
The strategic applications of
natural polymer nanocomposites in
food packaging and agriculture:
Chances, challenges, and
consumers’ perception

Magdalena Wypij1, Joanna Trzcińska-Wencel1, Patrycja Golińska1*,
Graciela Dolores Avila-Quezada2*, Avinash P. Ingle3 and
Mahendra Rai1,4

1Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland, 2Facultad de
Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Chihuahua, Mexico, 3Department of
Agricultural Botany, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India,
4Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University,
Amravati, India

Natural polymer-based nanocomposites have received significant attention in both
scientific and industrial research in recent years. They can help to eliminate the
consequences of application of petroleum-derived polymeric materials and related
environmental concerns. Such nanocomposites consist of natural biopolymers (e.g.,
chitosan, starch, cellulose, alginate and many more) derived from plants, microbes
and animals that are abundantly available in nature, biodegradable and thus eco-
friendly, and can be used for developing nanocomposites for agriculture and food
industry applications. Biopolymer-based nanocomposites can act as slow-release
nanocarriers for delivering agrochemicals (fertilizers/nutrients) or pesticides to crop
plants to increase yields. Similarly, biopolymer-based nanofilms or hydrogels may be
used as direct product coating to extend product shelf life or improve seed
germination or protection from pathogens and pests. Biopolymers have huge
potential in food-packaging. However, their packaging properties, such as
mechanical strength or gas, water or microbial barriers can be remarkably
improved when combined with nanofillers such as nanoparticles. This article
provides an overview of the strategic applications of natural polymer
nanocomposites in food and agriculture as nanocarriers of active compounds,
polymer-based hydrogels, nanocoatings and nanofilms. However, the risk,
challenges, chances, and consumers’ perceptions of nanotechnology applications
in agriculture and food production and packaging have been also discussed.
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1 Introduction

The world population is estimated to be eight billion in 2024 and 9.7 billion by 2050
(Godfray, 2014; Lahlali et al., 2022). According to another estimation globally, 33% of the food
produced is deteriorated or wasted (Motelica et al., 2020). The pathogens and pests are
responsible for the deterioration of food crops, among others. This loss can be saved by using
protection methods. The surge in population and food deterioration will demand additional
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food supply, and therefore food security is an important issue. The
traditional way of food protection is not enough, we need to search for
alternative technologies such as nanotechnology.

In the present scenario, nanotechnology has revolutionized all the
fields of life including medicine, agriculture, energy, electronics, etc.
The basis of this technology is nanomaterials that are in the range of
1–100 nm (Rai et al., 2021a). Natural polymers also known as
biopolymers are abundantly available in nature, and are
biodegradable and thus eco-friendly (Ashfaq et al., 2019; Karimi
Sani et al., 2023). These include but are not limited to starch,
cellulose, chitosan, and alginate resulting from plants, animals or
microbes including fungi, algae, and bacteria. Other forms of natural
polymer are nucleic acids including DNA and RNA. Silk, wool, and
honey are also natural polymers that are used in daily life (Ganesan,
2017; Chaudhary et al., 2020; Panchal and Vasava, 2022).

Biopolymers (e.g., chitosan, alginate, fibrin, and hyaluronic acid)
play a remarkable role in the absorption of water (biopolymer-based
hydrogels, super absorbent) in soil (Tomadoni et al., 2019) and can
also be used as slow-releasing nanocarriers for the delivery of
agrochemicals to plants (fertilizers/nutrients) and also for treating
pathogens (fungicides, bactericides, virucides) and pests (pesticides)
(Sikder et al., 2021). The release of agrochemicals is slowed down
drastically as a consequence, and the leaching of the agrochemicals
into the soil and aquatic ecosystem minimizes. The polymer-based
hydrogels can be used as absorbing agents, slow release agents for
agrochemicals and seed-coating materials for easy germination by
keeping away seeds from pathogens and pests (Tomadoni et al., 2019).

Similarly, natural polymers such as proteins, polysaccharides,
lipids, and their combinations or composites with nanoparticles
(e.g., ZrO2) can be used as biodegradable and/or edible films in
food packaging that can be alternatives to non-biodegradable
packaging materials (Karimi Sani et al., 2023).

Although the use of natural polymers in e.g., food industry, food
packaging, and agriculture is beneficial from eco-friendly point of view,
there are some inherent limitations resulting from their properties, such
as poor stability, mechanical strength, and rapid degradation, that need
to be improved to produce a favorable product for these sectors. These
challenges can be overcome when natural polymers are used as
encapsulating agents for the nanoparticles such as AgNPs, AuNPs,
CuNPs, SiNPs, MgNPs, etc. (Karimi Sani et al., 2021; Reddy et al., 2021;
Taherimehr et al., 2021; Rofeal et al., 2022). It is hoped that natural
polymers and their composites will significantly benefit food and
agriculture by ensuring food security and sustainability (Sikder et al.,
2021; Rofeal et al., 2022).

In this review, we have discussed the role of eco-friendly natural
polymer nanocomposites in food and agriculture. In addition, we have
analyzed the opportunities, challenges, and risks (toxicity) concerning
the use of nanomaterials in food and agriculture and also the public
perception of such applications that are essentially required for
acceptance of new technology.

2 Polymer-nanocomposites

The polymer nanocomposite is considered to multiphase hybrid
solid material that contains one of the phases as nanoscale fillers that
have at least one dimension in less than 100 nm distributed within a
polymer matrix (Ray and Bousmina, 2005). Polymer nanocomposites
are composed of the polymer matrix, nanofillers, plasticizers, and

compatibilizers (Winey and Vaia 2007; Bustamante-Torres et al.,
2021) (Figure 1).

The polymers used to preparation of nanocomposites could be
classified as natural and chemically synthesized biodegradable
polymers; microbial polyesters and also non-biodegradable
polymers (Clarinval and Halleux, 2005; Bordes et al., 2009), as
shown in Figure 1.

2.1 Polymer component of the
nanocomposites

Biodegradable biopolymers are renewable resources of plant,
animal, and microbiological origin (Pawar and Purwar, 2013) and
obtained chemically with the use of natural starting materials such as
fats or oils, sugars, and starch (Pawar and Purwar, 2013). These
polymers can be degraded by microbes (Singh and Saini. 2014).
The natural easy biodegradable polymeric materials include
proteins (soy, wheat, corn, gluten, whey, collagen, gelatin, and
albumin), polysaccharides (chitosan, alginates, starch, cellulose, and
chitin), nucleic acids and lipids (bees, wax, and free fatty acids),
carbohydrates (pullulan and curdlan), polyhydroxy butyrate (PHB),
polyhydroxyalkanoic acids (Steinbüchel 2005; Mathew and
Radhakrishnan, 2019; Chaudhary et al., 2020; Panchal and Vasava,
2022) while these slowly biodegradable compounds belong to
polyphenols and polyisoprenoids that are represented by lignin and
poly (cis-1,4-isoprene), respectively (Steinbüchel 2005).

The cellulosic and hemicellulosic, starch, lignin which are
abundantly available from waste-derived organic matter (e.g.,
wood, potatoes, maize, and wheat), are examples of low-cost
substrates for the production of biopolymers. Extraction
technologies (Figure 2) offer several advantages, such as cost
efficiency, low energy requirements, and non-toxic waste, but there
are some challenges, such as low efficiency and prolonged processing
time (Jha and Kumar, 2019; Karimi Sani et al., 2023). For instance, the
degradation of hemicellulose and transformation of lignin by the
steam explosion is a low-cost process, but additional steps, such as
ethanol extraction and purification, are required for complete biomass
fractionation (Hongzhang and Liying, 2007).

