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Protein–protein interactions (PPIs) are recognized as important targets in drug

discovery. The characteristics of molecules that inhibit PPIs differ from those of

small-molecule compounds. We developed a novel chemical library database

system (DLiP) to design PPI inhibitors. A total of 32,647 PPI-related compounds

are registered in the DLiP. It contains 15,214 newly synthesized compounds,

with molecular weight ranging from 450 to 650, and 17,433 active and inactive

compounds registered by extracting and integrating known compound data

related to 105 PPI targets from public databases and published literature. Our

analysis revealed that the compounds in this database contain unique chemical

structures and have physicochemical properties suitable for binding to the

protein–protein interface. In addition, advanced functions have been integrated

with the web interface, which allows users to search for potential PPI inhibitor

compounds based on types of protein–protein interfaces, filter results by drug-

likeness indicators important for PPI targeting such as rule-of-4, and display

known active and inactive compounds for each PPI target. The DLiP aids the

search for new candidate molecules for PPI drug discovery and is available

online (https://skb-insilico.com/dlip).
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1 Introduction

Protein–protein interactions (PPIs) are involved in various

biological functions, and over 650,000 PPIs have been identified

in the human proteome (Stumpf et al., 2008). PPIs are considered

as important targets in drug discovery (Mullard, 2012). However,

as the protein–protein (PP) interfaces generally have shallow

hydrophobic cavities (Jones and Thornton, 1996; Shin et al.,

2017), the hit rate obtained by screening compounds for PPIs

using conventional small-molecule compound libraries is not

high (Barker et al., 2013). The PP interface includes peptide-

binding motifs (Whitby and Boger, 2012), and is therefore

structurally complex (Silvian et al., 2013; Milroy et al., 2014;

Ran and Gestwicki, 2018). Thus, for targeting PPIs, larger

compounds whose chemical space is different from that of

conventional small-molecule drugs are required (Reynès et al.,

2010; Sperandio et al., 2010; Aeluri et al., 2014; Arkin et al., 2014;

Qiu et al., 2020).

Several public databases that contain compound and target

information related to PPIs have been released to date, such as

TIMBAL (Higueruelo et al., 2013), 2P2Idb (Basse et al., 2016),

and iPPI-DB (Labbé et al., 2013). The Protein Data Bank (PDB)

(Berman et al., 2000) contains three-dimensional (3D) structural

data for PPI complexes, while the ChEMBL database (Gaulton

et al., 2012) contains assay data pertaining to PPI inhibition.

However, these open databases lack information on new

chemical structures specific to PPIs, because the conventional

chemical libraries are composed of small-molecule compounds

with molecular weight (MW) < 500, which makes them

unsuitable for inhibiting PPI targets. Most molecules that

inhibit PPIs are relatively larger than the size recommended

by Lipinski’s “rule-of-5 (RO5)” (MW < 500, LogP <5, number of

hydrogen-bond donors <5, and number of hydrogen-bond

acceptors <10) (Lipinski et al., 1997), and many satisfy the so-

called “rule-of-4 (RO4)” (MW > 400, LogP >4, number of

rings >4, and number of hydrogen-bond acceptors >4)
(Morelli et al., 2011). Therefore, rational design of chemical

libraries with new chemical structures is important to find

lead compounds that inhibit PPIs. Macrocyclic molecules such

as cyclic peptides are considered promising drug candidates

against PPIs, while macrocyclic molecules suitable for PPI

inhibition suffer from poor cell-membrane permeability

(Dougherty et al., 2017). The technologies for generating

macrocyclic compound libraries have been advanced (Isidro-

Llobet et al., 2011). The chemical synthesis of some macrocycles

remains challenging, and those rational designs in the hit-to-lead

process are difficult to apply. Therefore, we focused on medium-

sized compounds with non-cyclic structures, which have

superior synthetic accessibility. Several PPI-oriented libraries

have been proposed by academic groups and chemical

suppliers (Hamon et al., 2013; Milhas et al., 2016; Bosc et al.,

2020). Recently, the Fr-PPIChem library (10,314 compounds)

was developed using a machine learning method. However, these

chemical spaces are still not wide enough to identify novel PPI

modulators. Moreover, molecules complying with the RO4 are

often unfavorable as oral drugs owing to their relatively large

molecular size, and thus, experimental validation data with

reference to PPI targets are lacking for these molecules.

