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Photocatalysis is an eco-friendly promising approach to the degradation of

textile dyes. The majority of reported studies involved remediation of dyes with

an initial concentration ≤50mg/L, which was away from the existing values in

textile wastewater. Herein, a simple solvothermal route was utilized to

synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the

first time. The photocatalytic performance of the as-synthesized catalysts was

assessed through the photodegradation of methylene blue (MB) and methyl

orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar

irradiation, improved photocatalytic performance was accomplished by as-

obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and

CoFe2O4. The overall removal efficiency of dyes (100mg/L) over CoFe2O4@

UiO-66 (50 mg/L) reached >60% within 180min. The optical and

photoelectrochemical measurements showed an enhanced visible light

absorption capacity as well as effective interfacial charge separation and

transfer over CoFe2O4@UiO-66, emphasizing the successful construction of

heterojunction. The degradation mechanism was further explored, which

revealed the contribution of holes (h+), superoxide (•O2
−), and hydroxyl

(•OH) radicals in the degradation process, however, h+ were the

predominant reactive species. This work might open up new insights for

designing MOF-based core-shell heterostructured photocatalysts for the

remediation of industrial organic pollutants.
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1 Introduction

Among various industrial sectors, the textile industry takes

prominence due to the high utilization of water, raw materials,

and chemicals including acids, chelating and bleaching agents,

dyes, surfactants, etc. As a consequence, tremendous volumes of

wastewater are released from this industry. It is estimated that

20% of global industrial wastewater emerges merely from textile

industries (Holkar et al., 2016). In general, the textile effluent is

characterized by high pH, intense color, high chemical and

biochemical oxygen demands (COD and BOD5, respectively),

and high concentrations of total suspended and dissolved solids

(Yaseen and Scholz, 2019). Nevertheless, the composition of such

effluents varies considerably in concentration and toxicity

depending on the utilized chemicals, operating conditions,

and the employed manufacturing steps (Ramos et al., 2021).

Approximately 700,000 tons of synthetic dyes are produced

annually and around 30% of this dyestuff ends up as

industrial effluent (Al-Mamun et al., 2019). Owing to their

complex aromatic structure and non-biodegradable nature,

most of these dyes may present carcinogenic and/or

mutagenic potentials to human health and aquatic ecosystem

(Nidheesh et al., 2013; Dihom et al., 2022). Hence, efficient

treatment of textile wastewater before discharge into water

bodies has become of crucial importance.

Inspired by the natural photosynthesis process,

photocatalysis has currently emerged as a promising green

approach for the conversion of solar energy into chemical

energy (Gao et al., 2017). Due to its high efficiency, feasibility,

low energy consumption, and eco-friendly feature,

semiconductor-induced photocatalysis has been successfully

harnessed in diverse applications including energy storage and

conversion (Wei et al., 2021; Han et al., 2022; Qin et al., 2022),

CO2 reduction (Li et al., 2020; Xiong et al., 2020), organic

synthesis (Zhang et al., 2019b; Xiong and Tang, 2021), Cr(VI)

reduction (Yi et al., 2019; Zhang et al., 2020) and water treatment

(Zeng et al., 2018; Feng et al., 2022; Shi et al., 2022). Up to present,

several semiconductor photocatalysts have been intensively

studied such as metal oxides [TiO2, ZnO, Fe2O3 (Ba-Abbad

et al., 2013; Franking et al., 2013; Kreft et al., 2020)], metal

sulphides [MoS2, CdS, In2S4 (Ning et al., 2019; Liang et al., 2021;

Pan et al., 2021)], and organic semiconductors [(g-C3N4,

perylene diimide, covalent organic framework (Zhou et al.,

2018; Sivula, 2020; Zhou et al., 2021)]. Nevertheless, the

photocatalytic performance of these catalysts is far

unsatisfactory owing to various limitations like

photocorrosion, low photon absorption efficiency, inefficient

charge separation, most importantly; deficiency of effective

and stable catalytic sites to maintain dynamic photocatalytic

reactions (Gao et al., 2017).

As a distinct group of organic-inorganic hybrid crystalline

porous materials, metal-organic frameworks (MOFs) have

shown considerable potential in a variety of applications

involving adsorption, drug delivery, gas storage and

separation, and catalysis (Lei et al., 2018; Wang et al., 2020a;

Wang et al., 2020b; Connolly et al., 2020; Younes et al., 2022).

Due to their distinguished features such as tunable pore

structure, high specific surface area with abundant catalytic

active sites, and adjustable electronic and optical properties,

MOFs have recently perceived unparalleled progress in the

field of photocatalysis (Qin et al., 2020; Xia et al., 2021).

Unlike conventional photocatalysts, MOFs are characterized

by a special charge transition mechanism, where, the

electronic states are localized, reducing the transmission

distance of photoinduced carriers (Liang et al., 2019; Zhang

et al., 2021c). Upon light illumination, the organic linkers, as

light-absorbing antennas, and metal clusters, as semiconductor

quantum dots, are excited to generate electron-hole pairs (Dey

and Gogate, 2021). Consequently, several photo-excitation

pathways are proposed to explore the photon harvesting

process in MOF-based photocatalysts such as metal-to-ligand

charge transfer (MLCT), metal-to-metal-to-ligand charge

transfer (MMLCT), ligand-to-metal charge transfer (LMCT),

and ligand-to-ligand charge transfer (LLCT) (Wen et al., 2019).

Beyond other reported MOF’s, zirconium Zr(IV)-based

MOFs (e.g. UiO-66), have drawn tremendous interest because

of their superb thermal and chemical stability even in acidic and

some basic mediums, which is mostly attributed to the robust

interaction between Zr-O clusters and carboxylate ligands (Yuan

et al., 2018; Yuan et al., 2021). Hence, Zr-MOFs have emerged as

an exciting class for photocatalytic potential applications in an

aqueous environment (Zhang et al., 2021d; Zhang et al., 2021c).