The synthetic biodegradable biopolymers include poly (lactic acid)
(PLA), poly-(glycolic acid) (PGA), poly (lactic-co-glycolic acid) (PLGA),
poly (butylene succinate) (PBA), polycaprolactone (PCL), poly (ethylene
adipate) (PEA), poly (p-dioxanone) (PDS), and their copolymers
(Rodrigues and Vieira, 2019; Panchal and Vasava, 2022). In turn,
non-biodegradable synthetic polymers can be categorized into high-
density (HDPE) and low-density polyethylene (LDPE) including e.g.,
ethylene vinyl acetate (EVA), polyethylene terephthalate (PET),
polyethylene (PE), polypropylene (PP) and polystyrene (PS) (Mathew
and Radhskrishnan, 2019). In fact, non-degradable polymers have created
several environmental problems and therefore biodegradable polymers
are gaining ground (Clarinval andHalleux, 2005; Karimi Sani et al., 2023).
For instance, the recently debated topic ofmicro- and nano-plastics which
are responsible for adverse effects on soil, microbes, plants, animals, and
humans. They can enter into the food chain and cause deleterious effects
on the ecosystem. Such plastics interact with potentially toxic elements
and cause toxicity to the soil (Allouzi et al., 2021).

The biodegradability of bio-based polymers depends on chemical
and crystal structures glass transition temperature, hydrophilicity/
hydrophobicity, mechanical properties, melting point and molecular
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weight (Saini, 2017; Sani et al., 2019; Vinod et al., 2020). The natural
origin polymers such as those from fruits and vegetables degrade faster
than synthetic polymers under environmental conditions by
microorganisms decomposition and enzyme activity, as exemplified
by the study of Zhao et al. (2019) who found that, in soil, cellulosic
films made from durian rind were more biodegradable than
cellophane for 4 weeks. The higher molecular weight, crystallinity
or melting temperature, the lower biodegradability of the polymer.
Similarly, the branched-chain polymers degrade slower than non-
branched ones (Saini, 2017; Ganapathy et al., 2019; Karimi Sani et al.,
2023). Moreover, at temperatures above the glass transition
temperature, the polymer is soft and rubbery and the polymer film

becomes highly permeable to gases. In turn, low temperatures bring
polymers glassy and hard, and their films are less permeable to gases
(Pirsa et al., 2022; Karimi Sani et al., 2023).

It is worth noting that the use of biopolymers in food products
require Generally Recognized as Safe (GRAS) status approved by the
United States Food and Drug Administration (FDA) (Moradali and
Rehm, 2020). The biomaterials used should be non-toxic, safe for
long-term use, non-allergenic, endotoxin-free, and derived from non-
pathogenic strains of microorganisms. Well-studied edible natural
biopolymers include, for example, polysaccharides (chitosan and
alginate), proteins (isolated from soy and whey, gelatin, zein), and
carbohydrates (pullulan) (Kraśniewska et al., 2017; Wang et al., 2022).

FIGURE 1
Polymer-nanocomposite structures. PA, Polyamide/Nylon; PBS, Polybutylene succinate; PCL, Polycaprolactone; PET, Polyethylene terephthalate; PGA,
Polyglycolic Acid; PHAs, Polyhydroxyalkanoates; PHB, Polyhydroxybutyrate; PHBV, Poly (3-hydroxybutyrate-co-3-hydroxyvalerate); PLA, Polylactic acid; PU,
Polyurethane; PVOH, Polyvinyl Alcohol.

FIGURE 2
Illustrative processes for extracting substrates for biopolymer synthesis from food industry waste.
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2.2 Properties of biopolymer-based
nanocomposites

A significantly improved alternative to conventionally used
polymers is nanocomposites, i.e., biopolymers reinforced by
nanofillers (Mathew and Radhakrishnan, 2019). Many organic and
inorganic materials such as silica NPs, carbon nanotubes (CNTs),
nanosheets, graphene, silver, copper, zinc, titanium dioxide, copper
oxide, zinc oxide, zirconium oxide nanoparticles, cellulose nanofibers,
starch nanocrystals, chitosan, and chitin whiskers, clay nanomaterials
(montmorillonite, kaolinite, halloysite, saponite, hectorite, and
laponite) find application as fillers for improving polymer
properties (Albdiry and Yousif, 2019; Lin et al., 2019; Olivera et al.,
2019; Karimi Sani et al., 2021).

Properties of biopolymer-based nanocomposites stem from their
controlled design, ordered structure, and incorporation of
multifunctional nanocomponents. The desired properties are
determined by their intended application and are acquired by
optimization of the synthesis process (Camargo et al., 2009; Karimi
Sani et al., 2023). Basically, nanocomposite systems are made of
polymer matrix and incorporated nanosized components, as
mentioned earlier. Among nanofillers are those in the form of
particles, crystals, rods, whiskers, fibres, tubes or nanogels, and
nanoemulsions, which are encapsulated into or deposited on the
surface of the polymeric matrix (Priyadarshi et al., 2021).
Techniques employed for evaluating nanocomposite characteristics
such as structure, surface properties and morphology, crystallinity,
composition or stability include X-ray diffraction analysis, Fourier
Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis
(TGA), atomic force (AFM) or electron microscopic observations
(TEM/SEM), etc. (Vasile, 2018). For instance, analysis of the structures
of the AgNPs and chitosan nanofibers nanocomposites synthesized in
situ (BP/AgP) or ex situ (BP/AgNP) showed surface and internally
deposited AgNPs, respectively. In situ synthesis resulted in formation
of ultra-small AgNPs (5 nm) with much higher homogeneity in size
and narrow size distribution without agglomeration of AgNPs
compared to ex situ, as confirmed by XRD and small angle X-ray
scattering (SAXS) techniques, and SEM observations (Zienkiewicz-
Strzała and Deryło-Marczewska, 2020). Leonardi et al. (2021)
synthesized nanocomposite (with size 309 ± 56 nm) by CuONPs
encapsulation in a biopolymeric (chitosan and sodium alginate)
shell to slowly release Cu. Results from TGA confirmed 30% metal
contribution to the fabricated nanoformula, while FTIR analysis
showed that incorporation of CuONPs was related to the presence
of amine (–NH2) and hydroxyl (–OH) groups in the polyelectrolyte
complexes (PEC) formed from alginate and chitosan. The results from
ICP-OES analysis demonstrated that encapsulation of CuONPs with
PEC allowed slow release of CuONPs extended to 22 days compared to
bare CuONPs. In study reported by Tang et al. (2018) improved water
resistance of alginate film was observed after addition of TiO2NPs and
AuNPs by water contact angle test. Otherwise, the incorporation of
cellulose nanofibers (CNFs) into glycerol plasticized starch-based
polymer improved its thermal stability and reduced water vapor
capacity. These resulted from high energy of chemical bonds
formed between polymeric matrix and cellulose nanofibers as well
as highly porous structure filler (CNFs), which increased the tortuosity
of matrix and crystallinity of nanocomposite (Ahuja et al., 2021).
Karimi Sani et al. (2021) reported that addition of zirconium oxide
nanoparticles (ZrO2NPs) into potato starch/apple peel pectin-based

films decreased its moisture content. The higher concentration of the
nanoparticles the lower water vapor permeability of the films was
observed. Moreover, these authors also modified composite films with
microencapsulated Zataria multiflora essential oil that together with
ZrO2NPs greatly increased the antioxidant properties, melting point
and glass temperature of the film. The presence of essential oil reduced
the crystal structure of the film while both components created
porosity in the film structure. The optimum active films showed
increased shelf life of the quail meat.

The development of polymer nanocomposites show more benefits
and different mechanical, thermal, optical, and physico-chemical
properties to pure polymers that can be used for variable
applications (Duncan, 2011; Mathew and Radhakrishnan, 2019;
Rahim et al., 2020) and also offers great functionality (Kausar,
2020; Karimi Sani et al., 2021).

