oxide of cerium, called
ceria, is a rare earth semiconductor material with a low price
and a wide range of applications. CeO2 has a cubic fluorite
structure, in which the Ce element has two oxidation states
Ce4+ and Ce3+. It is widely used in luminescent materials
(Huang et al., 2021) catalysts (Zhu et al., 2019), electrode
materials (Xiao et al., 2018; Huang et al., 2019), and so on.
For the purpose of further exploring the electrochemical
application of CeO2, in this study, a simple hydrothermal
route was used to in situ grow CeO2 nanoparticles on the
surface of carbon nanotubes. The synthesized CeO2/CNTs
composites were employed to construct a phenol
electrochemical sensor. The experimental results show that the
CeO2/CNTs modified electrode has a good detection effect on
phenol.

EXPERIMENTAL

Preparation of CeO2/CNTs
First, the CNTs were acidified with a mixed acid solution (V98%

concentrated sulfuric acid: V68% concentrated nitric acid = 3:1) at 90°C for 4 h
under stirring and refluxing. Ce(NO3)3·6H2O was used as the
cerium source to synthesize CeO2/CNTs composite material in
one step by hydrothermal method. Dissolve 1.2 g

Ce(NO3)3·6H2O and 0.1 g treated CNTs into 60 ml deionized
water. After adjust the solution to pH = 9.0 with 0.5 MNaOH and
stir for 1 h, it was then transferred into the autoclave and reacted
at 160°C for 24 h. After that, it was allowed to cool naturally, and
the product was centrifuged, washed, dried under vacuum, and
ground. The similar route was used to prepare CeO2

nanoparticles without the addition of treated CNT at the
beginning.

Preparation of Electrochemical Sensor
Themodified glassy carbon electrodes (GCE,Φ = 4 mm) of CeO2/
CNTs/GCE, CeO2/GCE and CNTs/GCE were used as working
electrode. All the cyclic voltammetric (CV) and differential pulse
voltammetric (DPV) responses were recorded on electrochemical
workstation.

Other detailed experimental procedures and apparatus
parameters are provided in the Supplementary Material.

RESULTS AND DISCUSSION

Material Characterization
TEM and XRD technologies were employed for the purpose of
intuitively observing the morphology and structure of the
nanomaterials. Shown in Figures 1A,B is the TEM image of
CeO2 nanoparticles and CeO2/CNTs nanocomposites. It can be
seen that CeO2 nanoparticles are grown uniformly on the surface
of CNTs. In the XRD spectra of Figure 1C, the diffraction peak at
26° in the curve 1) is the characteristic peak of CNTs. For CeO2, it
can be seen from curve b in Figure 1C that a series of sharp
diffraction peaks appear at 28.3°, 33.1°, 47.5°, 58.2°, which are
correspond to the (111), (200), (220), (311) planes of CeO2 (Xiao
et al., 2019). This is also consistent with the standard XRD
spectrum of CeO2 (curve d, JCPDS card No. 34–0,394). And
all these peaks are appeared in the CeO2/CNTs nanocomposite
(curve c), proving the successful preparation of CeO2/CNTs
composite.

Cyclic Voltammetric Response of Different
Electrodes
To study the electrochemical property of the nanocomposites, the
CV responses of different nanocomposites modified electrode
were recorded in 0.1 M KCl electrolyte containing 2 mM
[Fe(CN)6]

3-/4-, which are shown in Figure 2A. Compared with
bare GCE (curve a), CeO2/GCE (curve b) shows a little bigger CV
response. This confirms that as a rare earth semiconductor
material, CeO2 can still promote the electron transfer between
the electrode and the electrolyte. Nevertheless, the peak current is
dramatically enlarged after CNTs are modified onto the GCE as
CNTs/GCE (curve c), due to the excellent conductivity of CNTs.
And the peak current is further enlarged for CeO2/CNTs/GCE
(curve d). This proves that the binary composite of CeO2/CNTs
owes the best electrochemical performance than single CNT
or CeO2.

