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In this work we investigate quantum mechanically the interaction of an intense ultrashort
laser pulse with the graphene monolayer as well as with the armchair graphene ribbons of
different widths. We consider a tight binding (TB) Hamiltonian of the monolayer graphene
and give two rules for deriving the dispersion relations of the armchair graphene ribbons of
any width, N, from the TB eigenvalues of the monolayer. The band structure of the
monolayer and the armchair ribbons of different widths are discussed with illustrations. The
time-dependent wavefunctions of the systems and the expectation values of interest are
determined by solving the coupled equations of the band amplitudes “exactly”
(numerically). First, simulations are made for the population excitation in the conduction
band (CB) from the valence band (BV), the VB-CB interband correlation (or “coherence”),
the intraband, the interband and the total currents in the monolayer graphene. The
graphene currents are compared with the corresponding currents induced in an
armchair ribbon (width, N = 3). The change from the 2D monolayer to the 1D ribbon
shows a remarkable transition of the dominance of the intraband current that leads to a
near steady total current in the monolayer, to a dominance of the interband current in the
ribbon that induces an oscillatory current in the ribbon beyond the pulse duration. The
difference observed might be a combined effect of the “confinement” in one dimention and
a finite band-gap minimum in the case of the ribbon. However, this transition should be
further investigated for better clarity. A brief comparison of the radiation spectra emitted
from themonolayer and from the ribbon is alsomade. They show a grossly similar structure
and a relative insensitivity with respect to the detailed structure of the targets chosen. This
might be due to the dominance of virtual continuum-continuum transitions, to and from the
bands states, that lie behind the fundamental quantum process of high harmonic
emissions. Lastly, the dependence of the charge currents, induced in a ribbon of unit
width (N = 1), on the carrier-envelope-phase (CEP) of the incident laser pulse is
investigated. It is seen that the shape of the main part of the current produced in the
ribbon can be fully reversed by changing the CEP of the ultrashort laser pulse from 0 to π.
More generally, it is suggested that the pulse shape of the charge carriers in the ribbon
could be designed by similarly tailoring the form of the vector potential of the incident
laser pulse.
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1 INTRODUCTION

Graphene is a two dimensional hexagonal one-atom-thin
monolayer of carbon atoms that shows remarkable material,
electrical and optical properties (e.g. Castro Neto et al. (2009))
with much potentials for future applications. The study of the
interaction of intense laser light with monolayer graphene and
theoretical and experimental investigations of the emission of
high harmonic radiation from them began quite sometime ago
(e.g., Faisal and Kaminski (1997); Ghimire et al. (2011); Faisal
(2011); Faisal (2013); Schubert et al. (2014); Luu et al. (2015);
Vampa et al. (2015); Liu et al. (2017); Sivis et al. (2017);
Yoshikawa et al. (2017)). Investigations of the nature of
electric currents in graphene generated by intense laser pulses
have also made considerable progress (e.g. Kelardeh et al. (2015),
Higuchi et al. (2017), Ernotte, et al. (2018), Heide et al. (2020). For
example, ballistic electric currents and sub-optical cycle
“Stueckelberg oscillations” in graphene monolayers induced by
ultrashort lasers have been observed recently by Hommelhoff and
collaborators (Higuchi et al. (2017); Heide et al. (2020)). A
ramarkable progress had been reported recently by
Karakachian et al. (2020) in synthesising high quality armchair
graphene ribbons having finite widths. Their methodmakes use of
the side walls of 6H-SiC mesa structures to epitaxially grow the
armchair ribbons of different widths on them, while the ARPES
technique was used to investigate the electronic structure of the
sub-bands of armchair ribbons that revealed the presence of band
gaps in most ribbons as well as a gapless pair of bands for ribbons
of certain widths (see, below). This development opens up new
prospects of further research on the effect of quantum
confinement and of potential applications of the ribbons in
semiconductor electronics, specially, where the monolayer
graphene is not directly usable due to its missing band gap.

In this work we explore (quantum mechanically) the
interactions of an intense ultrashort laser pulse with the
monolayer graphene and with armchair graphene ribbons. To
this end first we consider an analytical TB (tight binding)
Hamiltonian in the reciprocal lattice space, determine its
eigenvalues and eigenfunctions, give two simple rules for
constructing the band-system of armchair ribbons (of any
width) from the graphene bands and, briefly illustrate the
lattice structure of the monolayer graphene and of the
armchair ribbons. Next, the current and the transition dipole
operators (relevant for the study of laser interactions) are
constructed analytically from the TB Hamiltonian. The laser
interaction is introduced using the minimal coupling
prescription in the reciprocal lattice space and the time-
dependent Schrödinger equation of the interacting system is
obtained in the adiabatic representation (cf. Faisal (2011)). To
solve the equation, we expand the total wavefunction in terms of
the adiabatic eigenstates of the “instantaneous” Hamiltonian and
construct a pair of coupled dynamical equations (cf. Faisal
(2016)) for the occupation amplitudes of the valence band
(VB) and the conduction band (CB) of the interacting system.
The equations are integrated numerically “exactly” to simulate
the transition probabilities and the expectation values of the
observables of the present interest. They are used to

investigate 1) the transfer of population from the VB to the
CB, 2) the induced VB-CB correlation (or “coherence”), 3) the
ultrashort charge-currents generated both in the monolayer
graphene and in the armchair graphene ribbons, as well as, 4)
the radiation emitted from the generated charge-currents. Finally,
the possibility of controlling the shape of the generated ultrashort
charge-currents by choosing the incident laser pulse suitably is
also considered for the case of an armchair ribbon of unit width
(N = 1). The results of the simulations for the monolayer and the
ribbons are presented, compared and discussed, with graphical
illustrations.