3 Eco-friendly polymer-based delivery of
agrochemicals: Minimal use with
maximum efficacy

A current challenge in agriculture is to obtain more food
production for a growing world population in less per capita land
surface. For this, the use of fertilizers and other agrochemicals
manages to increase the volume of agricultural products, however,
they have negative environmental implications. For instance, soil
nitrogen is lost by volatilization, this loss can reach 70%. Even a
large proportion of the applied urea is lost by volatilization, leaching,
or by incorporation into the soil (Avila-Quezada et al., 2022).
Furthermore, some micronutrients are not available to plants
(Madrid-Delgado et al., 2021) mainly in calcareous soil (Olivas-
Tarango et al., 2021). For this reason, it is essential to have new
nanotechnology-based fertilizers on the market. Moreover, pesticides
are also largely lost from the field to other non-target sites due to
weather factors (Materu et al., 2021) (Figure 3).

Nanomaterials (NM) are promising for use in agriculture because
they have advantages, among the main ones is the low amount of
product applied, remain for the desired time in the environment thus
the active ingredients can be dosed and therefore control the pest or
pathogen (Singh et al., 2020).

To increase the availability of nutrients for plants or the active
ingredients against pathogens in sustainable agriculture, controlled
release systems are the most viable option, for freeing themselves in a
slower, sustained, and more directed way (Kamaly et al., 2016).

The nanomaterials designed for controlled release are the current
trend in sustainable agriculture due to its long shelf life, in addition to the
active ingredient is transferred by regulated permeation to a target site, for
instance, nutrients are released as ions soluble in the soil (Shi et al., 2014).

The nanonutrients are delivered directly in an emulsion with the
nanoelement, administration of the encapsulated nanoelement
designed for slow controlled release or through complex
nanocapsules incorporated in the matrix of an organic polymer
that serves as a vehicle (de Olivera et al., 2019). The success of
nanoencapsulated fertilizers and pesticides is the slow release and
protection of the active ingredient with a hydrophilic coating to absorb
water, swell, dissolve and release the active ingredients. The slow
release is related to the stability of the coating nanocomposites
(nanocapsules, nanospheres, micelles, and nanogels) (Sinha et al.,
2019; Fertahi et al., 2021).
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Biopolymers have agricultural applications because they are
biodegradable, biocompatible, bioactive, and hydrophilic. Natural
biopolymers of plant, animal and microbial origin are excellent
options to replace synthetic agrochemicals. Moreover, biopolymers
by their origin are innocuous, besides, a polymeric formulation of
bioactive agents is relatively simple to achieve (Rahim et al., 2020).
Polymeric nanoparticles allow bioactive substances to be encapsulated
and protect them from degradation by external factors such as the
weather (Joy et al., 2022). Agricultural polysaccharide hydrogels as
carriers for controlled release nutrients, reduce the amount of fertilizer
applied, as well as providing easy diffusion from the root to the entire
plant (Fertahi et al., 2021).

Moreover, polysaccharide-based hydrogels can be incorporated with
other synthetic polymers to produce valuable polysaccharide materials
which serve as fertilizer carriers (Ghobashy, 2020). Moreover, the
combination of biopolymer with SiO2, which is an inert material, has
many nanotechnological applications, such as the administration and
nanoencapsulation of active ingredients. Holed and porous SiO2

nanoparticles allow the loading of molecules of interest as active
ingredients within the nanolayer (Torabi and Mohammadi, 2013).

Due to all these advantages offered by biopolymers for the delivery
of agrochemicals, it is concluded that they currently offer maximum
efficiency with minimal use.

Nanocapsules, nanospheres, micelles, nanogels, and nanofibers are
the most common polymer-based nanomaterials delivering active
ingredients in agriculture (Sun et al., 2020).

3.1 Biopolymer as nanocarrier of
nanofertilizers and micronutrients

Biopolymers such as alginate, cellulose, chitin or chitosan,
hemicellulose, lignin, polypeptides, and polyesters, used as
nanocarriers to encapsulate nutrients and avoid dissolution and
oxidation, are an eco-friendly option due to their natural origin

and therefore biodegradable when compared to bulk synthetic
fertilizers (Mishra et al., 2018).

Chitosan is the most accepted biopolymer due to its innocuous
origin for use in agriculture. It is also an easy-to-manipulate matrix to
program the adsorption and slow release of the target active ingredient
(Pandey et al., 2018). Due to its natural origin, chitosan provides
protection to plant cells, unlike other biopolymers that can have a
harmful effect when in contact with the plant (Khairy et al., 2022).

The cover of nanofertilizers is designed to be porous for the slow
release of the nutrient content (Kubavat et al., 2020). The time and
dose of nutrient release will depend on the plant’s requirement
(Lawrencia et al., 2021).

Among the most common nanofertilizers applied are urea,
ammonium nitrate, ammonium sulfate, sulfuret, calcium nitrate,
calcium phosphate, mono and diammonium phosphate, triple
superphosphate, potash, silicon, zeolite, zinc, and so on
(Rameshaiah et al., 2015; Rajonee et al., 2017; Alimohammadi
et al., 2020; Carmona et al., 2022).

Agricultural waste products also have the potential to be used to
manufacture nanofertilizers as banana peel, which is rich in minerals
such as manganese, magnesium, and potassium. Banana peel-derived
nanofertilizers studied by Hussein et al. (2019) contained chelated
potassium, chelated iron, tryptophan, urea, amino acids, proteins and
citric acid, and showed significant effects when tested for tomato and
fenugreek seed germination (Hussein et al., 2019).

Commercial nanonutrients offer advantages such as controlled
release due to the cover materials of the mentioned fertilizers.
Controlled release refers to the slowly deliver of the nutrient over
months (Vejan et al., 2021).

Some available products coated with patented biopolymers are
Agrocote (United States), ESN Smart nitrogen (United States), Meister
(Australia), Multicote (Israel), Nutricote of Florikan CRF
(United States), Osmocote (United States), and zeolites have been
generally used as fertilizers for fruit trees, coffee, bananas, sugar cane,
vegetables, potatoes, rice, corn, and wheat, among others.

FIGURE 3
Advantages of nanotechnology in agriculture against conventional agriculture.
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In addition, in the market, it is possible to find nanofertilizers such
as Nano-Gro™ (United States), Nano-green (India), Nano-Ag Answer
(United States), Biozar nanofertilizer (Iran), Nano max NPK with
microelements and microorganisms (India), Master Nano chitosan
organic fertilizer (Thailand), NanoMax (PowerMax) (Taiwan), TAG
Nano fertilizer (India), Nanofertilizer LITHOVIT (Germany) and
more. Their use is common in crops such as vegetables, fruit trees,
wheat, rice, cotton, tea, and others.

Finally, biopolymers as nanocarriers of nanofertilizers or
micronutrients have advantages over conventional fertilizers such
as the low amount applied and the controlled release of the
nutrient, which is more profitable to increase crop production and
fruit quality (Elshamy et al., 2019; Lawrencia et al., 2021). Therefore,
the future of nanofertilizers is promising because of the ecological
approach.

3.2 Biopolymer as nanocarrier of fungicides/
bactericides/viricides

Although other polymers can be applied in agriculture, chitosan is
one of the most important enhancers of plant defences, as this
biodegradable polysaccharide hydrogel forms protection barriers in
plants and help the plant to develop defence responses against
pathogens (Table 1). These properties of chitosan-based barriers
have been tested with great efficacy against fungi and oomycetes
(Vasyukova et al., 2000).