However, the photocatalytic performance of UiO-66(Zr) still

does not reach the utmost level due to its relatively wide

bandgap energy (~3.8 eV). Thus, UiO-66 can only absorb

light in the ultraviolet region (3–4%), leaving more than 90%

of the solar spectrum unutilized. This in turn, results in a low

photoconversion efficiency and limits the practical application of

UiO-66 photocatalyst for solar light harvesting (Cheng et al.,

2016; Gao et al., 2017). To fulfill the sustainable development

concepts, several approaches have been embraced for promoting

the photocatalytic efficiency of UiO-66(Zr) including bandgap

engineering (Taddei et al., 2019), element doping (Qiu et al.,

2019), ligand functionalization (Wang et al., 2021c), active site

regulation (Shen et al., 2015b), etc. Interestingly, the construction

of heterojunction structures has been reported as one of the most

prospective strategies to boost the photocatalytic performance of

Zr-MOFs through the formation of an interface between the two

semiconductors (Subudhi et al., 2020; Zhang et al., 2021b). This

intimate interfacial contact, in turn, favors accelerated charge

transfer and boosts solar energy exploitation by modulating the

band gap energy to attain the utmost photocatalytic efficiency

(Jabbar and Graimed, 2022).

For example, Zhang et al. adopted facile adsorption and

thermal conversion technique to encapsulate the α-Fe2O3

nanoclusters inside UiO-66 cavities for the construction of a
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visible light-driven α-Fe2O3@UiO-66 photocatalyst

heterostructure for catalytic degradation of MB (Zhang et al.,

2019a). Under visible light excitation, Fe2O3@UiO-66 displayed

considerably boosted degradation performance. This prominent

improvement of photoactivity of Fe2O3@UiO-66 could be

explained by the synergetic interaction between UiO-66 and

α-Fe2O3, which is beneficial to enhancing charge migration

and lowering the recombination rate. Similarly, Yassin et al.

prepared Ag3PO4/Zr-BDC/g-C3N4 ternary heterostructure for

discoloration of MB under visible and solar irradiations (Yassin

et al., 2022). Noteworthy, the UiO-66 bandgap energy is

modulated from 3.72 eV to 2.91 eV in the Ag3PO4/Zr-BDC/

g-C3N4 heterojunction, interpreting the effective absorption

toward the visible spectrum. In comparison with pristine

materials, Ag3PO4/Zr-BDC/g-C3N4 showed remarkably high

degradation efficiency (95.0%) within 240 min under visible

illumination, which might be credited to the spatial charge

separation and prolonged carrier lifetime, confirmed by the

significantly suppressed intensity of photoluminescence (PL)

emission spectra. In addition, although numerous reports have

revealed the splendid catalytic activity of Zr-MOF/metal oxide

heterostructures for wastewater treatment, the high cost of some

metal nanoparticles (e.g. noble metals), metal-ion leaching, and

instability often restrict their practical applications (Zhang et al.,

2021d; Mukherjee et al., 2022).

At present, cobalt ferrite (CoFe2O4), a spinel-type ferrite, has

displayed marked potential as a versatile photocatalyst due to its

facile synthesis, low cost, excellent magnetic anisotropy, high

chemical stability, and narrow bandgap energy (~2.0 eV) with

visible light absorption capacity (Mathew and Juang, 2007;

Mmelesi et al., 2021). In a recent study, it has been reported

complete degradation of ciprofloxacin within 45 min of visible-

light irradiation by CoFe2O4/ZnO nanoheterojunction (Shawky

and Alshaikh, 2022). The excellent photocatalytic activity of the

composite is explicated by the notable decline in the bandgap

after the incorporation of CoFe2O4 as well as the inhibition of

charge-transport resistance through the formed p-n

nanoheterojunction. In another study, Khosroshahi et al.

designed a novel magnetic CoFe2O4/Ce-UiO-

66 nanocomposite through a self-assembly approach for

photocatalytic oxidation of aliphatic alcohols. Upon visible

irradiation, the embedded composite demonstrated superior

performance for selective oxidation of alcohols with a

conversion ratio of 75%–90% compared to 21% and 10%

conversion for CoFe2O4 and Ce-UiO-66, respectively

(Khosroshahi et al., 2021). Despite the fact that the magnetic

behavior of CoFe2O4 has been extensively investigated, studies on

its optical and photoelectrochemical properties are still in

infancy, particularly, with concerns for poor efficiency owing

to the swift recombination of carriers under light irradiation and

its relatively low specific surface area (Kefeni and Mamba, 2020;

Görmez et al., 2022). Based on that, the construction of core-shell

Zr-MOF-based composites has been recognized as an attractive

approach to effectively promote photostability and enlarge the

specific surface area, which is conducive to exposing more active

sites in the photocatalytic reaction (Liu et al., 2021).

In this report, we successfully prepared a novel CoFe2O4@

UiO-66 core-shell heterostructure photocatalyst via a simple

solvothermal route for photodegradation of textile MB and

MO dyes under simulated solar irradiation. Even though the

initial concentration of dyes in actual textile wastewater samples

has been recorded as higher than 100 mg/L, the majority of

reported studies involved dye removal with an initial

concentration of less than 50 mg/L (Mukherjee et al., 2022).

Thus, dyes of 100 mg/L as an initial concentration were used in

this study to provide realistic conditions similar to that in real

textile wastewater. The crystallinity, surface composition,

morphology, porosity, thermal stability, and optical and photo

electrochemical properties of the prepared catalysts were

investigated in detail. In addition, radical quenching

experiments were applied to explore the possible

photocatalytic mechanism.

2 Experimental

2.1 Materials

Zirconyl chloride (ZrOCl2.8H2O, 99%), 1,4-

benzenedicarboxylic acid (H2BDC) (C8H6O4, 98%), and

benzoquinone (p-BQ) (C6H4O2, ≥98%) were purchased from

Sigma-Aldrich cooperation. Ethylenediaminetetraacetic acid

disodium salt (EDTA-2Na, C10H14N2Na2O8. H2O) and

ammonium hydroxide (NH4OH) were supplied by BioChem

Chemopharma Co. N,N-dimethylformamide (DMF, 99.5%),

acetic acid (CH3COOH, ≥99%), and ethanol (C2H6O, ≥99.8%)

were acquired from Carlo Erba Reagent Co, Ltd. 2-propanol

(C3H8O, 99.7%) was provided by Merck. Methylene blue (MB,

C16H18ClN3S) and methyl orange (MO, C14H14N3NaO3S) were

supplied by LOBA Chemie Pvt. Ltd. Ferric chloride (FeCl3),

cobalt (II) chloride hexahydrate (CoCl2.6H2O) were purchased

from Oxford Lab Reagents Co. All reagents were of analytical

grade and utilized without further purification. Deionized water

was applied in the following experiments.

