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In this study, we summarize recent advances in the synthesis of magnetic

catalysts utilized for biodiesel production, particularly focusing on the

physicochemical properties, activity, and reusability of magnetic mixed metal

oxides, supported magnetic catalysts, ionic acid-functionalized magnetic

catalysts, heteropolyacid-based magnetic catalysts, and metal–organic

framework-based magnetic catalysts. The prevailing reaction conditions in

the production of biodiesel are also discussed. Lastly, the current limitations

and challenges for future research needs in the magnetic catalyst field are

presented.
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1 Introduction

With the rapidly expanding economy and high energy demand, the over-

consumption of fossil fuels and fossil fuel usage has led to severe effects on the

environment (e.g., global warming), creating wide attention among researchers (Li

et al., 2023; Pan et al., 2022a; Zhang et al., 2022a; Pan et al., 2022b). Thus, seeking a

sustainable energy resource is a high priority. To date, various types of biofuels, such as

biodiesel, bioethanol, and aviation biofuels, have been considered as fossil fuel

replacements. Among them, biodiesel (fatty acid alkyl ester, FAME) has been getting

significant interest as an alternative fuel because of its safety, biodegradability, and

carbon-neutrality (Zhang et al., 2020; Hoang et al., 2021). Currently, biodiesel is

synthesized from free fatty acids (FFAs) and various oils mixed with short-chain

alcohols, using homogeneous, heterogeneous, or enzymatic catalysts to promote the

reaction (Figure 1) (Zhang et al., 2023). However, the homogeneous catalysis system

exhibits numerous disadvantages, such as the fact that homogeneous catalysts (e.g.,

NaOH, KOH, H2SO4, etc.) are non-recyclable and cause pollution (Zhang et al., 2021; Liu

et al., 2022). In contrast, heterogeneous catalysts (e.g., zeolites, heteropolyacids, metal
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oxides, etc.) have attracted growing interest owing to their low

pollution and easy recovery (Woo et al., 2021; Zhang et al., 2022b;

Paiva et al., 2022; Ul Islam et al., 2022). However, high-efficiency

separation of the catalyst from the liquid phase and reduction of

catalyst loss remain challenges. The use of magnetic separation

techniques is an interesting approach to solving these problems

(Chen et al., 2022).

In recent times, magnetic solid acid/base catalysts have been

widely applied for esterification and transesterification reactions

as compared to other heterogeneous catalysts because they are

environmentally friendly and cheap, and their highly magnetic

nature allows efficient separation with an external magnetic field

(Shylesh et al., 2010; Zhang et al., 2014). The present work

reviews recent applications of different types of magnetic

catalysts and their functionalized magnetic composites

employed in biodiesel production, including magnetic mixed

metal oxides, supported magnetic catalysts, ionic acid-

functionalized magnetic catalysts, heteropolyacid-based

magnetic catalysts, and MOF-based magnetic catalysts, among

others. The physicochemical properties, activity, and reusability

of these magnetic catalysts are evaluated and discussed. Lastly, a

brief conclusion and summary on the outlook for designing

magnetic catalysts with high catalytic activity is presented.

2 Magnetic catalysts

In general, Fe-, Co-, and Ni-based catalysts exhibit

permanent magnetism and can be used as magnetic materials;

Fe-based catalysts have been especially widely studied. According

to their characteristics, magnetic catalysts can be roughly

classified into five types, namely, magnetic mixed metal

oxides, supported magnetic catalysts, ionic acid-functionalized

magnetic catalysts, heteropolyacid-based magnetic catalysts, and

MOF-based magnetic catalysts.

2.1 Magnetic mixed metal oxides

Recently, spinel ferrites, MFe2O4 (where M indicates a

transition metal atom of Cu, Zn, Mo, Co, or Mn) have been

widely researched for applications as heterogeneous catalysts due

to their thermal stability and ease of separation by using an

external magnet. Luadthong et al. (2016) investigated the

transesterification of palm oil using a copper ferrite spinel

oxide (CuFe2O4) catalyst. The characterization results revealed

that the major active species of CuFe2O4 were the Cu
2+ and Fe2+.