Moreover, chitosan can be used in combination with other
materials (e.g., montmorillonite) to encapsulate nutrients or
active ingredients of pesticides (dos Santos et al., 2015). Also,
hydrogels with plant repellents (essential oils) are encapsulated in
nanoparticles for plant protection (Oliveira et al., 2019;
Sampathkumar et al., 2020). Some reports showed chitosan-based

micelles as a controlled release formulation for biosafe pesticide
delivery (Lao et al., 2010; Zhang et al., 2013; Xu et al., 2018; Feng
et al., 2020).

3.3 Biopolymer as nanocarrier of insecticides

Polymer-based materials have been also found to be effective
carriers for insecticides, mainly by increasing their solubility in
water (Lao et al., 2010; Feng and Peng, 2012). The microspheres
composed of chitosan and cashew tree gum were developed and
loaded with essential oil of Lippia sidoides active against larvae of
Aedes aegypti to use as a bioinsecticide to control larvae proliferation.
This chitosan-based capsules showed prolonged larvicidal effect
(Paula et al., 2010). Similarly, microcapsules of alginate and
chitosan were found to be suitable matrice to carry nano-
imidacloprid bioinsecticide. Interestingly, this carrier system
allowed for up to eight times longer release of insecticide when
compared with an insecticide used alone. Moreover, release time
dependent on the concentration of alginate and chitosan used for
encapsulation (Guan et al., 2008). The amphiphilic derivative of
chitosan, N-(octadecanol-1-glycidyl ether)-O-sulfate chitosan was
used to form spherical polymeric micelles (167–204 nm size) for
encapsulation of insecticide. These nanoparticles were formed by
self-assembly in aqueous solution and increased 1,300-fold
solubility of rotenone in water providing its sustained release (Lao
et al., 2010). The development of carboxymethyl chitosan
nanoparticles with ricinoleic acid as an emulsifier for azadirachtin
was found to be useful as an insecticide agent for agricultural
applications due to the slow release of the active compound. These
spherical particles in a size range of 200–500 nm showed good
polydispersion, smooth high zeta potential, and solubilization in
the water of the lipid-soluble azadirachtin (Feng and Peng, 2012).

TABLE 1 Carrier systems and antimicrobials with the potential to be used as carriers for molecules or active ingredients for plant production.

Antimicrobial/carrier system Effect References

Chitosan Control of plant pathogenic viruses: alfalfa mosaic virus (ALMV), tobacco
necrosis virus (TNV), tobacco mosaic virus (TMV), peanut stunt virus
(PSV), cucumber mosaic virus (CMV), and potato virus X (PVX)

Pospieszny et al. (1991)

Chitosan Control of plant pathogenic virus: alfalfa mosaic virus, bean goldish mosaic
virus, peanut stunt virus, tobacco necrosis virus, tobacco mosaic virus,
potato virus X, potato virus Y, figwort mosaic virus, cucumber mosaic
virus, bean yellow mosaic virus, bean commonmosaic virus, potato spindle
tuber viroid

Chirkov (2002)

Nano-chitosan Control of Ralstonia solanacearum Khairy et al. (2022)

Chitosan Control of plant pathogenic fungi: Fusarium oxysporum f. sp. radicis-
lycopersici

Palma-Guerrero et al. (2008)

Chitosan Control of Botrytis cinerea Badawy et al. (2005)

Chitosan Control of Pyricularia grisea Badawy et al. (2005)

Chitosan Control of Phytophthora infestans Vasyukova et al. (2001)

Nano-silica Fertilizer Singh and Endley (2020)

Nanoclay Enhancer of plant growth Nisar et al. (2017)

Nano-chitosan NPK fertilizer Enhancer of growth and productivity of potato plant Elshamy et al. (2019)

Nanozeolite Enhancer of plant growth Khati et al. (2018)
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4 Role of natural polymer-based
hydrogels

The presence of water in the soil is a key factor for the growth and
efficient production of crop plants and significantly affects agricultural
sector during drought seasons or in regions with permanent water
deficiency (Bogati and Walczak 2022). In agriculture, hydrogels and
their composites are most commonly used as soil conditioners to
facilitate the growth of crop plants by providing nutrients and water
(Ghobashy 2020). Hydrogels are three-dimensional polymer networks
of hydrophilic nature, that are not soluble in water, but effectively store
and gradually release the water. They may be formed by using natural
polymers of plant, microbial, algal, fungal or marine animal origin as
well as hybridization with a synthetic one. Among them are those
based on polysaccharides (chitosan, alginate, carrageenan, starch,
cellulose, and pullulan), proteins (silk, keratin, and collagen)
(Varghese et al., 2020; Rai et al., 2021b).

Hydrogels are used to improve the water ability of soils and reduce
the drought stress of crop plants as they can adsorb water solutions up
to a hundred times their weight (Guilherme et al., 2015; Hasan and
Abdel-Raouf 2019). They play a major role in tissue regeneration, drug
delivery, smart electronic devices, etc. There is considerable progress
in using polysaccharides as a base for such composites (hydrogels),
due to their eco-friendly nature, biodegradability, biocompatibility,
bioactivity, and non-toxicity (Jiang et al., 2020).

Studies on biopolymer-based hydrogels showed superior water
capacity, from 80 g g−1 water storage of cellulose-based hydrogel
(Demitri et al., 2013) by 290 g g−1 water storage of chitosan-based
hydrogel combined with aluminium chloride hexahydrate (Zhang
et al., 2022) to 329 g g−1 water storage of cellulose/chitin hydrogel
(Kono and Zakimi 2013). In addition, the great interest in hydrogels
is due to their ability to retain water in the soil over the long term
(Tomadoni et al., 2019). To obtain novel and innovative products with
improved structural properties and functionality some solutions are
proposed, including optimization of the synthesis process by
incorporation of nanomaterials into natural polymer-based hydrogels
(Sohail et al., 2022). For instance, the increased liquid absorption was
achieved by incorporating zinc oxide nanoparticles (nZnO) into guar
gum-pectin/polyacrylamide hydrogel composite (GG-PC/PAAm/
ZnOx). It has been suggested that the improved swelling may be
related to water uptake to compensate for the increasing ionic
osmotic pressure resulting from the presence of nZnO and/or altered
structure of pores and expanding the polymer network, subsequently
increasing the space for water (Sayed et al., 2022).

The effectiveness of hydrogels depends on both their composition
and the active ingredient embedded in the composite. Treatment of
infected lettuce seedlings with chitosan-based hydrogel loaded with
copper oxide nanoparticles (CuONPs) resulted in suppression of
disease caused by Fusarium oxysporum f. sp. lactucae. Authors
suggest that the mechanism of action involves direct interaction of
Cu-based composite with fungal cells. In addition, seedlings under
exposure to Cu-chitosan hydrogel were stimulated to increase nutrient
uptake and improved regulation of metabolites production, including
salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA), further
enhancing the plant’s immune response. The implementation of
biodegradable and environmentally friendly hydrogels can reduce
the dose of chemicals introduced into the environment and thus
minimize adverse effects on non-target organisms, ecosystems, and
human health (Shang et al., 2021). Agrochemical-loaded hydrogels are

used for seed coating to improve seed germination and seedling
growth, as well as their resistance to pathogens. Some studies have
shown improved hydrogel properties by introducing micellar
domains. Defined as self-organizing structures, micelles can be
formed by low-molecular-weight surfactants as well as suitably
modified polymers. It is proposed that they can be used to control
the release rate of active compounds, increase solubility and
bioavailability, and minimize chemical degradation (Pekař, 2015;
Ye et al., 2015; Nascimento et al., 2020).