2 THEORETICAL MODEL

The lattice structure of a two dimensional graphene monolayer is
illustrated schematically in Figure 1. The upper part of the figure

FIGURE 1 | Lattice structure of a graphene monolayer. The upper part
shows a 2D hexagonal carbon lattice with two (red, black) interpenetrating
triangular Bravais sub-lattices. The unit cell (rhombus) has two atoms per cell
(red, black). The nearest neighbour distances from one atom (red) are
(d1, d2, d3); aCC is carbon-carbon bond length, a � ��

3
√

aCC = lattice constant =
0.246 nm = 4.649 [a.u.]. Note the “armchair” structure along the horizontal
axis and the “zik-zak” structure along the vertical axis. The lower part of the
figure shows the first Brillouin zone with symmetry points (Γ, M) and the Dirac
points (K−, K+).
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shows the hexagonal honeycomb carbon lattice with two (red and
black) interpenetrating triangular Bravais sub-lattices. A unit cell
with two atoms per cell is also outlined (the rhombus in the
figure). The 2D lattice vectors are defined by a1 �
{a/2, �

3
√

a/2}, a2 � {a/2,− �
3

√
a/2} where, a = |a1| = |a2| is the

lattice constant. The nearest neighbour (nn) distances from one
atom (red) of the cell are
d1 � {0, a/ �

3
√ }, d2 � {a/2,−a/(2 �

3
√ )}, d3 � {−a/2,−a/(2 �

3
√ )}.

They define the complex “geometric” factor h(k) � ∑3
j�1eik·dj

with, |d1| = |d2| = |d2| = aCC, the carbon-carbon bond length,
and,K± = ±{4π/(3a), 0} are the two non-equivalent “Dirac points”
of band degeneracy (see, below). Note that the lattice constant
a � �

3
√

aCC. The lower part of the figure shows the first Brillouin
zone, along with the symmetry points Γ and M, as well as the
Dirac points (K−, K+). The “armchair” structure of the horizontal
edge and the zik-zak structure of the vertical edge of the
monolayer graphene sheet are to be noted here.

The graphene monolayer is often theoretically modelled by a
symmetric TB Hamiltonian near the Dirac points where the
energy dispersion relations and the energy bands are linear
and symmetric (see, e.g. review Castro Neto et al. (2009)).
Most responses of graphene to weak static and/or low
frequency fields are dominated by this domain of the Brillouin
Zone (BZ). We point out that also for the laser fields in the near
infrared wavelength (800 nm) and at an intensity of 1 TW/cm2, as
used in this work, we tested (following the suggestion of an
anonymous referee) and found no significant effect of the band
asymmetry with non-zero overlap integral s0 = 0.129, as in this
work, and s0 = 0 for the symmetric bands. This is apparently due
to the high values of the dipole operator in the vicinity of the
Dirac points (cf. Figure 6) where the bands are essentially
symmetric and linear (cf. Figure 2).

Assuming two carbon atoms per unit cell (red and black dots
in the rhombus of Figure 1), each described by a pz-orbital
oriented perpendicular to the graphene plane and, taking only the
nearest neighbour (nn) interactions, the stationary wavefunction
ψ(k) of the graphene monolayer can be written as a linear
combination of the two Bloch functions associated with the
two pz orbitals (per cell). We may then apply the variational
principle as usual to construct the expectation value of the energy
operator H0, and arrive at the following 2 × 2 variational matrix
equation (e.g. Saito et al. (1998); McCann (2012)) with respect to
the two amplitudes associated with the two Bloch functions, ψ(k)
= {ψ1(k), ψ2(k)} as well as the energy of the least bound pz
orbital, ϵ2p:

H0 k( )ψ k( ) � ES k( )ψ k( ) (1)
where H0(k) is a 2 × 2 matrix with elements

H0
11 k( ) � ϵ2p

H0
12 k( ) � −g0h k( )

H0
21 k( ) � −g0h

p k( )
H0

22 k( ) � ϵ2p

(2)

The complex geometric factor h(k) can be expressed by its real
amplitude f and phase χ as:

h(k) � f(k)eiχ(k)
f(k) � (h21(k) + h22(k))1/2
h1(k) � 2 cos( kya

2
�
3

√ )cos(kxa/2)
h2(k) � sin(kya/ �

3
√ ) − 2 sin( kya

2
�
3

√ ) cos(kxa/2)
χ(k) � arctan(h2(k)

h1(k))
(3)

where, g0 is the “hopping” integral (the nearest neighbour
interaction matrix element); the lattice constant a � �

3
√

aCC
and, aCC is the carbon-carbon bond length. The 2 × 2 overlap
matrix S is defined by its elements

S11 � 1
S12 � s0h k( )
S21 � s0h

p k( )
S22 � 1

(4)

where, s0 is the dimensionless overlap integral. In this work we
have followed the convention (e.g. Saito et al. (1998); McCann
(2012)) of fixing the energy origin for the bands by setting the
unperturbed energy of the pz-orbital ϵ2p = 0 (a possible limitation
of this convention would be considered elsewhere); we also adopt
the parameter values g0 = 3.033 eV, s0 = 0.129, and the C-C bond
length aCC = 0.142 nm, quoted therein (with the lattice constant
a � �

3
√

aCC = 0.246 nm).
Before proceeding further, we note that Eq. 1 is not a proper

Schrödinger equation, due to the fact that S is not a unit matrix
and, hence, H0 is not a proper Hamiltonian. We may, however,
obtain a proper Hamiltonian by operating Eq. 1 with the inverse
of S, from the left, and define the present TB Hamiltonian by H ≡

FIGURE 2 | A 1D cut of the band structure of graphene monolayer along
the kx-axis, with ky =0. The lower lying valence band (VB, blue) and the upper
lying conduction band (CB, orange) are degenerate at the two Dirac points
(along the kx-axis at ± 4π

3a � ± 0.9[ 1
Bohr], 1Bohr =0.0529 nm). Note that for

a non-vanishing overlap integral s0 = 0.129, the bands are linear and
symmetric near the Dirac point (but differ away from it).