Optimal reaction conditions of 220°C, 1 g of catalyst, a methanol:

oil molar ratio of 1:18, and a high FAME content of >90% were

determined. A similar study was conducted by Ali et al. (2020), in

which a cuprospinel CuFe2O4 catalyst was used for the

transesterification of waste frying oil with methanol at 60°C,

giving a 90.24% yield. Kinetic results showed that the

transesterification reaction followed pseudo-first-order

kinetics, and the activation energy was found to be 37.64 kJ/

mol. AlKahlaway et al. (2021) prepared ferric molybdate,

Fe2(MoO4)3, nanoparticles for biodiesel synthesis and the

catalytic conversion of oleic acid was 90.5%.

In addition, some magnetic mixed metal oxides including

MoO3/SrFe2O4 (Gonçalves et al., 2021), MnFe2O4/GO (Bai et al.,

2021), MgFe2O4@OA@CRL (Iuliano et al., 2020), NaFeTiO4/

Fe2O3–FeTiO3 (Gutierrez-Lopez et al., 2021), Mg2+-doped

FIGURE 1
Classification of catalysts for biodiesel production.
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ZnFe2O4 (Ashok et al., 2021), and waste chalk/CoFe2O4/K2CO3

(Foroutan et al., 2022) have been explored for their application

largely due to their unique magnetism. Gonçalves et al. (2021)

prepared a magnetic catalyst, MoO3/SrFe2O4, for the

transesterification of waste cooking oil, and results confirmed

the success of MoO3 anchorage of the SrFe2O4 material. The

activity test showed that a biodiesel yield of 95.4% was obtained

in 4 h at 164°C. The MoO3/SrFe2O4 catalyst could be easily

separated by a permanent magnet and showed high stability

with a yield of 84% after five cycles. Bai et al. (2021) investigated

the catalytic performance of a MnFe2O4/graphene oxide catalyst

for biodiesel production from waste edible oil. The MnFe2O4/

graphene oxide catalyst had a high basicity of 3978.6 mmol/g,

and in transesterification reactions, a high biodiesel yield of

96.47% was achieved. Moreover, the physical properties of the

synthetic biodiesel were within the ASTM D6751 and EN

14214 standard range. A K2CO3 modification to the waste

chalk/CoFe2O4 was developed by Foroutan et al. (2022), and

the characterization results showed that the composite catalyst

had a lower surface area due to the introduction of K2CO3. The

highest biodiesel yield of 98.87% was obtained under optimized

conditions, and the activation energy and frequency factor of the

reaction system was found to be 11.8 kJ/mol and 0.78 min−1,

respectively.

Rezania et al. (2021) synthesized a heterogeneous magnetic

MGO@MMO nanocatalyst via the ultra-sonication procedure

for biodiesel production from waste frying oil. From the results, a

high biodiesel yield of 94% was achieved with a 1.5 h reaction at

60°C; the catalyst could be separated and recycled four times,

achieving an 86% biodiesel yield. However, after the eighth cycle,

the biodiesel yield decreased significantly, possibly due to

leaching of the active components or active site blocking. In a

more recent study by Hanif et al. (2022), a magnetic Fe/SnO

nanocatalyst supported on feldspar was synthesized for the

transesterification of various non-edible oils. The magnetic

catalyst exhibited a high catalytic activity with more than 97%

yield for all the tested non-edible oils. A highly active bifunctional

Na–Fe–Ca nanocatalyst was developed by Wang et al. (2022).

The catalytic activity of the magnetic Na–Fe–Ca nanocatalyst in

biodiesel production was evaluated at low temperatures.

Interestingly, with a 500°C calcination temperature, the

catalyst reached a 95.84% biodiesel yield with 16 cycles via

magnetic separation. In conclusion, magnetic mixed metal

oxides have been used successfully as acid/base catalysts or

supports in the catalysis industry, and the design and

composition of cheap, magnetic composite nanocatalysts is a

highly desirable goal in the future.