2.2 Preparation of photocatalysts

2.2.1 Synthesis of CoFe2O4

CoFe2O4 nanoparticles were prepared by the co-precipitation

method (Esmat et al., 2017). Briefly, 2.0 mol of FeCl3 and 1.0 mol

of CoCl2.6H2O were dispersed into 30 ml of deionized water.

Following that, NH4OH (1.0 M) was added dropwise until the

pH reaches 10 and then left for complete precipitation.

Afterward, the precipitate was collected via filtration, followed

by washing it with deionized water. Subsequently, the precipitate
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was air-dried at 100°C in a drying chamber. Lastly, the dried

powder was calcined in a muffle furnace for 2 h at 500°C to get

CoFe2O4 nanoparticles.

2.2.2 Synthesis of UiO-66
UiO-66 octahedrons were prepared through a modified

scale-up procedure. Initially, 3.75 g of ZrOCl2 and 3.7 g of

H2BDC were dispersed in 450 ml of DMF using

ultrasonication for 60 min. Then, 20 ml of acetic acid was

subsequently added to the mixture as a modulator to regulate

the morphology of UiO-66. Next, the solution was poured into

a 1,000 ml Teflon-lined stainless-steel reactor and heated for

24 h at 120°C. After cooling down, the white precipitate was

obtained via filtration and washed meticulously several times

with DMF and ethanol, respectively, to ensure the removal of

any residual reactant. Finally, the UiO-66 nanoparticles were

vacuum-dried for 12 h at 85°C.

2.2.3 Synthesis of CoFe2O4@UiO-66 composite
As illustrated in Scheme 1, a facile solvothermal method was

adapted to prepare CoFe2O4@UiO-66 core-shell composite.

Typically, 1.0 g of CoFe2O4 was dissolved in 450 ml DMF

solution. Simultaneously, 3.75 g of ZrOCl2 and 3.7 g of

H2BDC were dispersed in 20 ml of acetic acid. The prepared

solutions were then mixed by ultrasonication for 60 min.

Afterward, the homogenous solution was poured into a

1,000 ml Teflon-lined stainless-steel reactor and heated for

24 h at 120°C. After cooling down, the brown composite was

separated and washed following the aforementioned washing

process of UiO-66. In the end, the as-prepared product was

vacuum-dried for 12 h at 85°C.

2.3 Characterization

The X-ray diffraction (XRD) patterns were recorded using an

XRD diffractometer (PANalytical Empyrean, Switzerland) with

Cu-Kα (ʎ = 1.5405 Å) radiation source, operating at a voltage and

current of 30 mA and 40 kV, respectively. The morphology and

microstructure characteristics of the as-fabricated materials were

studied using a field emission scanning electron microscope

equipped with an energy-dispersive spectrometer (EDS)

system (FE-SEM, Zeiss Sigma 500 VP, Germany) and

transmission electron microscope (TEM, JEOL JEM-2100F,

Japan). Fourier transform infrared (FTIR) spectra were

measured using a VERTEX 70 spectrophotometer (Bruker

Optics, Germany). X-ray photoelectron spectroscopy (XPS)

with Al-Kα radiation (Thermo ESCALAB 250XI, United

State) was applied to examine the oxidation state of the

prepared composite. N2 adsorption-desorption analysis was

performed on BELSORP-MAX II surface area analyzer

(MICROTRAC, Germany) at 77 K. Brunauer-Emmett-Teller

(BET) and Barrett- Joyner-Halenda (BJH) methods were

utilized to calculate the specific surface area and pore size

distribution. Prior to measurement, the samples were vacuum-

activated for 12 h at 150°C and then degassed for 3 h at 120°C.

Thermogravimetric analysis (TGA) was conducted employing a

LabSys EVO thermogravimetric analyzer (SETARAM, France)

from room temperature to 800 °C under N2 atmosphere with a

10°C/min heating rate. The surface charge was measured on a

Zeta potential analyzer (Zetasizer Nano ZS, Malvern,

United Kingdom). The UV–visible diffuse reflectance spectra

(UV–vis DRS) were determined using a UV–Vis

spectrophotometer (Jasco V-770, Japan) with BaSO4 as a

SCHEME 1
Schematic representation of CoFe2O4@UiO-66 composite preparation.
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reference in the spectral range of 200–800 nm. The

photoluminescence (PL) spectra were obtained by a

fluorescence spectrometer (Jasco FP-6500, Japan) with an

excitation wavelength of 320 nm for CoFe2O4 and 297 nm for

UiO-66 and CoFe2O4@UiO-66.

2.4 Photoelectrochemical measurements

The photoelectrochemical characterization of the as-

prepared catalysts was analyzed using a standard three-

electrode electrochemical workstation system (Parastat

4,000 Princeton, United State) equipped with a Xenon lamp

(150 W) as an irradiation source. Indium-tin-oxide (ITO) glass

coated by the catalysts (ρ ~ 30Ω/cm2) served as the working

electrode against the Pt sheet and saturated Ag/AgCl as the

counter and reference electrodes, respectively. 0.1 M Na2SO4 was

adopted as the electrolyte solution. The Mott-Schottky plots were

estimated with the same electrochemical instrument at 500 Hz

frequency under dark conditions. The electrochemical

impedance spectroscopy (EIS) was recorded over a frequency

range of 1 MHz–10 mHzwith an amplitude of 50 mV at an open-

circuit potential. Linear sweep voltammetry (LSV) tests were

performed by sweeping the potential from 0 to 1.0 V.