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8594053

Faisal Intense Laser Interaction with Graphene

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


S−1H0. The associated Schrödinger equation of the system is then
given by

Hψk � Eψk (5)
where the elements of the 2 × 2 Hamiltonian matrix H

H11 � ϵ2p + g0s0f
2 k( )( )/ 1 − s20f

2 k( )( )
H12 � −g0f k( )eiχ k( )/ 1 − s20f

2 k( )( )
H21 � −g0f k( )e−iχ k( )/ 1 − s20f

2 k( )( )
H22 � ϵ2p + g0s0f

2 k( )( )/ 1 − s20f
2 k( )( )

(6)

The eigenvalues and the eigenvectors of H are easily obtained
analytically by diagonalisation:

E1 k( ) � ϵ2p − g0f k( )( )/ 1 + s0f k( )( )
E2 k( ) � ϵ2p + g0f k( )( )/ 1 − s0f k( )( ) (7)

where, k = (kx, ky) is the 2D lattice-momentum in the (x, y)-plane
of the monolayer graphene. The corresponding normalised
eigenvectors are,

ψ1 k( ) � 1�
2

√ 1, e−iχ k( )( )
ψ2 k( ) � 1�

2
√ −1, e−iχ k( )( ) (8)

We note that although for graphene the square of s0 = 0.129 is
small compared to 1, it appears in the first order in the
denominators in the eigenvalues (7) and so in principle should
be retained. These eigenvalues were first obtained by Saito et al.
(1998) from the variational equations (without requiring the
Hamiltonian (6)). Note also that if the parameter s0 is neglected
(set equal to zero) then, one obtains a pair of symmetric energy
bands. This is particularly so near the Dirac points where the
interaction with the laser field is dominant. Onemay note that with
s0 = 0.129 the energy bands are generally asymmetric and the VB

and CB have different band widths (cf. e.g. Figure 2). The
Hamiltonian matrix, Eq. 6, allows us to obtain also the other
physically relevant operators of the system analytically. For
example, the current operator Jop or, the transition dipole
operatorDop, can be obtained in useful analytic forms (see, below).

Introduction of the laser-graphene interaction in the system is
readily implemented within the present theory by the minimal
coupling prescription (see, e.g., Section 1.2, Faisal (1987)) in the
reciprocal k-space, which, in the dipole approximation, consists in
merely changing the Hamiltonian (6) by the simple substitution

k → kt ≡ k − e

Zc
A t( )( ) (9)

where, A(t) is the vector potential associated with the laser electric
pulse F(t), and is given by the definition A(t) � −c∫t

0
F(t′)dt′.

Thus, the time-dependent Schrödinger equation governing the
evolution of the interacting laser-graphene system can be written as,

iZ
d

dt
Ψk t( ) � H kt( )Ψk t( ) (10)

To solve it, we may first expand the total wavefunctionΨk(t) in
terms of the adiabatic (or,“instantaneous”) basis states ψ1 (kt) and
ψ2 (kt) of H (kt) and write:

Ψk t( ) � c1 k, t( )ψ1 kt( ) + c2 k, t( )ψ2 kt( ) (11)
We substitute it in Eq. 10 and project on to the two

orthonormalized basis states |1〉 ≡ ψ1 (kt) and |2〉 ≡ ψ2 (kt)
from the left to get the pair of coupled equations for the time-
dependent occupation amplitudes of the valence and the
conduction bands, c1 (k, t) and c2 (k, t), respectively:

iZ
d

dt
c1 k, t( ) � V11 kt( )c1 k, t( ) + V12 kt( )c2 k, t( )

iZ
d

dt
c2 k, t( ) � V21 kt( )c1 k, t( ) + V22 kt( )c2 k, t( )

(12)

FIGURE 3 | Two dimensional band structure of the monolayer graphene. The valence band (orange) and the conduction band (blue) clearly exhibit the corners of
the hexagonal Brillouin zone on them.
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with,

V11 kt( ) � ϵ2p − g0f kt( )( )/(1 + s0f kt( ) − 1
2
d

dt
χ kt( ))

V12 kt( ) � 1
2
d

dt
χ kt( )

V21 kt( ) � 1
2
d

dt
χ kt( )

V22 kt( ) � ϵ2p + g0f kt( )( )/(1 − s0f kt( ) − 1
2
d

dt
χ kt( ))

(13)

Note that a common term, −1
2

d
dt χ(kt), that appears in the

diagonal matrix elements V11 and V22 above, can be transformed
away by a unitary transformation of the amplitudes without
affecting the probabilities and the expectation values calculated
with respect to the total wavefunction of the system (and, so, are
dropped in the sequel).

2.1 Velocity Operator, Dipole Operator,
Intraband Current, Interband Current and
Total Current
The x and y components of the velocity operator are obtained in
the present theory analytically from the Hamiltonian 6) by
differentiation with respect to the components of the lattice-
momentum k = (kx, ky),

ux kt( ) � 1
Z

d

dkx
H kt( )

uy kt( ) � 1
Z

d

dky
H k t( )( )

(14)

The quantum mechanical current operator defined as Jop =
euop and the transition dipole operator can be obtained from the
velocity operator using the Heisenberg equation of motion:

Jop � d

dt
Dop � i

Z
H,Dop[ ] (15)

Taking the matrix element of the above equation between a
pair of eigenstates, |ψ1 > and |ψ2 >, with the respective
eigenvalues, E1 and E2, of H (6), one finds the useful relation,

D21 � −iZJ21/ E2 − E1( ) (16)
For the applications, the incident laser field F(t) may be

defined generally in the form F(t) � êxFx(t) + êyFy(t), where
(êx, êy) are unit polarisation vectors along the x and y axes,
respectively; the associated vector potential is given by
A(t) � −c∫t