2.2 Supported magnetic catalysts

Apart from magnetic spinel ferrite catalysts, supported

magnetic acid/base catalysts have also attracted significant

interest for biofuels production in recent years. At present,

Fe3O4 magnetic particles do not commonly exhibit good

catalytic activity, although they are easily separated and

reused. Magnetic Fe3O4 is often used as a carrier, and the

catalytic system is cost-effective and environment-friendly.

Joorasty et al. (2021) prepared NaOH/clinoptilolite–Fe3O4 for

the transesterification reaction of Amygdalus scoparia oil, and the

highest biodiesel yield by the catalyst was 91%. The kinetics of

NaOH/clinoptilolite–Fe3O4-catalyzed transesterification were

also explored, and the activation energy was determined to be

9.21 kJ/mol. Xia et al. (2022) prepared bifunctional Co-doped

Fe2O3–CaO nanocatalysts (Co/Fe2O3–CaO) and studied their

catalytic performance in soybean oil transesterification. It was

reported that the Co/Fe2O3–CaO catalyst had good

ferromagnetism (26.2 emu/g) after the Co doping, and could

be efficiently separated. In another study by Nizam et al. (2022),

magnetic Fe2O3 immobilized on microporous molecular sieves

(Fe2O3/MS) was developed using a plant extract-mediated

method. In the catalytic reaction, the Fe2O3/MS catalyst

exhibited excellent applicability in the esterification,

transesterification, and photodegradation reactions. Mohamed

et al. (2020) and Mohamed and El-Faramawy. (2021) used a

newly developed α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst to

produce biodiesel from waste oil. The α-Fe2O3/AlOOH(γ-
Al2O3) catalyst presented the highest FAME yield and

recyclability due to its large surface area of 323.3 m2/g, high

acidity of 0.45 mmol/g, and exposed active site planes.

Furthermore, thermal analyses showed that the catalytic

reaction system was endothermic.

In a study conducted by Changmai et al. (2021a), a

recoverable Fe3O4@SiO2–SO3H core@shell magnetic catalyst

was successfully prepared by a stepwise co-precipitation,

coating, and functionalization method. The obtained magnetic

Fe3O4@SiO2-SO3H had a magnetic saturation of 30.94 emu/g, a

relatively large surface area of 32.88 m2/g, and a high acidity of

0.76 mmol/g. The Fe3O4@SiO2–SO3H catalyst achieved a high

conversion of Jatropha curcas oil of 98 ± 1% under optimal

reaction conditions. Mohammadpour and Safaei (2022)

developed a novel sulfonated carbon-coated magnetic catalyst

(Fe3O4@C@OSO3H), which was used for the Pechmann

condensation of phenol derivatives and β-ketoesters. The

resulting yield values were as high as 98%, and the catalyst

could be reused fifteen times with no significant loss in

activity. Table 1 shows a summary of supported magnetic

catalysts utilized for the synthesis of biodiesel.

2.3 Magnetic catalysts functionalized with
ionic liquids (ILs)

Recently, due to their highly tunable nature, low volatility,

and strong chemical and thermal stability, ionic liquids (ILs)

have been widely reported for use in the catalysis field (Sharma
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TABLE 1 Recent findings on green biodiesel production using supported magnetic catalysts.

Entry Feedstock/oil Catalyst Conditions (time,
temperature, catalyst

amount, and molar ratio
of acid or oil to alcohol

Yield (Y/%) or
conversion(C/

%)

Times
catalyst
reused;
yield

Ea
(KJ/
mol)

Reference

1 Jatropha oil +
methanol

CaSO4/Fe2O3–SiO2 4 h, 120°C, 12%, 1:9 Y = 94% 9 cycles;
Y = 83%

\ Teo et al. (2019)

2 Rapeseed oil +
methanol

Fe3O4-CeO2-25K 2 h, 65°C, 4.5%, 1:7 Y = 96.13% 5 cycles; Y =
80.94%

\ Ambat et al. (2019)