2.5 Photocatalytic reaction

The photocatalytic performance of UiO-66, CoFe2O4, and

CoFe2O4@UiO-66 composite was assessed through the

photodegradation of MB and MO dyes. The physicochemical

properties of the former dyes are presented in Supplementary

Table S1. In a typical procedure, 50 mg of catalysts were added to

25 mL of each dye solution (100 mg/L). After agitation for 60 min

in dark to establish adsorption-desorption equilibrium, the

solutions were irradiated by Solar Simulator (Oriel®Sol1A,
Newport Co.) equipped with a 150 W xenon lamp (100 mW/

cm2 light intensity). At regular time intervals, 100 µL of the

sample solution was extracted, diluted to 700 µL with deionized

water, and then centrifuged to separate the residual

photocatalyst. The concentration of MB and MO was

calibrated using a UV–vis spectrophotometer (UV-2600,

Shimadzu, Japan) at maximum absorption wavelength (ʎmax)

of 664 nm and 464 nm, respectively. The removal efficiency (%)

was calculated following Eq. 1

Removal ef f iciency (%) � C0 − Ct

C0
× 100 (1)

where C0 and Ct (mg/L) are the dye concentration at initial and

each interval time, respectively.

To investigate the photocatalytic mechanism, disodium

ethylenediaminetetraacetic acid (EDTA-2Na), p-benzoquinone

(BQ), and isopropanol (IPA) were used as trapping agents for

photogenerated holes (h+), superoxide radicals (•O2
−) and

hydroxyl radicals (•OH), respectively. The concentration of

the scavengers was set as 2 m and the photocatalytic assays

were carried out following the same procedure described

above under the same pH.

3 Results and discussions

3.1 Photocatalysts characterization

3.1.1 Structure analysis
The crystallinity of the as-prepared samples was

examined using XRD analysis. The simulated patterns of

FIGURE 1
XRD patterns of UiO-66, CoFe2O4, and CoFe2O4@UiO-
66 composite.

FIGURE 2
FTIR spectra of UiO-66, CoFe2O4, and CoFe2O4@UiO-
66 composite.
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UiO-66 and CoFe2O4 are presented in Supplementary Figure

S1. From Figure 1, it can be seen that the as-synthesized UiO-

66 exhibited typical characteristic peaks cited at 7.5°, 8.6°

indexed to the (111) and (200) crystal planes, respectively.

Moreover, distinct peaks appeared at values of 12.21°, 17.4°,

25.9°, 31.0°, 33.4°, 37.7, 40.9°, 43.7°, 50.5°, and 57.1° agreed

with (220), (400), (600), (711), (731), (751), (664), (933),

(955), and (1242) crystal planes of UiO-66, respectively. This

observation is in agreement with the former studies (Zhang

et al., 2019c; Mirhosseini-Eshkevari et al., 2019; Gao et al.,

2021), implying the successful preparation of the obtained

material. Meanwhile, CoFe2O4 showed diffraction peaks at

18.27° (111), 30.21° (220), 35.51° (311), 43.32° (400), 53.9°

(422), 57.14° (411), and 62.79° (440), which are consistent

with the standard peak positions of spinel CoFe2O4 structure

(Jia et al., 2019). For the CoFe2O4@UiO-66 heterojunction,

the diffraction peaks correlating to UiO-66 appeared with a

relative broadening and fluctuations of peak intensities, is

indicative of a little alternation in the framework structural

regularity (Bi et al., 2020). Even though the CoFe2O4

characteristic peaks noticeably weakened in the

heterojunction owing to the in-situ growth of the UiO-66

shell, they still could be distinguished. Given this, the

aforementioned findings suggest the successful fabrication

of the MOF-hybrid material.

FTIR spectroscopy was implemented to investigate the

surface functionalization of the as-prepared samples. Figure 2

displays the FTIR spectra of UiO-66, CoFe2O4, and CoFe2O4@

UiO-66 composite. All samples showed a broad band at

3,200–3,500 cm−1 related to the O–H stretching vibration of

absorbed water molecules (Ding et al., 2017; Basak et al.,

2021). For UiO-66, typical bands can be identified at

1,585 and 1,396 cm−1, corresponding to O–C–O asymmetric

and symmetric vibrations of the -COOH group of the BDC

ligand, respectively (Liu et al., 2018). The weak vibrational bands

at 1,503 and 1,660 cm−1 occurred by the C=C vibration of

benzene ring (Shangkum et al., 2018) and the C=O carbonyl

stretching in the BDC linker (Ebrahim and Bandosz, 2013),

respectively. Meanwhile, the bands sited around 1,016 and

1,100 cm−1 are ascribed to the Zr–O stretching vibration of

the framework (Chen et al., 2017; Bariki et al., 2020). At

lower frequency, the peaks appeared at 814, 747, and 661 cm−1

are associated with the O–H and C–H vibrations in the ligand

(Ivanchikova et al., 2014). In addition, a distinct peak occurred at

480 cm−1 is assigned to asymmetric stretching of Zr-(OC) (Wang

et al., 2021a). Concerning CoFe2O4, two characteristic peaks are

FIGURE 3
FESEM images of UiO-66 (A) and CoFe2O4@UiO-66 composite (B); UiO-66 particle size distribution of UiO-66 (C) and CoFe2O4@UiO-
66 composite (D).
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observed at 466 and 598 cm−1, which are related to the metal-

oxygen stretching vibrations at the octahedral and tetrahedral

sites in the spinel structure, respectively (Shahjuee et al., 2017).

The other peaks at 1,065, 1,392, and 1,629 cm−1 are appeared by

O–H, C–O, and C–H bending vibration, respectively (Yavari

et al., 2016). Meanwhile, a weak band noted at 2,374 cm−1 might

be resulted from C–H stretching vibration (Johnson et al., 2020).

As for CoFe2O4@UiO-66, the characteristic spectral bands of

UiO-66 can be observed, nevertheless, with less intensity and

slight blue-shift, indicating the changing of the chemical

environment around UiO-66 following the incorporation of

CoFe2O4. Unlike UiO-66, a new peak can be identified

around 500–600 cm−1 in the composite material that is

associated with the stretching vibration of Fe–O band (Deng

et al., 2013). This observation confirms the effective integration

of UiO-66 and CoFe2O4 to form the composite material, which

corresponds with the above XRD findings.