As heavy metal and other harmful soil contaminations have
become a serious problem in agriculture another noteworthy issue
is the potential use of hydrogels for soil remediation. Bio-absorbent
properties were displayed by carboxylmethylcelullose (CMC) (Sekine
et al., 2020), carboxymetylcellulose-starch-gelatin hydrogel (Devasia
and John 2021), cellulose/lignin (Shan et al., 2021), and chitosan
(Bhullar et al., 2022) which possess a high ability to the removal of
diverse dyes and heavy metals. Therefore, nanohydrogel sheets
(synthesized of guar gum and soya lecithin) successfully absorbed
thiophanate methyl with maximum capacity 59.205 mg/g, suggesting
their potential in the environment management for decontamination
from fungicides (Sharma et al., 2018). Furthermore, it was found, that
embedding lignin-based hydrogel with FeS nanoparticles resulted in
an almost 6-fold increase in the sorption capacity of Cd to 61.77 ±
1.09 mg g−1. The composite is recyclable (by acid etching of Cd ions),
thereby enabling its reuse (Liu et al., 2020). In turn, Kamel et al. (2020)
prepared CMC-based hydrogel combined with magnetite NPs and
porous carbon (PC) for lead-ions and methylene blue dye removal.
Incorporation of Fe3O4 NPs and PC increased the sorption capacity
and removal efficiency. These effects were associated with formation
of highly porous structure and stronger attraction of contaminants.

There are several benefits when natural polymers
(polysaccharides) are used in combination with synthetic hydrogel
Ghobashy (2020), as given below.

(i) Enhancement of the gelling capacity of polysaccharides in water
so that they swell

(ii) Sustained release of fertilizers depending on enzymatic
degradation and crosslinking density

(iii) Resist the degradation of polysaccharides in natural conditions
(iv) Enhancement of binding affinity of ions present in the soil
(v) Demonstrate resistance to UV light and chemicals
(vi) Increase the thermostability of natural polymers.

5 Bioactive nanocoating for smart
nanoactive packaging

Food can be packaged according to three levels, such as primary,
secondary and tertiary packaging. A coating or foil that directly
surrounds the food and has contact with it and thus affects the
quality of the product is included in the primary packaging.
Secondary packaging already covers products previously covered by
primary packaging, and tertiary packaging is called outer packaging,
which is very often used for transport or distribution (Ahari and
Soufiani, 2021). Edible coatings are thin and transparent layers (films)
applied to the surface, mainly fruits, that are made of materials
intended to come into contact with food (Figure 4), and added to
or as a substitute for the waxes naturally present on the surface of the
fruits (Mahela et al., 2020).
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Nanocoatings are ultra-thin layers in the range of 1–100 nm thick
applied on the substrate without altering the surface of the substrate
and act as a barrier to different gases and food-deteriorating microbes
(https://www.nanowerk.com/nanotechnology-news/newsid=47370.
php), as shown in Figure 4.

Polymers are excellent agents for food packaging owing to their
barrier properties to keep products away from food deteriorating
microbes, retain their quality (freshness), and enhance their shelf-life.
Each polymer has a different property. Some polymers are barriers to
oxygen, while others may be barriers to water vapor. These are
influenced by several factors including polarity, crystallinity,
hydrogen bonding, etc. (Sarfraz et al., 2020). The barrier properties
of polymers can be enhanced by using nanofillers leading to the
formation of nanocomposites, as mentioned previously.

Overall, the coatings to be used in food industry must meet several
important criteria, as shown in Figure 5.

However, processed and fresh fruits have specific packaging
requirements. Fruit films and coating, as a part of the product, are
fully edible therefore the components from which they are produced

must be non-toxic, and meet all safety standards (i.e., their composition
should be GRAS—Generally Recognized as Safe). They also should not
alter the taste of the product (Burdock and Carabin, 2004; Yousuf et al.,
2018). Moreover, the fruit coating should have low water vapor
permeability to delay drying out and limits the permeability of
oxygen and carbon dioxide to slow down respiration and metabolic
activity as well as the maturation process (Sharma A K et al., 2019). The
edible coatings/films made of various types of biopolymers combined
with various additives such as glycerol, aloe resins, polyphenols or urea
are less than .3 mm thick (Embuscado and Huber, 2009; Castro-Muñoz
and González-Valdez, 2019; Morales-Jiménez et al., 2020). The
components of coatings are well dissolved and dispersed in water,
alcohol, the mix of water and alcohol or other solvents prior to
application to the product using dipping, spraying, brushing or
panning methods, followed by drying (Bourtoom, 2008; Díaz-Montes
et al., 2021). These bioactive polymers when possessing antimicrobial,
antioxidant, water and oxygen barriers/scavengers extend the shelf life
of coated products (Malhotra et al., 2015). The edible coating or film is
mainly selected on the basis of water solubility, hydrophilicity and
hydrophobicity nature, ease in the formation of coatings and sensory
properties to convey information about food quality and increase the
safety of foods (Sharma A et al., 2019; Pirsa et al., 2022).

5.1 Lipid-based coatings

Waxes such as carnauba wax, beeswax, paraffin wax and resin are
neutral lipids used to coat fresh fruit and vegetables (citrus, apple,
mature green tomato, cucumber, asparagus, beans, carrots, eggplant,
and turnip) to improve the appearance of products and protect them
against moisture (Sharma A et al., 2019). The lipid-based coatings are
compatible with other coatings used and have high water vapour and
gas barrier properties (Sharma A et al., 2019).

5.2 Polysaccharide based coatings

Polysaccharides such as starch, pectin, carrageen, alginate, gill,
gum, chitosan, cellulose and its derivatives often can use as stabilizers,

FIGURE 4
Role of nanocoatings in food production.

FIGURE 5
Requirements for edible coatings in food industry.
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thickening substances, gelling agents, and strengthening due to their
high viscosity (Stephen and Phillips, 2016; Eghbaljoo et al., 2022).
Polysaccharide-based coating has shown storage properties of gases,
favored compounds, and fatty substances (Dhanapal et al., 2012;
Cazón et al., 2017).

Starch-based films show clarity, elasticity, tasteless, non-toxic,
odorless and good gas barrier properties (Chiumareli and
Hubinger, 2012; Pelissari et al., 2019) while dextrin (a derivative of
starch) films have good water vapor resistance (Sharma A K et al.,
2019).

Pullulan-based coatings are transparent, edible (GRAS), tasteless
and inert to food ingredients, show non-toxic effect, glue properties,
high mechanical strength and restricted permeability to oxygen and
carbon dioxide gases (Wu and Chen, 2013; Kraśniewska et al., 2017).
These coatings are used for coating apples, blueberries, strawberries,
kiwi fruit, carrots, peppers, and also Brussels sprouts (Kraśniewska et al.,
2017; Ganduri, 2020). Overall, pullulan, a carbohydrate produced by
Aureobasidium spp and used as an effective oxygen barrier coating for
fruits and vegetables restrict growth of aerobic microorganisms,
including molds and bacteria, that are mainly responsible for food
spoilage and thus can extend food shelf life. Interestingly, this effect was
achieved without additives of any antimicrobial agents into the polymer
(Chlebowska-Śmigiel and Gniewosz, 2009). However, it was suggested
that pullulan as a hard-to-absorb carbon source for bacteria and fungi
can also itself restrict microbial development on the surface of food and
therefore extends its shelf life (Kraśniewska et al., 2017). Moreover,
pullulan can be utilized in food packaging in combination with essential
oils and other agents of antimicrobial and antioxidant activities.
However, there are some limitations of pullulan use in food
packaging, such as the high cost involved in the production of this
polymer (Singh and Saini, 2014).

Cellulose derivatives such as carboxylmethylcelullose (CMC),
methylcellulose (MC), hydroxypropyl cellulose (HPC) and
hydroxypropyl methylcellulose (HPMC) are most often used in the
food industry. Cellulose derivatives are water soluble, non-ionic and
compatible with surfactants (Sharma P et al., 2019).