3 Amygdalus
scoparia oil +
methanol

NaOH/
clinoptilolite–Fe3O4

2.5 h, 65°C, 0.5%, 1:10.43 Y = 91% 4 cycles;
Y = 82%

9.21 Joorasty et al.
(2021)

4 Fat + methanol Fe3O4/Cs2O 5 h, 65°C, 7%, 1:21 Y = 97.1% 9 cycles;
Y = 78%

43.8 Booramurthy et al.
(2020)

5 Pongamia pinnata
raw oil +
methanol

CES-Fe3O4 2 h, 65°C, 2%, 1:12 Y = 98% 7 cycles;
Y = 98%

\ Chingakham et al.
(2023)

6 Chlorella vulgaris
oil + ethanol

KF/KOH-Fe3O4 6 h, 25°C, 1.5%, 1:6 Y = 80% Not reported \ Farrokheh et al.
(2021)

7 Used cooking oil
+ methanol

CaO-ZSM-5/Fe3O4 4 h, 65°C, 3%, 1:5 C = 83% 4 cycles;
Y = 85%

\ Lani and Nagi,
(2022)

8 Soybean oil +
methanol

Co/Fe2O3-CaO 2.5 h, 70°C, 3%, 1:16 Y = 98.2% 5 cycles;
Y = 78.8%

\ Xia et al. (2022)

9 Waste cooking oil
+ methanol

KOH/Fe3O4@
MCM-41

3 h, 65°C, 8%, 1:40 Y = 93.95% 3 cycles;
C>80%

115.79 Khakestarian et al.
(2022)

10 Soybean oil +
methanol

Na2CO3·H2O@BFD 2 h, 65°C, 7%, 1:15 Y = 100.0% 12 cycles; Y =
92.56%

\ Wang et al.
(2022b)

11 Sunflower oil +
methanol

Fe2O3/MS 4 h, 70°C, 0.03 g, 1:10(volume) Y = 84.5% Not reported \ Nizam et al. (2022)

12 Glyceryl trioleate
+ methanol

Sulfamic acid-
functionalized Fe/

Fe3O4

20 h, 100°C, —, — C = 100% 5 cycles;
C = 95%

\ Wang et al. (2015)

13 Adipic acid +
n-butanol

Sulfonated magnetic
SiO2

4 h, 105°C, 2.95%, 1:3 C = 99% 6 cycles; C =
85.61%

\ Ke et al. (2019)

14 Acetic acid +
methanol

Fe2O3–MCM-48–SO4 4.5 h, 60°C, 15 g/L, 1:10 C = 90% 5 cycles;
C = 44.4%

29.077 Sharma et al.
(2019)

15 Waste cooking oil
+ methanol

CSPA@Fe3O4 3 h, 65°C, 6%, 1:6 Y = 98% 9 cycles;
Y = 91%

34.41 Changmai et al.
(2021b)

16 Oleic acid +
methanol

EFB-MCC/γ-Fe2O3 2 h, 60°C, 9%, 1:12 Y = 92.1% 5 cycles;
Y = 77.6%

\ Krishnan et al.
(2022)

17 Yeast oil +
methanol

Fe3O4@SiO2-CHO 10 h, 55°C, 2.5 g, — Y = 98.12% 10 cycles;
Y = 90%

\ Cao et al. (2021)

18 Cottonseed oil +
methanol

α-Fe2O3/AlOOH(γ-
Al2O3)

3 h, 60°C, 3%, 1:6 Y = 100% 3 cycles;
Y = 95%

57.4 Mohamed et al.
(2020)

19 Waste cooking oil
+ methanol

α-Fe2O3/AlOOH 3 h, 60°C, 3%, 1:6 Y = 95% 4 cycles;
Y = 91.3%

51.54 Mohamed and
El-Faramawy,

(2021)

20 Soybean oil +
methanol

Fe3O4-poly(GMA-co-
MAA)@ lipase

60 h, 40°C, 20%, 1:4 Y = 92.8% 5 cycles;
Y = 79.4%

\ Xie and Huang,
(2020)

21 Soybean oil +
methanol

Fe3O4-poly(AGE-
DVB-GMA)