As a part of the Japan Agency for Medical Research and

Development (AMED) project, we generated a chemical library

(named the DLiP-PPI library) consisting of 15,214 small-to-

medium-sized molecules that target PPIs. The library consists of

relatively soluble synthetic compounds with MWs ranging

between 450 and 650 and was designed to fill the gaps in the

chemical space suitable for PPI inhibition. In a previous study, we

have demonstrated the usefulness of the DLiP-PPI library by

using this library to successfully identify hit compounds with

inhibitory activity against Keap1/Nrf2, a PPI target. Moreover,

we confirmed the effectiveness of combining the DLiP-PPI

library and machine learning in improving the hit rate

(Shimizu et al., 2021). However, a relational database (RDB)

to store andmanipulate the compound data was lacking; thus, the

library could not be easily utilized for molecular design.

In this study, we developed a new RDB system and web

interface for the DLiP-PPI library. This database is searchable for

information on both known PPI modulators and PPI library

compounds. It contains a large number of potential PPI

modulators with novel chemical structures not found in other

data resources, as well as active and inactive compounds linked to

a list of known PPI targets that have been originally curated and

integrated. In addition, we have implemented some advanced

features that are useful for PPI drug discovery such as drug-

likeness filters. This database system is useful for designing new

compounds for PPI drug discovery research.

2 Materials and methods

2.1 Preparation of the PPI compound
library

The DLiP-PPI library in this database was selected from

compounds predicted to bind to 3D structures of various PP

interfaces using docking simulations. In addition, we selected

additional compounds based on trends in the physicochemical

properties of known PPI modulators. To ensure diversity of the

PPI targets, the PP interface was classified into three PPI types

related to secondary structures (helix, turn, and strand) and other

features (motif). First, docking simulations were performed using

FRED software (McGann, 2011) on a total of 117 specific PPI-

target structures in the PDB for approximately 6 million

compounds obtained from a commercial virtual library

(K-Library developed by the Kishida Chemical Co. Ltd.).

Second, we prioritized compounds based on docking scores and

performed clustering and visual inspection to select candidates for

subsequent synthesis. Third, to ensure the quality and diversity of
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the compound library, compounds with a sphere-like structure

(i.e., non-flat structure) were also selected by considering the

principal moment of inertia (PMI). In addition, new structures

were carefully chosen, followed by the selection of novel scaffolds

with spiro rings (i.e., new structure) from the virtual compound

library. Finally, only compounds that were successfully synthesized

were registered in the database (detailed procedures in

Supplementary Data Sheet S1).

FIGURE 1
Architecture of the DLiP database system. PPI: protein–protein interaction; cmpds: compounds.

FIGURE 2
Comparison of histograms of molecular properties (molecular weight (A), ALogP (B), hydrogen-bond acceptors (C), number of violations of
rule-of-four (D)) of DLiP-PPI library (red), small-molecule approved drugs (blue), and known PPI modulators (green).
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2.2 Preparation of curated
protein–protein interaction data

Known PPI-modulating compound and activity data were

collected from open PPI databases (TIMBAL, iPPI-DB, and

2P2Idb). Activity data related to known PPI targets were

extracted from ChEMBL (version 29), a database of bioactive

compounds. In addition, we manually extracted new PPI activity

data pertaining to 827 compounds from 14 references published

from January 2018 to the present, as these databases did not

include these compounds (see references in Supplementary Table

S1). Each compound was linked to the PPI-target name (PPI

pair) and the activity status (active or inactive). In this database,

the PPI-related compounds were classified as active (1) or

inactive (0) in a binary manner, and the definition of active

or inactive was based on the information derived from the

underlying activity information from the original paper.

Molecules obtained from TIMBAL and ChEMBL with activity

values ≤10 μM were defined as active, and those with higher

activity values were defined as inactive. Furthermore, only data in

active compounds were extracted from iPPI-DB and 2P2Idb.

3 Results and discussion

3.1 Contents

The DLiP database contains a total of 32,647 compounds,

comprising 15,214 compounds from the DLiP-PPI library and

17,433 known PPI-related compounds (active and inactive

molecules) extracted from public databases and literature

(Figure 1). The compound types based on the PP interface

FIGURE 3
(A)Histogramof structural similarities (Tanimoto similarity by extended connectivity fingerprint 6 (ECFP6)) between compounds in the DLiP-PPI
library and the closest known PPI modulators in the database. (B) Analysis of the steric shape space of non-flat subset of DLiP-PPI library (2,280) by
PMI plot. To assess the shape-based distribution of compounds in the PPI library, normalized principal moments of inertia (NPR1 and NPR2) were
calculated. (C) Examples of compound structures in the DLiP-PPI library. Compounds with npr1+npr2 values greater than 1.5 and maximum
similarity to the closet known PPI modulators less than 0.3 were selected. The PP interface type (type), maximum similarity score (max sim), npr1and
npr2 are also shown.
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being targeted are as follows: helix (α-, 310- and π-helix),
4,908 compounds; turn (β- and γ-turn) and strand (β-strand),
2,566 compounds; and motif, 4,511 compounds. In addition,

2,280 and 949 compounds with non-flat and novel scaffold

structures, respectively, were registered. The inhibitory activity

data against a PPI target (Nrf2/Keap1) has already been tested for

116 compounds in this library (Shimizu et al., 2021) and then

incorporated into the database. The 17,433 known PPI-related

compounds were associated with a total of 24,991 activity

datapoints (15,129 active and 9,862 inactive datapoints)

against 105 PPI targets.