Chitosan films are stable and show mechanical and barrier
properties. They are used as antimicrobial coating for strawberries,
cucumbers and bell peppers, and as a gas barrier for apples, pears,
peaches and plums (Bourtoom, 2008).

5.3 Protein films

Proteins such as gelatin, casein, corn zein, wheat gluten, and mung
bean, peanut soy and whey proteins are commonly used in forming
edible films/coating (Bourtoom, 2008). Proteins film exhibits good gas
and lipid barrier properties (Popović et al., 2012), especially at low
relative humidity (Šuput et al., 2015).

Edible coatings or films on fresh vegetables and fruits are used to
block oxygen, microorganisms, and moisture, and as protective and
preservative barriers against sunlight damage (Sharma S et al., 2019;
Tahir et al., 2019), as shown in Figure 4. Interestingly, the vacuum
impregnation experiment of probiotics in fruit developed by Soto-
Caballero et al. (2021) could be used in industry to form polymer-
based edible nano-coatings with nano-encapsulated probiotics to
obtain enriched fruits, as proposed in Figure 6.

The efficiency of the coatings depends of their properties, as gas,
water and lipid permeability, and odor, but these, in turn, depend

strictly on the chemical composition and structure of polymers,
product characteristics and storage conditions (Skurtys et al., 2014).
One of the most important properties of nanocoatings is the
mechanical properties. The durability of the coatings is related to
the ability of the polymers to create molecular bonds between polymer
chains and the system of polar groups as well as the polarity of polymer
chains contribute to increasing ionic interactions between the chains
(Gontard and Guilbert, 1994; Hammam, 2019). Skurtys et al. (2014))
reported that protein films exhibit lower tensile strength than
polysaccharide films. However, protein-based nanocoatings have
been found to possess excellent barrier properties (Chen et al.,
2019). These coatings have an oxygen barrier with an oxygen
permeability of 260, 500, 540, and 670 times less than
methylcellulose, polyethylene, starch and pectin, respectively.
Moreover, Rukmanikrishnan et al. (2020) prepared K-carrageenan/
lignin film with good thermal and mechanical properties and 100%
UV protection while water vapor barrier of this polymer material was
limited.

Food during production, storage or transport may be
contaminated with microorganisms that leads to spoilage of
products (He and Hwang, 2016). Therefore, packaging films with
antimicrobial activity are highly desired in the food industry. As far
as active packaging is concerned, there are some bioactive agents
including antimicrobials, enzymes, and antioxidants used as a
component of polymer-based packaging that can destroy the
microbes (bacteria, fungi, protozoans, etc.) or inhibit their entry
and therefore this area of research is increasing the attention of the
scientific community (Khezerlou et al., 2018). In this context,
nanocomposites play a pivotal role due to their barrier and
antimicrobial properties (Basavegowda and Baek 2021). Due to
the application of antimicrobial agents and nanoparticles such as
AgNPs, CuNPs, etc. this type of packaging is known as “active
packaging.” With the high surface-area-to-volume ratio and
antipathogenic nature, nanocomposites are suitable candidates for
active food packaging. To date, the nanomaterials that are used in
antimicrobial food packaging include AgNPs, CuNPs, AuNPs,
ZnONPs, TiO2NPs, MgONPs, nanoclays (montmorillonite;
MMT), natural antimicrobials such as essential oils,
sesquiterpenes, nisin, thymol, isothiocyanate, carvacrol, nisin,
vanillin, cinnamon, bacteriocins (capidermicin, carnobacteriocin,

FIGURE 6
Vacuum impregnation of nano-delivery systems and probiotics
with atmospheric pressure.
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TABLE 2 Activity of nanomaterials/nanocomposites used for food packaging.

Active component Polymer matrix Biological activity Concentration of active
compounds

Type of food References

Silver–copper nanoparticles Fish skin gelatin Antibacterial: L. monocytogenes,
S. typhimurium

2% (w/w) NPs — Arfat et al. (2017a)

Silver nanoparticles copper
nanoparticles

Agar Antibacterial: L. monocytogenes,
S. typhimurium

.5% (15 mg), 1% (30 mg), 2%
(60 mg) and 4% (120 mg)

— Arfat et al. (2017b)

Silver–copper nanoparticles Gaur gum Antibacterial: L. monocytogenes,
S. typhimurium

.5%–2% NPs — Arfat et al. (2017c)

Cinnamon essential oil and TiO2 Sago starch Antibacterial: E. coli, S.
typhimurium, S. aureus

0%, 1%, 3%, and 5%, w/w) of TiO2

and CEO (0%, 1%, 2%, and 3%, v/w)
Fresh pistachio Arezoo et al.

(2020)

Tarragon essential oil Chitosan/gelatin Antioxidant chitosan to TEO (1:0, 1:0.2, 1:0.4, 1:
0.6, 1:0.8 and 1:1)

Pork slices Zhang et al. (2014)

ZnO Alginate Antibacterial: S. typhimurium, S.
aureus

N/A Ready-to-eat
poultry meat

Akbar and Anal
2014

TiO2 Chitosan Antibacterial: S. aureus, E. coli, S.
typhimurium, P. aeruginosa

Different TiO2 concentrations (0, .25,
.5, 1% and 2% w/w)

Aimed for
postharvest

applications of fresh
produce

Siripatrawan and
Kaewklin (2018)

Blackberry powder Arrowroot starch Antioxidant Sprinkling with 0, 20, 30, and 40%
(blackberry solids mass/biopolymer

mass) blackberry particles

— Nogueira et al.
(2019)

Coconut water Coconut protein
precipitate

Antioxidant N/A — Rodsamran and
Sothornvit (2018)

Oregano essential oil Citrus peel pectin Antibacterial: E. coli, S. aureus,
L. monocytogenes

.24 mg/mL Shrimp and
cucumber slices

Alvarez et al.
(2014)

Clove, fennel, cypress, lavender,
thyme, herb-of-the-cross, pine
and rosemary essential oils

Chitosan and gelatin Antibacterial: P. fluorescens, S.
putrefaciens, P. phosphoreum, L.
innocua, E. coli, L. acidophilus

Food grade clove essential oil was
incorporated in a proportion of

.75 mL/g biopolymer

Fish preservation Gómez-Estaca
et al. (2010)

Clove essential oil Soy protein isolate
and microfibrillated

cellulose

Antioxidant N/A — Ortiz et al. (2018)

Extracted spent coffee ground Cassava starch Antioxidant 50 g/500 mL — Ounkaew et al.
(2018)

Cinnamon oil Soybean
polysaccharide

Antioxidant, Antibacterial: S.
aureus and S. pyogenes

.6% and .8% concentration of
cinnamon oil

Meat products Ghani et al. (2018)

Curcumin Chitin nanofiber Antioxidant 1 mg/mL, 2.5 mg/mL and 5 mg/mL — Yang et al. (2020)

Cinnamon oil Chitosan-whey
protein/zein

Antibacterial: E. coli, S. aureus 2% and 4% (w/w) amounts — Vahedikia et al.
(2019)

AgNPs Cellulose nanofibril Antibacterial: E. coli, L.
monocytogenes

0, 1, 2.5, 5, and 10 mg/mL — Yu et al. (2019)

Orange-peel oil Corn starch Antioxidant OPO and corn starch (3:10, w/w) — Wang et al. (2019)

ZnO Bovine Gelatine Antifungal: yeast 5% (based on dry gelatin) Sponge cakes Sahraee et al.
(2020)

ZnONP Chitosan Antibacterial: E. coli 2% (w/v) ZnO nanoparticles White brined cheese Al-Nabulsi et al.
(2020)

Garlic extracts Biodegradable starch Antibacterial: Salmonella sp., S.
aureus

NA Milk products, fatty
foods, liquid, Acidic

and dry foods

Baysal and Dogan
(2020)

Metal ions (silver, copper) and
metal oxides nanoparticles
(ZnO, TiO2)

Fish gelatin Barrier properties ZnONPs (3% (w/w); TiO2 (.5–2 g,
w/w)

— Hosseini and
Gomez-Guillen
(2018)

K-carrageenan Cellulose nanocrystals Mechanical properties, Barrier
properties (water, UV)

9–7 wt% — Yadav and Chiu
(2019)

(Continued on following page)
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duramycin, enterocin, mutacin, etc.), and synthetic antimicrobials
(Table 2).