8 h, 65°C, 7%, 1:20 Y = 92.6% 4 cycles; no
significant
decrease

\ Xie et al. (2021a)

(Continued on following page)
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et al., 2022). Among these, many IL-functionalized magnetic

catalysts have been tested for the production of biodiesel because

of their unique properties and commercial availability. Fauzi

et al. (2014) used oleic acid as raw material and 1-butyl-3-

methylimidazolium tetrachloroferrate ([BMIM][FeCl4]) as a

magnetic catalyst to prepare biodiesel by esterification, with a

yield of methyl oleate of 83.4% under optimum conditions. In

addition, the [BMIM][FeCl4] catalyst was reused for six runs with

little loss; the activation energy of the esterification system was

17.97 kJ/mol.

A novel IL-functionalized magnetic catalyst was fabricated

by covalent bonding of [SO3H-PIM-TMSP]HSO4 ILs onto

mesoporous silica-modified Fe3O4 nanoparticles (FSS–IL)

(Wu et al., 2014; Wan et al., 2015). The characterization

results revealed that the FSS–IL catalyst possessed a

uniform core–shell structure and high specific surface area.

In the process of preparing biodiesel, the conversion was

93.5% after 4 h using oleic acid as a raw material. More

importantly, this FSS–IL catalytic system remained active

for six cycles. In another study, magnetically hydrophobic

acidic polymeric ionic liquids (FnmS-PILs) were prepared and

exhibited good activity and reusability (Zhang et al., 2018). Xie

and Wang. (2020a) prepared a magnetic Fe3O4/SiO2-

supported polymeric sulfonated ionic liquid (Fe3O4/SiO2-

PIL) for simultaneous transesterification and esterification

of low-cost oils, and the highest conversion obtained under

optimal conditions was 93.3%. Additionally, the reusability

study showed that the Fe3O4/SiO2-PIL could be recycled and

reused five times. The higher activity and excellent reusability

were attributed to the polymeric acidic ILs and porous

magnetic nanoparticles. An immobilized dual acidic-ionic

liquid on core–shell-structured magnetic silica was also

prepared, and the as-prepared magnetic acid catalyst

exhibited a large surface acidity of 3.93 meq H+/g, a strong

magnetism of 27.5 emu/g, and achieved the highest

conversion of biodiesel at 94.2%. The catalyst was reused

for five runs, and the conversion still reached 86% (Xie

et al., 2021).

Similar catalysts [NiFe2O4@BMSI]Br, Fe3O4@GO@PBIL,

Fe3O4@SiO2@[C4mim]HSO4, Fe3O4@SiO2@PIL, and

[BSO3HMIm][HSO4]@IRMOF-3 were also studied (Ding

et al., 2021; Naushad et al., 2021; Yu et al., 2021; Zhao et al.,

2021; Cheng et al., 2022). Among them, the magnetic [NiFe2O4@

BMSI]Br catalyst was synthesized by an ion-exchange process,

and the resulting catalyst had a BET surface area of 89.21 m2/g.

Moreover, the [NiFe2O4@BMSI]Br catalyst attained a maximum

yield of 86.4% for the transesterification of palm oil, and the

catalytic activity was retained up to six cycles without obvious

loss of yield (Naushad et al., 2021). Based on recent literature

projections, ILs are expected to develop as potential acid

materials for the synthesis of functionalized composite

magnetic catalysts in the future.

2.4 Magnetic catalysts based on
heteropolyacids

Heteropolyacids are inorganic compounds with a Keggin

structure that acts as a strong Brønsted acid. Heteropolyacids

have a low surface area and easily dissolve in polar solvents, so

researchers bonded them tomagnetic supports to overcome these

problems. Wu et al. (2016a) investigated the application of

magnetic material grafted onto a poly(phosphotungstate)-

based acidic ionic liquid as a heterogeneous catalyst for the

esterification of oleic acid. Under optimal conditions, the

conversion of oleic acid reached 93.4%. More specifically, the

catalyst exhibited good reusability after six runs using an external

magnetic field.