0
F(t′)dt′. The interaction Hamiltonian, in the

adiabatic representation, for the transition dipole operator in
the so-called “length gauge” is simply,

Hint kt, t( ) � D kt( ) · F t( )
� Dx kt( )Fx t( ) +Dy kt( )Fy t( ) (17)

We point out in passing that the coupled dynamical Eq. 12
derived here using the adiabatic basis representation and the
minimal coupling prescription in the so-called “momentum
gauge” are, in fact, gauge invariant (cf. Krieger and Iafrate

(1986)). This can be ascertained by comparing the respective
time-dependent coupled equations in the two gauges (in the
present representation) and noticing that the off-diagonal
coupling matrix elements V12 (kt) and V21 (kt) in (13) are
equal to the transition matrix elements of the dipole
interaction Hamiltonian above (on performing the simple
differential operation, 1

2
d
dt � 1

2 (Fx(t) z
zkx

+ Fy(t) z
zky

) on the
phase function χ(kt) that appears in Eq. 13).

Finally, we give the expressions for the quantum mechanical
expectation value of the “current” along the x and y axes, using the
interacting total wavefunction of the system, Ψ(k, t), and
summing over the k-states of the first Brillouin zone (BZ)
including the 2-fold spin- and valley-degeneracy of graphene,
respectively gs = 2, and gv = 2:

ê · J k, t( ) � gsgv ∑
BZ

〈Ψ k, t( )|e ê · uop kt( )( )|Ψ k, t( )〉

� gsgv
L

2π
( )D

×∫
BZ
dDk |c1 k, t( )|2 Σi�x,yei〈1|ui kt( )|1〉( ){

+c2 k, t( )|2 Σi�x,yei〈2|ui kt( )|2〉( )
+2Re cp2 k, t( )c1 k, t( ) Σi�x,yei〈2|ui kt( )|1〉( )[ ]}

(18)
where ê � (ex, ey) is the unit polarisation vector.∑BZ ≡ ( L

2π)D∫BZ
(/ )dDk stands for the state-sum in the

k-space and LD, for the “volume” in the lattice-space (with D
= 2 for the monolayer graphene and D = 1 for the armchair
graphene ribbons).

We note that the first two sums on the right hand side above,
that depend directly on the occupation probability of the valence
band (VB = |1〉) and the conduction band (CB = |2〉), is often
referred to as the intraband current, while the third sum that
depends on the VB-CB correlation (or “coherence”) term is
referred to as the interband current. It is convenient for most
purposes to deal with the corresponding normalised currents
(normalised per gsgv( L

2π)D) as:
jtotal t( ) � jintra t( ) + jinter t( ) (19)

jintra t( ) � ∫
BZ
dDk |c1 k, t( )|2 Σi�x,yei〈1|ui kt( )|1〉( ){

+ c2 k, t( )|2 Σi�x,yei〈2|ui kt( )|2〉( )∣∣∣∣∣ } (20)

jinter t( ) � ∫
BZ
dDk 2Re cp2 k, t( )c1 k, t( ) Σi�x,yei〈2|ui kt( )|1〉( )[ ]{ }

(21)
We note that the normalised currents are in a. u., with

[1a.u.] � ( e
t0
)/aD−1

0 = 0.125(Cs)/nm, for the monolayer (D = 2)
and, = 6.624 × 10−3(Cs) for the ribbons (D = 1).

To complete the definitions we also give the matrix elements
appearing above, explicitly:

〈1|ui kt( )|1〉 � − g0 + e2ps0( ) zf kt( )
zki

1 + s0f kt( )( )2
〈2|ui kt( )|1〉 � i g0 + e2ps0( )zχ k t( )( )zkif kt( )/ 1 − s20f

2 kt( )( )
〈1|ui kt( )|2〉 � −i g0 + e2ps0( )zχ kt( )zkif kt( )/ 1 − s20f

2 kt( )( )
〈2|ui kt( )|2〉 � g0 + e2ps0( ) zf kt( )

zki
1 − s0f kt( )( )2, i � x, y( ).

(22)
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For the simulations made in this work, we have solved the
coupled Eq. 12 numerically to obtain the amplitudes c1 (k, t) and
c2 (k, t). They are used to determine the total wavefunction of the
interacting system and to construct the expectation values to
investigate first the excitation of the CB population and the
interband correlation (or “coherence”). Next, the intraband
and the interband currents as well as the total current are
simulated for the case of graphene monolayer and an
armchair ribbon (width, N = 3). Also simulated are the
spectra of the radiation emitted from the monolayer and the
ribbon currents. Lastly, the effect of the so-called carrier-
envelope-phase (or, CEP) on the shape or symmetry of the

current produced in a ribbon (width, N = 1) is studied. It is
suggested that ultrashort charge-current pulses of desired shape
or symmetry might be possible to design by tailoring the vector
potential of the laser pulse similarly. The results of the simulations
carried out are illustrated graphically, and are compared, and
discussed in the next section.

3 RESULTS AND DISCUSSIONS

Unless stated explicitly otherwise, for the convenience of writing
and the numerical simulations, in the rest of the work we have

FIGURE 4 | The band structure of armchair graphene ribbons having widths N = 1, 2 and 3, are constructed using the two simple rules for the ribbons given in the
text. The full bands from the TB theory (left hand side column), as well as the approximate bands from the Dirac fermion model (right hand side column) are shown. They
agree near the middle of the bands (a Dirac point) as they should (but differ away from it). The N = 1 ribbon (“chain”) has a single (r = 1, blue) pair of “flat” bands of constant
separation along the armchair axis (horizontal y-axis); the N = 2 ribbon has two pairs of VB-CB bands, one pair (r = 2, red) is degenerate at the Dirac point; the N = 3
ribbon has three pairs of VB-CB bands, one pair (r = 2, red) has a constant separation (cf. N = 1), while another pair (r = 3, black) shows a finite band-gap minimum at the
centre as in a 1D semiconductor. Note that they follow the “m-rules”, for the occurrence of a degenerate and/or a “flat” pair of sub-bands, as given in the text.
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used the Hartree atomic units: e = m = Z = 1, c = α−1 = 137.036.
We note also that [1 a. u.] of length = a0 = 1Bohr = 0.0519 nm [1 a.
u.] of time = t0 = a0/(αc) = 24.19 as, and [1. a. u.] of e = 1.602 ×
10–19 C.