3.1.2 Morphology analysis
FESEM analysis was adopted to explore the morphological

characteristics of bare UiO-66 and CoFe2O4@UiO-

66 composite. As displayed in Figure 3A, UiO-66 exhibited

irregular cubic morphology with an average diameter

approaching between 150–200 nm (Figure 3C). In fact, with

increasing the concentration of monocarboxylic acid

modulators, more comparatively uniform pores are created in

the MOF network (Wang et al., 2021b). This explains the porous

surface of the as-synthesized UiO-66, which could be resulting

from the high concentration of acetic acid modulator utilized

during the preparation process. Figure 3B shows the FESEM

image of the CoFe2O4@UiO-66 composite. It is interestingly

noted that after coating with UiO-66, CoFe2O4 maintained the

original spherical-like structure previously reported (Mu et al.,

2021), with a relatively uniform size and rough surface. On the

other hand, the crystal size of UiO-66 has reduced to ~120 nm in

the composite (Figure 3D), along with a morphological change

from cubic to sphere-like crystals owing to the fast reaction

between Zr and ligand (Han et al., 2017; Winarta et al., 2019).

TEM study was further carried out to explore the microstructure

of the as-synthesized composite. As presented in Figures 4A, B,

CoFe2O4@UiO-66 displayed a distinct core-shell structure comprised

of CoFe2O4 core with an average diameter of approximately 550 nm,

FIGURE 4
TEM images (A,B) and SAED pattern (C) of CoFe2O4@UiO-66 composite.
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coated by an outer UiO-66 shell with a thickness of 42.4 ± 11.9 nm.

Importantly, an obvious contact interface between UiO-66 and

CoFe2O4 can be seen that accelerates the migration of charge

carriers, thereby enhancing the photocatalytic performance. The

selected area electron diffraction (SAED) pattern of the

CoFe2O4@UiO-66 composite (Figure 4C) demonstrated the

polycrystalline nature with d-spacing of 0.49, 0.26, and 0.15 nm

correlated to (111), (311), and (440) planes of themagnetic CoFe2O4.

The EDS elemental mapping of the CoFe2O4@UiO-66 composite is

illustrated in Figure 5. Homogeneous distribution of Zr, O, C, Fe, and

Co elements can be observed. This low content for Fe and Co

elements might be ascribed to the entire coating of UiO-66 on

CoFe2O4 microspheres. In addition, the photograph of different

samples further proved that pristine and composite materials were

successfully fabricated (Supplementry Figure S2).

3.1.3 XPS analysis
To explore the surface chemical state of the CoFe2O4@UiO-

66 composite, the XPS spectra were recorded (Pan et al., 2022).

The survey spectrum (Figure 6A) showed characteristic peaks for

Zr 3d, Fe 2p, Co 2p, C 1s, and O 1s, accompanying intense peaks

for the C and O elements corresponding to their relative

abundance. For the C 1s spectrum (Figure 6B), three peaks at

284.5, 286.1, and 288.4 eV are respectively ascribed to C=C of the

benzene ring and carboxylate groups of the BDC linker in the

UiO-66 framework (Cao et al., 2018). As shown in Figure 6C, the

O 1s spectrum demonstrated three deconvolution peaks cited at

530.1, 531.5, and 532.6 eV associated with the metal-oxygen

bond (Zr–O) bond, C=O of the BDC linker, and surface

adsorbed hydroxyl group, respectively (Yang et al., 2019). In

Zr 3d XPS (Figure 6D), the characteristic binding energies of Zr

3d5/2 (at 182.5 eV) and Zr 3d3/2 (at 184.6 and 185.6 eV) can be

seen, belonging to Zr–O core level interactions (Subhan et al.,

2021). The energy spectrum of Co 2p depicted in Figure 6E

demonstrated a pair of fitting peaks at 780.8 and 785.8 eV

associated with Co 2p3/2 and another peak cited at 795.2 eV

(with a relatively strong shake-up satellite peak at 800.4 eV)

related to Co 2p1/2, confirming the existence of Co2+ oxidation

FIGURE 5
SEM-EDS elemental mapping of CoFe2O4@UiO-66 composite.
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state in the spinal structure (Zhou et al., 2014; Chen et al., 2016).

Typically, the satellite energy separation in oxides for Co3+ is

approximately 8.5–9.5 eV (Xu et al., 2019). Given this, an extra

peak centered at 789.6 eV corresponding to the binding energy of

Co3+ 2p3/2 is presumably due to the surface oxidation of Co

species after coating by UiO-66 particles. In the Fe 2p spectrum

(Figure 6F), two distinct peaks located at 710.1 and 723.3 eV

associated with the binding energies of Fe 2p3/2 and Fe 2p1/2,

respectively, suggesting the existence of Fe2+ (Zhou et al., 2022),

whereas, the Fe 2p shakeup satellites observed at 719.5 and

730.8 eV are assigned to Fe3+ spin state (Ma et al., 2015;

Salunkhe et al., 2015). Moreover, the peaks noticed at 712.6,

715.4, and 726.4 eV could be due to Fe–O bonds, which further

assert the strong interaction between CoFe2O4 and UiO-66 via

Fe-O-Zr linkages (Xu et al., 2017).

3.1.4 Surface area and thermal investigation
N2 adsorption-desorption isotherm studies were employed to

investigate the textural properties of UiO-66 and CoFe2O4@UiO-

66 composite and relevant data are given in Figure 7; Table 1.

UiO-66 (Figure 7A) displayed type IV isotherm with a well-

definedH2 hysteresis loop, indicating the existence of mesopores,

FIGURE 6
XPS spectra of CoFe2O4@UiO-66 composite: survey scan (A), C 1s (B), O 1s (C), Zr 3 days (D), Co 2p (E), and Fe 2p (F).
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thereby authenticating the results of FE-SEM. The SBET of UiO-

66 is 593.94 m2 g−1. Obviously, the CoFe2O4@UiO-66 composite

attained the same isotherm pattern; however, with an H4 type

hysteresis loop and SBET of 375.7 m2 g−1. The pore size

distribution of as-synthesized catalysts also showed a similar

trend (Figure 7B), whereas, the total pore volumes for UiO-66

and CoFe2O4@UiO-66 are calculated to be 0.35 and 0.21 cm3 g−1,

respectively. Distinctly, this reduction in the SBET (~36%) and

pore volume (~40%) of the composite material is possibly

connected with the formation of larger mesopores owing to

the encapsulation of CoFe2O4 particles into the MOF network

(Lee et al., 2015; Qi et al., 2019).