The antimicrobial activity of biopolymer-based nanocoatings
against bacteria and fungi has been shown by many authors, as
seen in Table 2. Moreover, Tabassum and Khan (2020) evaluated
the freshness of papaya (gas exchange, and sensory quality) coated
with alginate-based edible polymer with thyme and oregano essential
oils for 12 days. Although the content of essential oils extended the
shelf life of papaya, the sensory performance decreased to an
unacceptable level.

The antioxidant properties of biopolymer-based nanocoatings
containing orange peel oil or curcumin have been studied by Yang
et al. (2020) and Zhang et al. (2020). Topuz and Uyar. (2020) and Aziz
and Karboune. (2018) reported that natural active agents such as
ascorbic acid, phenols and polyphenols, ferulic acid, a-tocopherol and
also phycocyanin are very good antioxidant agents. Undoubtedly,
oxidative processes such as the oxidation of carotenoids, chlorophyll,
anthocyanins and degradation of vitamins occurring in stored or
transported food products cause rancidity and loss of color of the
products (Vasile, 2018). Freshly cut fruits rapidly browning as a result
of the conversion of phenolic compounds into dark color pigments in
the presence of O2. Therefore, additives of antioxidants to an edible
coating are a good way to deal with such an undesirable effect (Rojas-
Grau et al., 2009).

6 Nano-polymer with risks of migration
into food

As far as the risks related to the application of nanocomposites are
concerned, it is important to assess, manage and govern risks
meticulously (Iavicoli et al., 2017). The proper assessment of the
effect of shape, size, surface charge, concentration, etc. of engineered
nanoparticles used to form nanocomposites is a matter of great
concern and should be studied carefully, and the risk management
should be managed and regulated (Amini et al., 2014; Evans et al.,
2017).

Although nanotechnology has multiple applications in different
fields, our understanding of toxicity still needs the support of more
thorough studies to know the real picture of noxiousness. In this
context, the use of polymer-based nanocomposites is a risk as
nanoparticles may enter food and cause toxicity and allergy. This is
possible due to the migration of packaging materials into food
(Figure 7). Therefore, the migration test of nanomaterials is
essential under controlled conditions (Honarvar et al., 2016). The
migration of nanomaterials from polymer nanocomposites to food
depends on the physicochemical properties of both nanomaterials and
food. These include, but are not limited to shape, size, concentration,
solubility, diffusion of nanomaterials and type of food, pH, and
duration of interaction with the nanomaterials used in packaging

TABLE 2 (Continued) Activity of nanomaterials/nanocomposites used for food packaging.

Active component Polymer matrix Biological activity Concentration of active
compounds

Type of food References

AgNPs Cellulose Antibacterial: B.
stearothermophilus

5%, 10% and 20% w/w
concentrations

— Vivekanandhan
et al. (2012)

ZnONPs, AgNPs Chitosan Antibacterial: E. coli, S.
typhimurium, S. aureus, B.
aureus, L. monocytogenes

Ag-NPs (.021–.120 mg); ZnO-NPs
(.01 mg)

— Youssef et al.
(2015)

AgNPs-TiO2NPs Chitosan Antibacterial: E. coli .38 μg/mL Fruits Lin et al. (2015)

Silver Chitosan Antibacterial: B. subtilis, E. coli
Antioxidant

Nandana et al.
(2022)

AgNPs-corn extract Chitosan Antibacterial: E. coli, S. aureus,
Salmonella sp., L. monocytogenes

Antioxidant

25 and 50 μg/mL — Qin et al. (2019)

AgNPs Pullulan Antifungal: A. niger .628–1.710 mg/mL — Pinto et al. (2013)

Lysozyme nanofibers Pullulan Antibacterial: S. aureus
(lysozyme resistant strain)

Antioxidant

15.0 wt% — Silva et al. (2018)

AgNPs Pullulan, Pectin Antibacterial: L. monocytogenes,
S. typhimurium, S. aureus, B.

cereus

N/A — Lee et al. (2019)

Ag and ZnO Cassava starch/Agar Antibacterial: P. aeruginosa, S.
aureus

Different concentrations (.5, 1,
1.5 and 2 mM) of Ag nanoparticles

and ZnO nanoparticles

— Mahuwala et al.
(2020)

Cardamom extract,
CeO2 nanoparticles

Pectin Antibacterial: E. coli, S. aureus Cardamom extract (0, 3.75 and
7.5 mL/g); CeO2 nanoparticle (0,

2.5 and 5 mg/g

— Karimi Sani and
Alizadeh (2021)

Copper sulfide nanoparticle
(CuSNP), Nigella sativa
essential oil

Fish skin gelatin and
chickpea protein

isolated

Antibacterial: E. coli, S. aureus .25 and .5% copper sulfide
nanoparticle (CuSNP), Nigella sativa
essential oil (.015% and .03%, w/w of

protein)

— Rasul et al. (2022)
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(Huang et al., 2015). Furthermore, the authors raised the following
questions, that need to be addressed concerning the toxicity due to the
migration of nanomaterials, about physicochemical characterization
of nanomaterials, protocols to assess the migration of nanomaterials,
sophisticated methods to detect and characterize nanomaterials, how
nanoparticles’ physical nature (shape, size, surface charge, etc.) is
related to toxicity, and toxicokinetics after consumption.

Amini et al. (2014) cautioned that the toxicity caused by
nanomaterials may be a disaster. Therefore, characteristics of the
nanomaterials such as shape, size, solubility, and agglomeration
should be studied in depth in order to understand the real problem
of nanotoxicity. Similarly, Evans et al. (2017), have critically reviewed
the genotoxic effect of nanomaterials that may affect cellular
mechanisms, including DNA damage and cell division. On the one
hand, the attractive and unique characteristics of nanoparticles make
them important to use in various fields, but on the other hand, they are a
potential threat to the environment and humans (Onyeaka et al., 2022).

However, there are some supporting studies that showed that there
is no migration of nanomaterials into food if encapsulated properly in
the polymer used (Bott and Franz, 2018).

There are regulations framed by the United States Food Drug and
Administration (U.S. F.D.A.) and the European Commission (EU)
which deal with the migration of nanomaterials into the food product
that regulates (Paidari et al., 2021), as exemplified by EU directive No.
85/572/EEC. According to this directive the migration of nanomaterial
should surpass the limit of 10 mg/dm2 (Hannon et al., 2015).

7 Challenges, chances, and consumers’
perception

Although agrifood nanotechnology has tremendous potential to
face the global challenges of food security and sustainable crop

production, there are some challenges that need to be overcome.
The fate of the nanoparticles, bioavailability, ecotoxicity, etc., are the
major issues that need to be addressed meticulously and convincingly
(Ashraf et al., 2021). The nanomaterials used in polymer
nanocomposites should be evaluated for their toxicity to soil
microbes, and interaction with plants, environment, and animal
models. Lowry et al. (2019) have discussed the opportunities and
promises of nanobiotechnology, the challenges, and the need for a
systems approach to design sustainable nanotechnology. Mishra et al.
(2017) suggested overcoming the toxicity, optimizing the dose of
nanoparticles, determining permissible limits, and designing
experiments in the natural environment. Furthermore, the authors
recommended the commercial application of biosynthesized
nanoparticles in agriculture and food sectors.

