AUTHOR=Zhang Lishang , Shi Zhe , Lin Yanping , Chong Fali , Qi Yunhui TITLE=Design Strategies for Large Current Density Hydrogen Evolution Reaction JOURNAL=Frontiers in Chemistry VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2022.866415 DOI=10.3389/fchem.2022.866415 ISSN=2296-2646 ABSTRACT=
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm−2), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process,