3.1 Band Structure of Graphene and
Armchair Graphene Ribbons
In Figure 2, we show a cut through the valence band (VB, blue)
and the conduction band (CB, orange) of the monolayer
graphene along the kx-axis (for ky = 0). The energy degeneracy
of the two bands are seen to occurr at the Dirac points
(kx � ± 4π

3a � ± 0.9 a. u.). Note that in the vicinity of the Dirac
points the band dispersions are essentially linear. This is similar
to the linear dispersion relation for a hypothetical relativistic free
Dirac electron of “zero mass” (hence the nomenclature, “Dirac
fermion”). If we neglect the finite overlap integral and set it to s0 =
0, the present TB Hamiltonian naturally goes over to the usual TB
dispersion relations with symmetric band widths of the VB and
CB. In Figure 3 we show the full 2D energy surface of graphene

(for s0 = 0.129) in the (kx, ky)-plane where one can also readily
recognise the hexagonal structure of the Brillouin zone of the
monolayer graphene. In this work, as indicated earlier, we also
consider the armchair graphene ribbons cut along the armchair
edge (y-axis) with a finite number of cell widths, N, along the
transverse direction (x-axis) (cf. Figure 1). The confinement of
the ribbon to a finite width along the x-axis in fact quantises the
continuum kx-states of the monolayer into a set of discrete values
that depends on the width index N (the number of cells within the
width of the “armchair ribbon”) while the ribbon’s length is
assumed to extend freely along the armchair axis (y-axis).

3.1.1 Rules for Constructing Band Dispersion
Relations for a Ribbon of a Given Width
We give below two simple, yet general, rules for obtaining the
entire system of energy band dispersion relations of the sub-
bands of the armchair graphene ribbons (of any width N):

Rule 1: An armchair ribbon of width N has N VB-CB band-
pairs, r = 1, 2, . . . , up to N.

Rule 2: The N pairs of dispersion relations of the bands can be
obtained from the eigenvalues of the monolayer graphene by the

FIGURE 5 | The dispersion relation of the N = 3 armchair ribbon (upper
part) may be seen from a different perspective (lower part) as consisting of
three “channels” of VB–CB pairs (along the armchair axis), separated by unit
widths in the transverse direction.

FIGURE 6 | The transition dipole moment operator for monolayer
graphene along the x-axis, Dx (kx, ky), in the reciprocal space (kx, ky)-plane.
Note the high positive values (upper part) and high negative values (lower part)
at the corners of the Brillouin zone. A similar behaviour holds for the
component of the dipole operator along the y-axis,Dy (kx, ky) (not shown here).
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simple substitution: kx→ kx [N, r] = (2/a) (rπ/(N + 1)), where a is
the graphene lattice constant).

They apply to the full TB dispersion relations as well as to the
Dirac fermion model (applicable near the Dirac points K). Thus,
for the Dirac fermion model of armchair ribbons we get the
following simple dispersion relations of the rth pair of bands of a
ribbon of width N:

E± N, r, qy( ) � ± vF
������������
qx N, r[ ]2 + q2y

√
,

qx N, r[ ] ≡ kx N, r[ ] − 4π
3a

( ), qy ≡ ky
(23)

where, the Dirac fermion velocity vF ≈ c/300. It is also
worth observing (cf. Karakachian et al. (2020)) that 1) for
each N = 2m + 2 (for, m = 0, or, integer), there is a degenerate
pair of VB-CB bands (with a zero band gap) and 2) for each N
= 2m + 1 (m = 0, or, integer), there is a “flat” pair of VB-CB
bands, for which the band-gap remains constant throughout
the ky-space. We may point out that such a ribbon with a flat
pair of bands provides a large number of identical “two level”
systems (rather analogous to the atomic “two level” systems
but) in a robust and compact form of an armchair ribbon. This
might be of interest for potential applications in digital/optical
systems. In Figure 4 we illustrate the band structure of the
armchair ribbons of widths N = 1, 2, and 3, as constructed from
the above rules applied to the TB eigenvalues for graphene
monolayer (left hand side column) and compare them to the
Dirac fermion model, Eq. 23, (right hand side column). It can
be seen that both the models agree near the Dirac point, qy = 0,
as they should (but differ elsewhere). The system of VB-CB
band pairs are colour coded as follows: (N = 1, r = 1)→ blue; (N
= 2, r = 1, 2)→ (blue, red) and, (N = 3, r = 1, 2, 3)→ (blue, red,
black). For example, for N = 3, there are three VB-CB pairs of
bands none of which is degenerate. However, one pair (red)
shows a band-gap minimum, as in a 1D semiconductor. The
“m-rules” 1) and 2) given above can be easily verified (for m = 0
or, 1) for the three ribbons of widths N = 1, 2, and 3, shown in
the figure. (Not surprisingly, however, the Dirac fermion
model, that applies near the Dirac point (qy = near 0), does
not maintain the parallel separation away from the band
centre, qy = 0, unlike the “flat” bands of the full TB model,
that do.) We may add that the band structure of the armchair
ribbons of width N may be also viewed as possessing N
“conduction channels”. Figure 5 illustrates this for N = 3.
The bands shown in the upper part of the figure viewed from
an alternative perspective (lower part of the figure) helps to
visualise the three “channels” along the armchair axis (for r =
1, 2, and three along the width axis).