Consumers’ role in accepting any technology depends on the
safety of the technology used. In the present digitization era, people are
more concerned about the food products that are promoting their
health, but they are equally interested in the technologies which do not
cause any harm to health and environment (Wansink and Chandon,
2014). The regulations and their proper implementation are essential
for consumers. The engineered nanomaterials used in the products or
nanocomposites should be addressed clearly for public acceptance.
Recently, Siddiqui et al. (2022) reviewed the social and psychological
factors of the consumers’ perception of non-packaging for food and
food products. Among the social factors social concerns, norms and
media play important role in attracting new nanocomposite-based
technology. In addition to the social factors, there are psychological
aspects such as awareness, motivation, attitude, beliefs, fear, and
inherent habits which drive consumers to use new technology
(Siddiqui et al., 2022). It is suggested that there is a need for the
generation of awareness, attitude, and motivation among consumers
to accept the use of new technology in food and also for sustainable
agriculture (Siddiqui et al., 2022).

FIGURE 7
A proposed typical cycle of migration of nanoparticles from their source of synthesis to the agriculture sector, and then finally accumulate inside the
human body through the finished packaged food.
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The use of nanopackaging and nanocomposites is increasing fast,
but unfortunately, the efforts on framing and implementation of
corresponding regulations have not been made. Usually, the
regulations framed should emphasize food, health, and
environment (Siddiqui et al., 2022).

Biopolymer-based formulation shows great potential in food
preservation or crop plant protection. They reduce pathogens and
contaminants in fresh and processed foods during storage and
transportation, as well as exhibit biostimulant effects, reduce
seedling damage and burn defects, improve the physical and
chemical properties of soil, and increase water retention (Fertahi
et al., 2021). However, before their practical application, there are
some challenges to overcome such as the precise release of active
ingredients in a controlled manner and the long-term stability of
bioproducts. Furthermore, it is essential to deliver of appropriate
concentration of nutrients or fertilizers at the relevant stage of
plant growth. Biopolymer efficiency may be negatively affected by
soil parameters and microbial activity (Spiridon et al., 2008; Weng
et al., 2013; Ramili, 2019). Irfan et al. (2020) used a machine learning
model to predict the kinetic of nitrate release from urea coated with
starch-polyvinyl alcohol-cross-linked biopolymer considering many
factors such as the method of synthesis and product properties.
Estimated results were similar to release profiles from the
experiments, making it a potential tool for predicting of nutrient
release profiles from various biopolymer-based fertilizers.

The commercialization of biopolymers or their composites
supplemented with nanomaterials has been relatively slow despite
numerous studies. Research efforts should include scale-up studies to
facilitate the transfer of products from the laboratory to safe industrial
applications (Souza et al., 2020; Binod et al., 2021). Therefore,
polylactic acid (PLA) films are commonly used for packaging fresh
food (fruits, vegetables, fish, meats, and grains). Additional
antimicrobial substances (peptides, amino acids, and essential oils)
are loaded into PLA films to inhibit bacterial corrosion of food (Roy
and Rhim, 2020; Subbuvel and Kavan 2022). For instance, polylactic
acid andmagnesium oxide (MgO) has been used to prepare large-scale
biopolymer films for food packaging applications. The production
process was transferred from a twin-screw extruder (5% PLA/MgO) to
industrial-scale blown film extrusion (3% PLA/MgO), resulting in
increased production from 45 g to 3 kg of each film, as well as
improved mechanical, barrier, antibacterial, thermal and optical
properties (Swaroop and Shukla, 2018; Swaroop and Shukla, 2019).

With increasing consumer awareness of environmental issues, the
requirements for sustainable packaging as well as the use of biodegradable
products to deliver plant protection and growth promotion supplies are
becoming a new trend in the food and agriculture sectors (Yan et al.,
2022). However, there are emerging concerns about the safe use of
agrochemicals and food packaging materials with nanoadditives due to
the risk of their leaching into food products (Sohal et al., 2018;
Taherimehr et al., 2021). Nevertheless, there is still a need for further
research on nano-biocomposites to address their impact on human
health, as well as environmental issues, including studies of transport,
cytotoxicity and ecotoxicity before introducing these materials into
widespread use (Mohanty and Swain, 2017; McClements 2021).
Vijayakumar et al. (2021) synthesized silver nanoparticles using
cellulose biopolymer as stabilizing agent (Ce-AgNPs) and evaluated its
cytotoxicity and phytotoxicity for potential biomedicine and agriculture
applications. The results showed a dose-dependent cytotoxic effect against
normal human keratinocyte (HaCaT) and human breast cancer (MCF-7)

cells and similar IC50 values at level 5 and 4.9 μg/mL, respectively.
Moreover, Ce-AgNPs decreased the germination and shoot length of
wheat (Triticum aestivum) seedlings, whereas there was no adverse effect
on the germination and growth of mung (Vigna radiata) seedlings. Thus,
it is essential for the application of products incorporating nanomaterials
to be rigorously tested for the occurrence of potentially undesirable effects
on plants, animals, and humans (Sohal et al., 2018).

8 Conclusion

The emergence of nanotechnology has transformed different fields
including food and agriculture. With various applications in
agriculture for sustainable crop production and also to feed the
ever-increasing population, nanotechnology has come to rescue
mankind. In the present scenario, there is a high demand for use
of biopolymers or natural polymers that are biodegradable without
causing any hazard to the environment and living organisms. The
application of nanomaterials impregnated or encapsulated in
polymers like chitosan, pullulans, alginate and CMC, etc. for the
delivery of agri-chemicals such as fungicides, insecticides,
nanofertilizers, and micronutrients play a key role in efficient and
slow delivery of chemicals. Such chemicals are used in minimum
quantity but they are utlilized fully without the loss in drainage and
thus not mixing into aquatic ecosystems. In natural environment,
hydrogels are very important and facilitate to improvement of the
water ability of soils and reduce the drought stress of crop plants as
they retain moisture for a long duration by adsorbing water. These
water hydrogels not only retain water but are also used for the slow
delivery of fertilizers and micronutrients. Moreover, ultrathin-
nanocoatings can be applied on the substrate without altering it to
act as a barrier for different gases and food-deteriorating microbes.
These nanocoatings (lipid, protein or polysaccharide-based) or
encapsulation also augments antioxidant, and barrier properties,
and thus nanocoatings on food packaging enhance the chance of
increasing the shelf life of the food and food products. The barrier
property of the nanocoatings can be further enhanced by organic and
inorganic nanofillers. Although the application of nanomaterials
coupled with biopolymers in food and agriculture applications is
beneficial, it is argued by the scientific community that there are
high chances of migration of the nanomaterials into food, which
warrants further extensive research for food safety and security. Food
toxicity is a matter of great concern, and therefore, a thorough
assessment of toxicity risks, its management, and regulations
governing such toxicity should be studied. The physical
characteristics of the nanomaterials such as shape, size, solubility,
and agglomeration, and their bioactivity need to be addressed to
understand the toxicity of such materials. However, application of
natural or biopolymers and their composites may provide a safer use
of nanomaterials in food and agriculture. Furthermore, on one hand,
there are a plethora of possibilities for application of polymer-based
nanocomposites, while on the other hand, the fate of nanomaterials,
solubility, and ecotoxicity are major challenges that warrant a deeper
understanding of their applications. In application of any novel
technology, public perception plays a key role. If they are not
aware of the benefits and limitations of new technology, the efforts
to commercialize the technology for the end users will be futile.
However, this problem can be solved by arranging public meetings
to generate awareness, attitudes, and skills among the common people.
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