In order to investigate the electrochemical catalytic effect of
the different nanomaterial towards oxidation of phenol, CV
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tests were performed on different modified electrodes in 0.1 M
phosphate buffer containing 2 mM phenol in Figure 2B. It can
be found that both CeO2/GCE (curve b in Figure 2B) and

CNTs/GCE (curve c in Figure 2B) responses are better than
the bare GCE (curve a in Figure 2B), which means both CeO2

nanoparticles and carbon nanotubes have a certain catalytic

FIGURE 1 | TEM images of CeO2 (A), CeO2/CNTs (B), and XRD patterns (C) of CNTs (a), CeO2 (b), CeO2/CNTs (c) and standard spectrum of CeO2 (d).

FIGURE 2 | CVs of different electrode in 2 mM [Fe(CN)6]
3-/4- + 0.1 M KCl (A) and in phosphate buffer (pH = 5.0, 0.1 M) containing 2 mM phenol (B). (a) bare GCE,

(b) CeO2/GCE, (c) CNTs/GCE and (d) CeO2/CNTs/GCE. Scan rate: 50 mV s−1.

FIGURE 3 |CVs of CeO2/CNTs/GCE in phosphate buffer (pH = 5.0, 0.1 M) with 1 mMphenol at different scan rates (10–200) mV·s−1 (A), and the linear curve of the
peak current vs. the scan rate (B).
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effect toward the electrochemical oxidation of phenol. And
CeO2/CNTs/GCE (curve d in Figure 2B) has the largest
oxidation peak compared to other modified electrodes. This
shows that CeO2/CNTs nanomaterials have the best
electrochemical catalytic effect on phenol. This is due to the
synergistic catalysis effect between CeO2 nanoparticles
and CNTs.

Effect of Scan Rate
The electrochemical kinetic behavior of the as-prepared electrode
was studied by CV in phosphate buffer (pH = 5.0, 0.1 M)
containing 1 mM phenol (Figure 3). When the scan rate
enlarges from 10 to 200 mV s−1, the oxidation peak current
increases accordingly (Figure 3A). Figure 3B shows the linear
curve of peak current value vs. the scan rate, where Ip (μA) =

FIGURE 4 | CVs of CeO2/CNTs/GCE in electrolyte with pH from 4.0 to 8.0 (A), and the linear curve of peak potential vs. pH (B).

FIGURE 5 | DPVs for CeO2/CNTs in phosphate buffer (pH = 5.0, 0.1 M) with different concentrations of phenol (1–500 μM) (A) and the corresponding plots of the
oxidation peak currents at peak potentials vs. the concentrations of phenol (B).

TABLE 1 | Comparison of different sensor performance.

Electrodes Method Linear Range (μM) Detection Limit (μM) Ref

Ni/MWCNT/GCE CV 10–480 7.07 Yajing Wang et al. (2018)
Pt/g-C3N4/GCE DPV 2–20 0.667 Song et al. (2019)
Na+-doped g-C3N4/CP CV 1–110 0.23 Yin et al. (2020)
Fe3O4/AGO

a/GCE DPV 0.45–56, 156–456 0.4 Meng et al. (2019)
Fe3O4/MWCNT/GCE DPV 5–235 4.83 Jiankang Wang et al. (2018)
CeO2/CNTs/GCE DPV 1–500 0.3 This work

aAGO, for Amino-Functional Graphene.
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44.00961 + 1.00644 v (mV·s−1) with R2 = 0.98044. It confirms the
kinetic behavior of CeO2/CNTs/GCE is a surface-controlled
process.

Effect of the pH Value
During electrochemical analysis, the pH value of the solution
plays an important role for the target determination. Herein,
in order to study the effect of pH on the electrochemical
performance of CeO2/CNTs/GCE, the CV behaviors of CeO2/
CNTs/GCE in electrolytes with different pH values were
recorded. As shown in Figure 4A, when the pH value
increases from 4.0 to 8.0, the oxidation peak potential
obviously shifts to the lower voltage direction. Figure 4B
is the linear curve between the pH value of the solution and
the oxidation peak potential of phenol, where Ep(V) =
0.99462–0.05473pH with R2 = 0.98843. Through
calculation, the ratio value between the involved number
of protons and electrons in the reaction is approximately
1. This is consistent with the transfer number of protons and
electrons in the phenol oxidation reaction. At the same time,
it is observed in Figure 4A that the electrode has the largest
response current at pH = 5.0, so subsequent electrochemical

experiments are carried out under the optimal pH value
of 5.0.