As reported by Helmi et al. (2021), phosphomolybdic acid

was supported on clinoptilolite–Fe3O4, and the prepared catalyst

showed excellent activity (80% yield in 8 h at 75°C) and

reusability in the production of biodiesel from Salvia

mirzayanii oil. The HPA/clinoptilolite–Fe3O4 catalyst was able

to recycle up to four times with minimal loss in activity. A

magnetic heteropolyanion-based ionic liquid (MNP@HPAIL)

was synthesized by Dadhania et al. (2021), and was evaluated

TABLE 1 (Continued) Recent findings on green biodiesel production using supported magnetic catalysts.

Entry Feedstock/oil Catalyst Conditions (time,
temperature, catalyst

amount, and molar ratio
of acid or oil to alcohol

Yield (Y/%) or
conversion(C/

%)

Times
catalyst
reused;
yield

Ea
(KJ/
mol)

Reference

22 Jatropha oil +
methanol

Fe3O4@SiO2–SO3H 3.5 h, 80°C, 8%, 1:9 C = 98% 9 cycles;
C = 81%

37.0 Changmai, et al.
(2021a)

23 Oleic acid +
methanol

SC-F-Plg-3 4 h, 65°C, 0.02 g, 1:55 C = 88.69% 5 cycles; C =
70.31%

\ Wu et al. (2022)

24 Cooking oil +
methanol

Fe3O4@SiO2-APTES-
LAE-MoVIO2

0.75 h, RT, 0.04 g, 1:3 C = 99% 12 cycles;
C = 92%

\ Mohammadpour
and Safaei, (2022)
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for the esterification of oleic acid under ultrasonic irradiation.

The maximum oleic acid conversion of 58% was reached, and the

catalyst could be reused for six consecutive cycles.

On the same note, Zhang et al. (2021) immobilized a 12-

tungstophosphoric acid (HPW)-based magnetic catalyst

(Fe3O4@SBA-15@HPW and Fe3O4@SBA-15-NH2-HPW) for

the production of biodiesel from palm oil with methanol. The

synthesized magnetic catalysts have a high content of Brønsted

acid sites due to the induction of HPW. In particular, the Fe3O4@

SBA-15-NH2-HPW exhibited a high biodiesel yield of 91% under

optimal reaction conditions, and also exhibited high reusability.

Ghasemzadeh et al. (2022) adapted a cotton/Fe3O4@SiO2@

H3PW12O40 magnetic nanocomposite to catalyze the

transesterification of sunflower oil. The catalyst had an

excellent magnetism of 45 emu/g and demonstrated a high

FAME yield of 95.3% under optimum conditions. After four

cycles of transesterification, the FAME yield was still relatively

high at 85.5%. In addition, the physical properties of the synthetic

biodiesel meet the ASTM and EU standards. According to the

reported literature, heteropolyacids grafted onto magnetic

supports can be an effective solution to overcome the loss of

heteropolyacids.

2.5 MOF-based magnetic catalysts

Recently, metal–organic frameworks (MOFs), as a newly

emergent type of stable and tunable material, have become

promising magnetic catalysts and supports, and MOF

derivatives have been used for heterogeneous catalysis. Wu

et al. (2016b) investigated the ability of the Fe3O4@NH2-MIL-

88B(Fe) catalyst to perform the esterification of oleic acid with

ethanol. The Fe3O4@NH2-MIL-88B(Fe) catalyst had an acidity of

1.76 mmol/g and achieved a high yield of 93.2% at 90°C.

Moreover, the Fe3O4@NH2-MIL-88B(Fe) catalyst could be

recycled six times without significant loss of activity.