3.2 Interaction With an Intense Ultrashort
Laser Pulse
As we have seen above, the availability of the TB Hamiltonian in
the analytic form (6) allows one to obtain the physically
interesting current operator Jop = euop (below, Eq. 14) and the
dipole operator Dop Eq. 16) for the graphene system. They
control the response of graphene and graphene ribbons to
laser fields. In Figure 6 we show an example of the
x-component of the transition dipole operator of graphene as
a function of the lattice momentum k = (kx, ky). It is clear from the
figure that the strength of the transition moment is particularly
strong near the corners of the hexagonal BZ (or the Dirac points)
in both positive (upper part in the figure) and negative (lower part
of the figure) signs of the strength.

For the simulations in this work we have generally
restricted ourselves to an intensity of 1 TW/cm2 (or, a peak
field strength F0 = 2.72 V/nm that is reasonably high
but is below the damage threshold for a monolayer
graphene Currie et al. (2011). More specifically, we have

FIGURE 7 | Illustration of a typical ultrashort near-infrared laser pulse
used for the simulations in this work (wavelength = 800 nm, peak intensity =
1 TW/cm2, CEP = 0, pulse duration = 1.5 cycles). Shown in the upper part is
the “sin2-envelope” electric field and in the lower part, the corresponding
vector potential. Vertical axis: pulse amplitude in a. u. (field strength [1 a. u.] =
514.22 V/nm), horizontal axis: pulse duration in cycles (1 cycle = T = 2π/ω):
The pulse chosen is linearly polarised parallel to the armchair edge (y-axis):
F(t) � êyFy(t) � êyF0 sin

2(π t
tp
) cos(ωt + CEP), where ê = unit polarisation

vector, F0 = peak field strength, tp = pulse duration, ω = circular frequency,
CEP = carrier-envelope-phase. The corresponding vector potential is
Ay(t) � −c ∫t

0
Fy(t′)dt′, c = speed of light in vacuum. For the simulations in this

work generally CEP = 0 is used (except for Figure 12, where the CEP-
dependence of the current in an armchair ribbon is investigated).

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8594058

Faisal Intense Laser Interaction with Graphene

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


FIGURE 8 | Response of a graphene monolayer to an intense ultrashort
laser pulse. Pulse parameters are: wavelength = 800 nm, peak intensity =
1 TW/cm2, pulse duration = 1.5 cycles, CEP = 0; simulation period = 3 cycles.
Top panel: normalised population excited in the conduction band (CB);
middle panel: normalised interband “coherence” (or correlation). Shown also is
the normalised interband current (bottom panel). Note the near steady
population in the CB and an oscillatory interband coherence after the pulse is
over. The interband current (being a 2D integrated sum of the interband
coherence wighted by the k-dependent current operator) shows only a mild
modulation for the 2D monolayer (in comparison with a 1D ribbon that is
confined along the width dimension (cf. also Figures 9, 10 below).

FIGURE 9 | Normalised currents induced in a monolayer graphene by
an ultrashort laser pulse (with the same pulse parameters as in Figure 7).
The upper panel: intraband current; the middle panel: interband
current. The total current is shown in the bottom panel. It is dominated
by the intraband current that shows a near steady state by the end of
the pulse, at 1.5 cycles, and after the pulse is over. The mild
modulation seen to be present could be an effect of the reduced
“coherence” (or correlation) of the interband current by the 2D
dispersion effect of the integrated sum of k-dependent interband
coherence weighted by the 2D current operator. This should be contrasted
with the possible effects of “quantum confinement” along the width
dimension and the band-gap minimum, in the case of the armchair ribbon
(cf. Figure 10).
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chosen a “sin2-envelope” for the electric field, F(t), polarised
linearly and parallel to the “armchair edge” of graphene (the
y-axis):

F t( ) � êyF0 sin
2 π

t

tp
( )cos ωt + ϕ0( ) (24)

where, F0 is the peak electric field strength, tp is the pulse
duration, ω is the circular frequency and ϕ0 is the carrier-
envelope-phase (or CEP). The corresponding vector potential
is given by,

A t( ) � −c∫t

0
F t′( )dt′ (25)

The pulse is illustrated graphically in Figure 7 (upper panel:
electric field, lower panel: vector potential; wavelength 800 nm,
intensity one TW/cm2, tp = 1.5 cycles or, 4 fs).

Note that the duration of the simulation times are extended
mostly up to twice the pulse duration (up to three cycles) with no
field present in the last 1.5 cycles. This allows one to observe the
residual response of the system after the pulse has ended.
Simulations are made for the following quantities: 1) CB
population, 2) “VB-CB correlation”, and 3) “band currents”,
and the results are presented graphically below. They are
normalised, as discussed above per unit “volume” (precisely,
per gsgv( L

2π)D, where, gs = 2, gv = 2 are the spin and valley
degeneracy factors of graphene; D = 2 for the monolayer and, D =
1 for the ribbons). As indicated above, the units of the quantities
represented are in Hartree atomic units (a.u.) (with [1a.u.] of
length = 0.0529 nm [1 a. u.] of time = 24.19 as, and [1 a. u.] of
charge e = 1.602 × 10–19 C). The normalised population transfer
to the CB and the VB-CB correlation are computed assuming an
initially fully occupied VB and an empty CB. Similar initial
conditions are assumed for the simulations of the normalised
band currents. They are computed from the following normalised
formulas (obtained from the general formulas given above).

1) Normalised CB population:

Population t[ ] � ∫
BZ
|c2 k, t( )|2dDk a.u.[ ], (26)

2) Normalised VB-CB correlation:

Correlation t[ ] � ∫
BZ
2Re c2 k, t( )pc1 k, t( )[ ]dDk a.u.[ ], (27)

The units for 1) and 2): [1a.u.] � 1
aD0

or, 357.3 1
nm2 for monolayer

graphene (D = 2), and =18.904 1
nm for the ribbons (D = 1).