Determination of Phenol
Under the optimal condition, the DPV response of CeO2/
CNTs/GCE upon the addition of different concentration of
phenol was recorded. Figure 5A is the DPV signals recorded
in a phosphate buffer (pH = 5.0) with different phenol
concentrations in the range of 1–500 μM. It can be seen
from Figure 5A that as phenol concentration gradually
increases, the corresponding oxidation peak current also
increases. Drawn from the DPV curves, the linear equation
(Figure 5B) between the DPV peak current (Ip) and the
phenol concentration (cphenol) is Ip(μA) = 0.252 +
0.105 cphenol (μM) with R2 = 0.992. The detection limit for
phenol is 0.3 μM. In contrast to other published
electrochemical sensors, as shown in Table 1, CeO2/CNTs/
GCE has a lower detection limit and a wide detection range. It
shows that the sensor in this system exhibits satisfied
performance.

Selectivity and Reproducibility
In order to study the selectivity of the electrochemical sensor,
other common substances are added into 0.1 M phosphate
buffer (pH = 5.0) with 1 mM phenol, so as to record interfere
effect for the electrochemical response of phenol. Based on the
previous report about the anti-interference investigation for
phenol detection, potassium chloride, calcium chloride,
sodium chloride, iron chloride, sodium nitrate, magnesium
chloride, hydroquinone (HQ) and catechol (CC) are chosen
for anti-interference research. The result is shown in Figure 6.
After adding different interferences (0.1 mM) into electrolyte,
the electrochemical signal almost remains unchanged as
compared to solo phenol detection. This illustrates that the
prepared sensor has good selectivity. To investigate the
repeatability of the sensor modification, five CeO2/CNTs
modified electrodes were fabricated under the same
conditions to measure 100 μM phenol solution. The
calculated relative standard deviation (RSD) is 5.76%, which
shows that the sensor has good reproducibility. And the
stability is studied by measuring the CV response of the
sensor in 100 μM phenol solution after stored in a

FIGURE 6 | The selectivity study of CeO2/CNTs/GCE upon addition of
different interferences.

TABLE 2 | Real sample detection in river water and tap water.

River Water

Specimen Concentration Addition (μM) Found (μM) Recovery (%) RSD (%)

1 NDa 60.0 60.87 101.4 5.4
2 ND 100.0 101.28 101.28 6.5
3 ND 300.0 302.7 100.9 7.8

tap water

4 ND 60.0 60.6 101.0 5.3
5 ND 100.0 101.2 101.2 6.1
6 ND 300.0 301.9 100.6 7.4

aND, for Not Detected.
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desiccator for 1 week. Its signal value was 98.6% of the
initial value.

Real Sample Detection
DPV determinations of phenol in real samples of river and tap
water were estimated using standard addition method to assess
the possibility for real sample detection. Table 2 shows the
actual sample detection results. The results show that the
sensor in this system has good recovery rate and RSD in
both river and tap water analysis. This proves that CeO2/
CNTs/GCE is a reliable and effective platform for phenol
detection in real sample.

CONCLUSION

CeO2/CNTs nanocomposites were synthesized by hydrothermal
method. CeO2 nanoparticles are obtained with cerium nitrate as
Ce resource. TEM images reveal that CeO2 nanoparticles are
uniformly dispersed onto the surface of the pre-acidified CNTs.
XRD spectra show that all the characteristic peaks of CNT and
CeO2 are appeared in the CeO2/CNT nanocomposite. The CV
responses in 0.1 M KCl electrolyte containing 2 mM [Fe(CN)6]
3-/4- prove that, as compared to the bare CNTs and CeO2, the
CeO2/CNTs/GCE owes the best electrochemical performance.
When applied for the electrochemical catalytic effect towards
oxidation of phenol, CeO2/CNTs nanomaterials have the best
catalytic effect on phenol oxidation. The CeO2/CNTs
nanocomposites based electrochemical sensor displays wide
linear range, good selectivity, reproducibility and
stability, as well as the potential application for real sample
detection.
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