To evaluate the thermal behavior of the as-prepared catalysts,

TGA analysis was conducted and the findings are displayed in

Figure 8. For CoFe2O4, two stages of weight loss with a total

weight loss of ~16% can be observed. The major one occurred up

to 100°C owing to the evaporation of moisture, whilst, the minor

mass loss happened at 330°C could be assigned to the elimination

of ammonium hydroxide and chloride from the surface

(Chakhtouna et al., 2021). In contrast, no considerable weight

loss can be detected above 330°C, revealing the high thermal

stability of CoFe2O4. On the other side, both pristine and

modified UiO-66 demonstrated similar TGA curves with three

stages of weight loss. In the case of pristine UiO-66, an initial

weight loss (13%) occurs from 33°C–161°C owing to the

evaporation of physically adsorbed water molecules from the

UiO-66 surface (Xu et al., 2022). In the second stage, nearly 19%

weight loss observed in the range of 161°C–300°C is associated

FIGURE 7
N2 adsorption-desorption isotherms (A), and pore size distribution curves (B) of UiO-66 and CoFe2O4@UiO-66 composite.

TABLE 1 Porous texture of the as-synthesized samples.

Sample SBET (m2 g−1)a SLangmuir (m2 g−1)b Vt (cm3 g−1)c Pore diameter (nm)d

UiO-66 593.94 742.31 0.35 2.36

CoFe2O4@UiO-66 375.7 480.03 0.21 2.27

aBET specific surface area.
bLangmuir specific surface area.
cTotal pore volume measured at P/P0 = .99.
dPore size in diameter calculated by the desorption data using Barrett–Joyner–Halenda (BJH) method.

FIGURE 8
Thermal analysis of UiO-66, CoFe2O4, and CoFe2O4@UiO-
66 composite, inset: the corresponding derivative
thermogravimetric (DTG) plots.
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with the removal of DMF molecules trapped inside the

framework pores and thermal dehydration of zirconium

clusters (Zhang et al., 2021a). The last weight loss (>30%)

appeared at 430°C–600°C is ascribed to the thermal

decomposition of the organic ligand to CO, CO2, and ZrO2

(Molavi et al., 2018). Compared to bare UiO-66, the TGA curve

of CoFe2O4@UiO-66 showed a relative reduction in weight loss

by about 6.22%, indicating an improvement of thermal stability

after the introduction of CoFe2O4 nanoparticles.

3.2 Optical properties

The UV-Vis DRS was performed to study the

photoabsorption characteristics of the as-synthesized

photocatalysts and findings are shown in Figure 9A. It can be

noticed that bare UiO-66 displayed no absorption in the visible

region, however, strong absorption is obvious in the UV spectral

region with an absorption peak at 296 nm that can be ascribed to

Zr–Oxo-clusters (Wang et al., 2016). Otherwise, owing to the

black color of pristine CoFe2O4, absorption peaks can be seen in

both UV and visible regions (Jing et al., 2016). By comparison,

the light absorption edge of CoFe2O4@UiO-66 composite is red-

shifted to around 467 nm, evidencing the enhancement of light

absorption intensity and visible light utilization efficiency after

combining CoFe2O4. For certifying, the Kubelka-Munk equation

was applied to estimate the bandgap energy (Eg) of

semiconductors (Qiu et al., 2019):

(αhυ)2 � A(hυ–Eg)
n/2

(2)

where α, h, υ, and A are the diffuse absorption coefficient,

Planck’s constant, light frequency, and constant, respectively.

As depicted in Figures 9B–D, direct bandgap energies were

calculated from the tangent line obtained by plotting (αhυ)2 vs
energy (hυ). For UiO-66, CoFe2O4, and CoFe2O4@UiO-

66 composite, the estimated Eg values are approximately 3.84,

1.63, and 2.74 eV, respectively. In the case of the composite, the

relatively reduced bandgap observed might be assigned to the

interface formed between UiO-66 and the narrow bandgap

CoFe2O4 particles, resulting in more effective absorption of

the solar spectrum and eventually better photocatalytic response.

3.3 Photoelectrochemical properties

Photoluminescence (PL) spectra were obtained to evaluate

charge separation and transmission efficiency over different

catalysts. In theory, the lower the PL intensity, the lower the

reintegration of the charge carriers, which is advantageous to the

FIGURE 9
UV-vis DRS spectra (A), bandgap (Eg) plots (B–D) of the as-synthesized samples.
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photocatalytic reaction (He et al., 2021). As revealed in

Figure 10A, the PL spectral intensity decreased in the order of

UiO-66 > CoFe2O4 > CoFe2O4@UiO-66, where, pristine UiO-66

exhibited the highest peak intensity at around 407 nm.

Conversely, upon coupling with CoFe2O4 particles, the PL

intensity is markedly suppressed and the signal is displaced to

a higher wavelength (466 nm). Thus, it can be deduced that the

formation of core-shell heterostructure significantly quenched

the recombination of photoinduced charge carriers, accelerating

the migration rate.

The photoelectrochemical characterizations were further

investigated by electrochemical impedance spectroscopy

(EIS) and linear sweep voltammetry (LSV) to verify the

charge transfer and current density, thereby determining the

photocatalytic performance of catalysts. Consistent with the

findings of the PL analysis, EIS Nyquist plots displayed the same

tendency (Figure 10B). Basically, the smaller the semicircle

diameter in EIS plots, the lower the charge transfer resistance

(Zhang et al., 2022). In this study, it is interestingly noted that

CoFe2O4@UiO-66 displayed a smaller Nyquist arc radius than

those of parent UiO-66 and CoFe2O4, reaffirming the depletion

in charge transfer resistance and enhancement of charge

carriers separation by constructing heterojunction. In

addition, LSV profiles of as-synthesized catalysts are

represented in Figure 10C. As can be seen, UiO-66 displayed

the lowest current density (0.15 mA cm−2), owing to inefficient

utilization of visible light. In contrast, the current density is

significantly improved to 0.31 mA cm−2 over CoFe2O4@UiO-

66. On the other side, the anodic currents in LSV curves

demonstrated the n-type semiconductor nature of the as-

synthesized catalysts (Quach et al., 2022). To summarize,

these findings assert that the successful interfacial contact

between UiO-66 and CoFe2O4 can sufficiently hinder the

charge recombination dilemma and induce effective

separation of photoinduced carriers, leading to swift surface

reaction dynamics and better photocatalytic activity.