3) The normalised Currents: They are simulated from the
y-component of the formulas, Eqs 19, 20 and 21. The units of the
normalised currents are in a. u. with [1a.u.] = e

t0a
(D−1)
0

; D = 2,
monolayer, D = 1, ribbons; the conversion factors to S.I. are the
same as given below Eq. 21 above.

In Figure 8 we show the population transferred to the CB of
graphene (upper panel), the interband correlation—or the VB-CB
“coherence”—(middle panel), as well as the interband current
(bottom panel). The simulation duration is extended to twice the
pulse duration (1.5 cycles) to 3.0 cycles. This allows one to
observe the behaviour of the response after the pulse is over.
The CB population is seen to increase considerably with the
passage of the pulse and attains essentially a steady state
superimposed by a mild modulation that persists after the end

FIGURE 10 |Normalised current generated in an armchair ribbon (N = 3)
by an ultrashort laser pulse (wavelength = 800 nm, intensity = 1 TW/cm2,
pulse duration = 1.5 cycles, CEP = 0; simulation period = 3 cycles). Top panel:
intraband current; middle panel, interband current; bottom panel: total
current. Note that the total current is dominated by the interband (“coherent”)
current that shows an oscillatory behaviour during and after the pulse. This
might be understood as an effect of the confinement of the ribbon along the
width dimension, resulting in a reduced band dispersion in the 1D ribbon
compared to the fully open 2D monolayer.
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of the pulse. This is to be contrasted with the oscillatory behaviour
of the interband correlation (or the VB-CB “coherence”) that
shows a sub-cycle oscillation at the end of the pulse and beyond.
We point out that sub-cycle oscillations and ballistic currents
have been studied and observed experimentally earlier by
Hommelhoff and collaborators (Higuchi et al. (2017); Heide
et al. (2020)). Note that the interband current—that
corresponds to the interband correlation weighted by the
current operator—is seen here to show only a mild
modulation about zero-current. The difference between the
strong oscillation in the interband coherence and the mild
modulation of the interband current might be an effect of the
weighted dispersion in the two dimensional k-space for the
interband current compared to the un-weighted interband
correlation. In Figure 9 we show the full current (bottom
panel) in graphene as well as the individual contributions of
the intraband current (upper panel) and the interband current
(middle panel). Conceptually, the intraband current is associated
directly with the sum of the electron-current in the CB and the
“hole”-current in the VB. The interband current (middle panel) is
associated with the interband correlation or the VB-CB

“coherence” (discussed above with respect to Figure 8). It can
be seen here that the total current (bottom panel) is dominated by
the intraband current (top panel) and reaches essentially a steady
state with a mild modulation. Note that the mild modulation of
the interband current causes the mild modulation of the total
current beyond the duration of the 1.5 cycle laser pulse.

Next, we compare the currents in the monolayer graphene
with the current in an armchair graphene ribbon. In Figure 10
we show the current generated in a ribbon of width N = 3,
having three pairs of VB-CB bands or, three “conduction
channels” (cf. Figure 5). The laser pulse chosen is the same
as in the case of the monolayer i.e. a Ti-Sapphire laser pulse at
800 nm, with a peak intensity of one TW/cm2, and a pulse
duration of 1.5 cycles. In comparison with the monolayer
case (Figure 9), the transition to the ribbon shows a
remarkable change of the dominance from the intraband
current in the 2D monolayer to a dominance of the
interband current in the 1D ribbon. The ribbon appears to
reduce the possible influence of band dispersion in 1D
compared to the open 2D monolayer. This difference might
be a result of the confinement effect as well as of the difference in
the band structure of the ribbon that has a finite band-gap
minimum. However, the same transition from a steady state
(with a mild modulation) in the monolayer current to the strong
oscillation of the current in the ribbon does not hold universally
for the ribbons (as can be seen (cf. Figure 12) from the steady
zero-current, albeit at a much reduced laser intensity = 1 GW/
cm2, in a ribbon of unit width having a pair of “flat” bands with a
wide separation, and needs further investigations for a greater
clarity.

The induced currents in graphene and the graphene ribbon
imply emissions of radiation. We, therefore, have also briefly
considered the emission spectra radiated by them.

The normalised emission spectra computed here are defined
by the frequency transform of the normalised currents as
follows:

Signal n( ) � | 1
tp
∫ tp

0
jtotaly t( )e−inωtdt|2 a.u.[ ], (28)

where, tp is the pulse duration. (We may add that the unit of the
normalised emission signal in the figure is in [a.u.] and, in S.I. it is
simply the square of the units of the normalised currents given
earlier.) We show in Figure 11 the normalised spectra of
radiation emitted from a graphene monolayer as well as by an
armchair ribbon (of width N = 3) interacting with a 1 TW/cm2,
800 nm, 1.5 cycle laser pulse (as in Figure 7). The laser is assumed
to be incident transversely to the monolayer and polarised
linearly along the armchair edge (y-axis). It can be seen that
both the spectra have similar qualitative characteristics—namely,
a high signal for the low photon orders with a rapid fall in
intensity followed by a low and broad plateau that extends to large
orders (over a hundred) of the incident photon energy. They
show a relative insensitivity to the detailed structure of the target
chosen. This is reminiscent of the relative insensitivity also of the
gross structure of the so-called “HHG” spectra of atoms/
molecules. From the quantum point of view, this insensitivity

FIGURE 11 | Emission spectra radiated by the ultrashort charge-
currents generated in the monolayer graphene (upper plot) and in a graphene
ribbon (width, N = 3) (lower plot) by a 1.5 cycles, 800 nm, one TW/cm2 laser
pulse polarised linearly parallel to the armchair edge (y-axis). Notice that
both the spectra exhibit similar characteristics i.e. a rapid fall in intensity within
a few photon orders followed by a low but broad plateau that extends over
many orders (over one hundred).
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of the gross structure of the spectra seen here might be due to the
dominance of the virtual continuum-continuum transitions
between the two band-continua, like that in the ionisation
continuum of atoms/molecules that lie behind the
fundamental HHG emission process [cf. e.g., review (Section
4.7), Becker and Faisal (2005)].