Xie’s group (Xie and Wan, 2018; Xie and Huang, 2019; Xie

and Wang, 2020; Xie et al., 2021b) has studied biodiesel

production from soybean oil and low-quality oils using

magnetic Fe3O4@HKUST-1-ABILs, Fe3O4@MIL-100(Fe)/

Candida rugosa lipase, CoFe2O4/MIL-88B(Fe)-NH2/(Py-Ps)

PMo, and H6PV3MoW8O40/Fe3O4/ZIF-8 catalysts. Their

results revealed that all magnetic catalysts exhibited good

catalytic performance and excellent reusability. Thus, these

MOF-based magnetic catalysts comprise an excellent potential

alternative for processing low-quality oils into biofuels. In

another study by Zhou’s group (Zhou et al., 2019; Zhou et al.,

2023), a MIL-100(Fe) was embedded in magnetic Fe3O4

nanoparticles (Fe3O4/MIL-100(Fe), and the Fe3O4/MIL-

100(Fe) composite exhibited unexpectedly high catalytic

activity with a rosin conversion of 94.8% at 240°C.

Furthermore, the Fe3O4/MIL-100(Fe) composite showed good

stability and recyclability over six cycles. An annealed Fe3O4/

MOF-5 was also synthesized and used to catalyze rosin

esterification with glycerol. The highest conversion of 94.1%

was attained in 2.5 h at 240°C, and the annealed catalyst

showed excellent reusability.

A novel TiO2-decorated magnetic ZIF-8 nanocomposite

(Fe3O4@ZIF-8/TiO2) was synthesized by Sabzevar et al.

(2021). The as-prepared nanocomposite demonstrated

excellent performance in the esterification of oleic acid

(92.25% yield), which was mainly attributed to its acidic

properties and large surface area. After five cycles, the yield of

biodiesel was still 77.22%. Abdelmigeed et al. (2021a),

Abdelmigeed et al. (2021b) prepared NaOH/magnetized ZIF-8

catalysts for the production of high-quality biodiesel from a

blend of sunflower and soybean oil with ethanol. The

transesterification reaction with the blended oil produced 70%

biodiesel in 1.5 h at 75°C. The ethanolysis reaction followed a

pseudo-second-order kinetic model, and the activation energy

was calculated as 77.27 kJ/mol.

In another important area of catalyst research, MOFs were

pyrolized at various temperatures to act as self-sacrificial templates

for the synthesis of structured nanoporous metal oxides (Reddy et al.,

2020). Li et al. (2019), Li et al. (2020), Li et al. (2021) reported on a

series of magnetic catalysts based on MOF derivatives (MM–SrO,

magnetic CaO-based catalyst, carbonized MIL-100(Fe) supporting

ammonium sulfate), and the physical, chemical, and thermal

properties of the MOF-derived magnetic catalysts were evaluated.

The researchers discovered that these catalysts exhibited strong

magnetism and excellent catalytic activity and could be easily

separated by an external magnetic field after each cycle. In another

study, a bifunctional magnetic catalyst with various coordination

states of Co and non-coordinated N sites was developed by Guo et al.

(2022). The prepared bifunctional magnetic catalyst (550–30) was

evaluated for biodiesel production from microalgal lipids. It had a

high conversion efficiency of 96.0%, owing to the generated structural

defects that formed a mesopore-dominated structure in the

bifunctional magnetic catalyst. Also, the catalyst could be

magnetically separated and reused for six cycles with a conversion

efficiency of 89.7%.

3 Summary and outlook

In the field of catalysis, magnetic catalysts promote catalytic

reactions efficiently and their strong magnetic properties allow

them to be easily reused, which make magnetic catalysts more

cost-effective and efficient when used in industrial catalysis. The

current mini-review highlights recent applications of magnetic

catalysts and their functionalized magnetic materials utilized for

biodiesel production. Although remarkable progress has been

achieved in the area of magnetic catalyst research, there are still

some limitations that need to be overcome by continuing design

improvements. The catalytic mechanisms and deactivation

processes are not well understood, supported magnetic
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catalysts show weak interactions between active ingredients and

magnetic supports, and the complex synthesis processes for some

magnetic catalysts need to be simplified. Thus, future

investigation into the preparation methods, performance,

mechanisms, and economics of the magnetic catalyst is

essential to correct the present issues. In light of the current

evidence, however, we strongly believe that the integrated

development of novel magnetic catalysts will play a key role

in further developing a cost-effective biorefinery industry.
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