3.4 Photocatalytic performance

The photocatalytic activities of bare and composite catalysts

were studied through the degradation of MB and MO dyes as

representative pollutants under simulated solar irradiation.

Obviously, under dark conditions, the dye adsorption capacity

follows the order UiO-66 > CoFe2O4@UiO-66 > CoFe2O4

(Figures 11A, B). In comparison with pure CoFe2O4, the

adsorption capacity of CoFe2O4@UiO-66 composite is

significantly boosted owing to the abundant exposed

FIGURE 10
PL emission spectra (A), EIS Nyquist (B), and LSV curves (C) of UiO-66, CoFe2O4 and CoFe2O4@UiO-66 composite.
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adsorption sites and internal porous structure of the outer UiO-

66 shell. Noteworthy, the removal efficiencies of the different

photocatalysts for MO dye are about 3.0–4.4-folds higher than

that for MB dye. In general, the surface charge of the particles can

prominently influence their interaction with target pollutants,

affecting the adsorption capacity (Sohrabnezhad and

Moghadamy, 2022). In this regard, the Zeta potentials of the

as-synthesized catalysts were measured and the findings are

depicted in (Supplementary Figure S3). As observed, all

samples possess positive charges with a potential of +17.2, +

19.5, and +23.8 mV for UiO-66, CoFe2O4, and CoFe2O4@UiO-

66, respectively. Hence, anionic dye molecules are effectively

adsorbed to the surface by electrostatic interaction, which is

proposed as the predominated removal mechanism during the

adsorption process. Following the accomplishment of

adsorption-desorption equilibrium, the equilibrium dye

concentration (Ce) was applied as the initial concentration. As

presented in Figures 11C, D, upon simulated solar illumination,

pristine UiO-66 and CoFe2O4 exhibited low degradation

efficiency due to the weak visible light harvesting and

ineffective segregation of photogenerated carriers, respectively.

By comparison, considerable photocatalytic degradation was

attained in presence of CoFe2O4@UiO-66 composite, with a

20%–40% increase in degradation efficiency (Figure 12A). The

UV-Vis spectral changes of MB and MO dyes over CoFe2O4@

UiO-66 photocatalyst at different illumination times are revealed

in Figures 12B, C.

To further elucidate the photodegradation process, kinetic

curves were plotted and rate constants k) were calculated.

(Supplementary Figure S4) illustrates the pseudo-first-order

kinetic equation to define the reaction rate constant of

different samples following Eq. 3 (Yi et al., 2019):

(ln (Ce/C) � kt (3)

where k is the first-order rate coefficient (min−1), Ce is the dye

concentration at equilibrium and C is the concentration at time t.

It is noteworthy that among the three catalysts, the CoFe2O4@

UiO-66 composite possessed a greater rate constant, which is

consistent with the photocatalytic results. As evident, the

heterojunction constructed between UiO-66 and CoFe2O4

simultaneously reduced the charge carrier recombination and

increased the photon absorption capacity, resulting in a faster

photocatalytic reaction. The photocatalytic activity of CoFe2O4@

UiO-66 composite for dye degradation was further compared

with the previously reported photocatalysts (Table 2). Overall,

the CoFe2O4@UiO-66 composite displayed outstanding

efficiency for the degradation of dyes at high initial

concentrations.

FIGURE 11
Adsorption and photodegradation performance of as-synthesized photocatalysts for removal of MB (A,C) and MO (B,D) dyes.
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3.5 Proposed photocatalytic mechanism

To explore the possible mechanism for the photocatalytic

degradation of MB and MO dyes, radical trapping experiments

were performed over CoFe2O4@UiO-66 composite under

simulated solar irradiation. EDTA-2Na, BQ, and IPA were

utilized separately in the degradation system as h+, •O2
−, and

•OH scavengers, respectively. As observed in Figure 13, all the

reactive substances are contributed to the catalytic process.

Nevertheless, EDTA-2Na has the most significant impact on

the degradation reaction. When EDTA-2Na is added, the

degradation rate decreased drastically to 12% and 15% for MB

and MO, respectively. In the meanwhile, upon the introduction

of BQ and IPA, a moderate influence on the degradation

efficiency can be seen. This implies that photogenerated holes

are the dominant active species, while •O2
− and •OH possess a

certain contribution to the photocatalytic reaction.

For more insights into the mechanism of photogenerated

charge separation, Mott-Schottky (M−S) measurement was

further implemented to investigate the electronic band

structure and the semiconductivity nature of UiO-66 and

CoFe2O4. The positive slope of the tangent lines depicted in

Figures 14A, B suggests that both materials are typical n-type

semiconductors (Shen et al., 2015a), which is in agreement with

the LSV results. The results showed that the flat band potential

(EFB) of UiO-66 and CoFe2O4 are set as –0.23 and –0.31 V vs. Ag/

AgCl, respectively. Subsequently, the EFB (vs. NHE) could be

determined as follows (Man et al., 2022):

E NHE, pH�7( ) � EAg/AgCl–0.059 7–pHof the electrolyte( ) + 0.198

(4)
Thence, the EFB of UiO-66 and CoFe2O4 is –0.24 and –0.36 V

(vs NHE), respectively. In general, the conduction band (ECB)

potential for n-type semiconductors is approximately 0.1–0.2 V

more negative than the flat band potential (Ishikawa et al., 2002).

Accordingly, the corresponding (ECB) potential of UiO-66 and

CoFe2O4 can be calculated as –0.44 and –0.56 V (vs. NHE),

respectively. From the bandgap values obtained above, the

valence band (EVB) potential can be calculated using Eq. 4:

EVB � Eg + ECB (5)

Subsequently, the EVB potential of UiO-66 and CoFe2O4 is

determined as 3.40 and 1.07 V (vs. NHE), respectively.