Finally, we consider the possibility of shaping the ultrashort
current of charge carriers in an armchair graphene ribbon by
tailoring the laser pulse. It has been found recently by
Hommelhoff and collaborators that the electron dynamics
in monolayer graphene can be controlled by choosing the
field strength and the phase of the laser field. Thus, they have

FIGURE 12 | Carrier-envelope-phase (or, CEP) dependence of an ultrashort charge-current generated in an armchair ribbon of unit width (N = 1) by an
ultrashort laser pulse (wavelength = 800 nm, peak intensity = 1 GW/cm2, pulse duration = 1.5 cycles, simulation period = 3 cycles). Shown are: charge-current (LHS
column); electric field (middle column); the vector potential (RHS column). Note that CEP = 0 (row 1), CEP = π (row 2), CEP = -π/2 (row 3), and CEP = π/2 (row 4). It
can be seen that the phase of the charge-current pulse is correlated with the CEP of the laser pulse. For example, the charge-current pulse is fully reversed by
changing the CEP = 0 (row 1) to CEP = π (row 2). More generally, the shape or symmetry of the main portion of the current is seen to be similar to the shape or
symmetry of the vector potential of the laser pulse. This suggests the possibility of shaping pulses of charge-carriers to a desired form by tailoring the vector potential
of the laser pulse similarly.
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observed sub-cycle Stuekelberg oscillations and field
dependent change of directions of the ballistic current in
monolayer graphene (Higuchi et al. (2017); Heide et al.
(2020)). Here we have made a brief study of the influence
of the carrier-envelope-phase (CEP) of the laser pulse on the
shape of the charge-current pulse generated in an armchair
ribbon. The results of simulations of the currents (LHS
column) are shown in Figure 12, along with the electric
field (middle column) and the vector potential (RHS
column), for four different carrier-envelope-phases of the
laser pulse: CEP = 0, π, -π/2, and π/2. Comparing the top
two rows of the figure, with CEP = 0 and CEP = π, it can be seen
that the symmetry of the ultrashort current pulse is fully
reversed on changing the CEP of the incident laser pulse
from 0 to π. More generally, the results show that the main
part of the currents for different CEPs in the ribbon follow the
shape of the vector potential of the incident laser pulse. This
suggests the possibility of shaping an ultrashort pulse of
charge-carriers in the ribbon to a desired form by tailoring
the vector potential of the incident laser pulse to mimic
the form.

4 SUMMARY

A quantum mechanical investigation of the interaction of an
ultra-short intense laser pulse with a two dimensional
monolayer graphene and with armchair graphene ribbons
of different widths is made. A TB model is used for the
graphene bands and two simple rules for generating the
system of sub-bands of the armchair graphene ribbons of
any width, N, are given and the band structures are discussed
with illustrations.

Simulations are carried out to investigate, first, the laser pulse
excitation of the CB population, the VB-CB interband
“correlation” (or “coherence”) and the currents generated in
the monolayer graphene and in an armchair graphene ribbon
(width, N = 3). It is found that the population transfer from an
initially fully occupied valence band (VB) to an empty conduction
band (CB), is seen to increase during the pulse and ends with a
finite steady population, that persists after the pulse is over. In
contrast the excitation of the interband correlation or, the VB-CB
“coherence”, shows an oscillatory behaviour both during and
after the passage of the pulse.

A comparison of the currents generated in the monolayer
graphene with the current in an armchair ribbon (of width N =
3) shows that the former is dominated by the intraband
component, that leads to a near steady rest-current with a
mild modulation. The transition to the ribbon exhibits a
remarkable change from the dominance of the intraband
current in the monolayer to the dominance of the oscillatory
interband current in the ribbon. The ribbon appears to reduce
the possible effect of band dispersion in 1D, compared to the
open 2D monolayer. The difference seen could be a combined
result of the quantum “confinement” effect to 1D as well as due

to the difference in the band structure of the ribbon having a
band-gap minimum. However, the transition to the oscillatory
ribbon current does not hold universally for the ribbons of
different widths and, thus, remains open to further
investigations in the future for greater clarity.

A brief comparison of the radiation emitted by the currents
in the monolayer graphene and the ribbon (N = 3) is also made.
They show a gross similarity and a relative insensitivity to the
detailed structure of the targets used. The emission spectra are
found to be virtually continuous in frequency and fall off
rapidly in intensity with the initial photon orders and reach
a low but broad plateau that extends over many (over a
hundred) orders of the incident photon energy. The form of
the spectra are also rather insensitive to the target chosen. This
is reminiscent of the gross structure and the relative
insensitivity to the target chosen also for the well-known
“HHG” spectra of atoms or molecules. From the quantum
point of view, this insensitivity might be due to the
dominance of the virtual continuum-continuum transitions
between the two bands, not unlike the transitions in the
ionisation continuum of atoms and molecules, that govern
the fundamental HHG emission process.

Finally, the possibility of controlling the shape of the ultrashort
current of the charge carriers in an armchair ribbon of unit width
(N = 1) by the incident laser field is briefly studied. Simulations
with different carrier-envelope-phase (CEP) of the incident laser
pulse show, for example, that the symmetry of the current in the
ribbon can be fully reversed by changing the CEP of the laser
pulse from 0 to π. More generally, the result of the simulations
made shows that themain part of the pulse of the charge-carriers
in the ribbon follows the shape of the vector potential of the
incident laser pulse. This suggests the possibility of shaping the
ultrashort pulse of charge carriers in the ribbon to a desired form
by tailoring the vector potential of the laser pulse to mimic
the form.
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