In the light of the aforementioned findings and discussion, the

plausible reaction mechanism for photocatalytic degradation of MB

and MO over CoFe2O4@UiO-66 photocatalyst is proposed

(Figure 15). Upon simulated sunlight irradiation, both UiO-66

FIGURE 12
The photodegradation efficiency of as-synthesized photocatalysts (A), UV-Vis absorption spectra for degradation of MB (B) and MO (C) dyes
over CoFe2O4@UiO-66.
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and CoFe2O4 are excited, generating electrons (e
–) and holes (h+) in

their CB and VB, respectively. Since, the CB potential of CoFe2O4

(–0.56 V) is more negative than the LUMO of UiO-66 (−0.44 V),

the excited electrons can directly transfer through the interface

channels formed by the heterojunction to the LUMO of UiO-66,

suppressing the recombination of photogenerated carriers (Wang

et al., 2021d; Gao et al., 2021). Subsequently, the photoinduced

electrons at LUMO of UiO-66 can reduce the dissolved oxygen to

yield •O2
− radicals. Meanwhile, the photogenerated holes would

transfer from the VB of UiO-66 (+3.40 V) to the VB of CoFe2O4

(+1.07 V). However, as the VB potential of CoFe2O4 (+1.07 V) is

lower than the redox potential of–OH/•OH (1.99 V vs NHE), the

photogenerated holes cannot oxidize H2O to produce •OH radicals

(Wang et al., 2022). Instead, the accumulated holes promptly

degrade the dye molecules because of their strong oxidation

properties. Otherwise, •OH reactive radicals could be indirectly

generated through •O2
− radicals at the CB of the photocatalyst (Zou

et al., 2021). This is consistent with the results of quenching

TABLE 2 Comparison of photocatalytic performance of CoFe2O4@UiO-66 with other reported photocatalysts for degradation of MB and MO.

Photocatalyst Dye concentration
(mg/L)

Catalyst
amount
(mg/L)

Light source Irradiation
time (min)

Removal
rate (%)

Ref

MB dye

Fe-UiO-66 20 10 60 W white LED lamp 160 84 Hosseini et al.
(2022)

g-C3N4−xClx/0.5 M HCl 3 25 1000 W Xe lamp (λ ≥
420 nm)

180 97 Bai et al.
(2020)

Co0.1Mg0.9Fe2O4 10 10 A halogen lamp
(intensity: 70 mWcm�2)

240 80 Dojcinovic
et al. (2021)

α-Fe2O3@UiO-66 13 100 300 W Xe lamp (λ ≥
420 nm)

50 100 Zhang et al.
(2019a)

UiO-66/g-C3N4

UC10:10
10 50 350 W Xe lamp (λ >

420 nm)
240 99 Zhang et al.

(2018)

30% CuNb2O6/g-C3N4 10 20 500 W Xe lamp 150 98.5 Ahmad et al.
(2022)

S–N-co-doped-
CoFe2O4@rGO@TiO2

5 8 300 W Xe lamp (λ >
420 nm)

360 94 Wei et al.
(2019)

CoFe2O4@UiO-66 100 50 150 W Xe lamp 180 56.7 This work

MO dye

UiO-66-NH2@CNT
(3 wt%)

15 30 100 W LED lamp 30 93 Abdi et al.
(2021)

OV-BOC 10 100 300 W Xe lamp (λ >
400 nm)

120 82 Zhao et al.
(2019)

40 wt%-AgBr/CeO2 30 50 300 W Xe lamp (λ ≥
400 nm)

180 93 Chen et al.
(2021)

UiO-66/BiFeO3 10 50 250 W high-pressure Hg
lamp (λ > 400 nm)

180 88.7 Bargozideh
et al. (2020)

Au-CoFe2O4/MoS2 50 70 300 W iodine tungsten
lamp

120 99 Jia et al. (2019)

rGO@In2S3@UiO-66 15 30 500 W Xe lamp (λ =
420 nm)

60 98.1 Gan et al.
(2019)

3% TiO2/g-C3N4 10 1,000 500 W Xe lamp
(simulated sunlight)

80 62.6 Huang et al.
(2016)

CoFe2O4@UiO-66 100 50 150 W Xe lamp 180 63.3 This work

FIGURE 13
The effect of different quenchers on the photocatalytic
activity of CoFe2O4@UiO-66 for degradation of MB and MO dyes.
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experiments, indicating the construction of a staggered type II

heterojunction energy band alignment near the interface of UiO-

66 and CoFe2O4. The following equations may summarize the

degradation process:

CoFe2O4@UiO − 66 + hυ → e– + h+ (6)
e– + O2 → •O–

2 (7)
•O–

2 + 2h+ + 2e– → H2O2 (8)
H2O2 + 2e– →−OH + •OH (9)

Organic dye + h+ + •OH + •O–
2 → degradation products (10)

4 Conclusion

In summary, a novel CoFe2O4@UiO-66 core-shell

heterojunction photocatalyst was successfully synthesized through

a simple solvothermal route. In comparison with the UV-driven

UiO-66 catalyst, the CoFe2O4@UiO-66 heterojunction displayed an

enhanced photo-responsive capacity in the visible region with an

absorption band of ~467 nm. This can be certified by the reduction

of bandgap energy from 3.84 eV for UiO-66 to 2.74 eV for the

composite material. The CoFe2O4@UiO-66 composite exhibited

better performance than either UiO-66 or CoFe2O4 towards

photodegradation of organic dyes at a high initial concentration

under simulated solar light irradiation. The overall removal

efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L)

reached >60% within 180 min irradiation. Moreover, the

photoluminescence, impedance, and current density studies

showed an effective charge separation and transfer over the

CoFe2O4@UiO-66 composite. This was mainly ascribed to the

tight interfacial contact formed through the heterojunction,

which suppressed the charge recombination rate, thereby

improving the photocatalytic activity. From radical scavenging

FIGURE 14
Mott-Schottky plots of UiO-66 (A) and CoFe2O4 (B).

FIGURE 15
A proposed photocatalytic mechanism for dye degradation over CoFe2O4@UiO-66 heterojunction under simulative solar irradiation.
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experiments andMott-Schottky analysis, it can be inferred that h+ had

the primarily significant contribution during the photocatalytic

process. This study paved the way to design MOF-based core-shell

heterostructured photocatalysts with more active sites, good optical

properties, and enhanced photocatalytic activity for various

environmental applications.
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