3.2 Analysis

We calculated the molecular properties of the compounds in

the DLiP-PPI library (15,214 compounds) and known PPI

modulators (10,568 compounds) in the database and

compared them to approved small-molecule drugs

(2,081 compounds). Figures 2A, B show the distribution of

representative molecular properties (MW and ALogP) of the

compounds in the DLiP-PPI library and known PPI modulators.

Majority of the compounds in the DLiP-PPI library (14,448/

15,214 = 0.949) have MWs greater than 450 (mean value of

491.28), which is larger than the mean MW value of approved

small-molecule drugs (364.67) and closer to the average of that

for known PPI-active compounds (524.73). On the other hand,

the distribution of ALogP in the DLiP-PPI library (mean value of

3.03) is clearly shifted to a region lower than that corresponding

to known PPI modulators (mean value of 3.58), suggesting that

these compounds have advantages with respect to oral

bioavailability. The DLiP-PPI library consists of synthetic

compounds with relatively low ALogP, although the upper

MW is limited to approximately 650. The reason for the

FIGURE 4
Web interface of the DLiP database system showing (A) Top page of the DLiP web interface. Here, users can choose from two main search
functions (PPI Library Search and PPI Curation Search) and obtain other information about the DLiP database (ABOUT) from the left menu bar. (B)
Search result page of PPI Library Search. (C) Compound information page. Here, users can see the 2D/3D chemical structures of each compound
registered in the DLiP database.
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average MW of this PPI library being lower than that of known

PPI modulators is that we left sufficient room in chemical space

for structural expansion in the hit-to-lead process. The

distribution peaks of hydrogen acceptors, one of the key

properties for PPI targeting, are between 6 and 7 for known

PPI modulators and the DLiP-PPI library, which are comparable

between the two compound groups (Figure 2C and

Supplementary Table S2). The number of RO4 violations

clearly indicates the suitability for PPI targeting among the

datasets (Figure 2D); the distribution of RO4 violations for

the DLiP-PPI library is predominantly within one violation.

This is comparable to the distribution pertaining to PPI

modulators rather than to that of small-molecule drugs,

suggesting a potentially advantageous property as a match for

PPI targets.

Next, we investigated the novelty of the compound structures

included in the database. According to our calculation of the

Tanimoto similarity between the DLiP-PPI library compounds

and known PPI-active molecules using extended connectivity

fingerprint 6 (ECFP6) (Rogers and Hahn, 2010), the distribution

of maximum similarity scores was mostly less than 0.4

(Figure 3A); this suggests that the novelty of the DLiP-PPI

library is high. A triangle plot of normalized PMI ratios

(NPR1 and NPR2) gives a visual representation of the

molecular shape diversity covered by a collection of molecules

(Sauer and Schwartz, 2003). We used the PMI plot to assess the

molecular shape-based distribution of compounds in the PPI

library. The PMI plot in Figure 3B shows that the compounds in

the non-flat subset of the DLiP-PPI library (2,280 compounds)

are spread across the region between the sphere-like corner and

the disc-rod axis in the PMI space, suggesting high diversity of

the steric shapes. The ring structures that occur frequently in

each dataset are presented as a list of structures in Supplementary

Figure S1 and Supplementary Figure S2. This informationmay be

useful in understanding the typical substructures of PPI

modulators or for searching new molecule designs. Notably,

the DLiP-PPI library contains unique compounds with the

spiro scaffold which is found rarely in the other databases

(Figure 3C).

3.3 Web interface

The DLiP database system has a user-friendly web interface

that allows users to easily search for PPI-related compound data.

It is equipped with two main search functions: the “PPI Library

Search” for searching the DLiP-PPI library and the “PPI Curation

Search” for searches pertaining to known PPI modulators

(Figure 4). In addition, several search options allow users to

further filter compounds by physicochemical properties or rule-

based drug-like measures. Once users find the compounds of

interest, the detailed information is displayed on the “Compound

FIGURE 5
PPI library search page at which users can search for compounds in the PPI library by drawing a chemical structure, selecting or entering a
keyword such as PP interface type, motif sequence or ID, or a SMILES/SMARTS string of a chemical structure.
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Information Page” that shows chemical structure data (standard

InChI, InChIKey, SMILES), typical molecular properties, PPI

activity (active or inactive), target information, and descriptors

calculated by RDKit 2018.03.4.0 (https://www.rdkit.org/),

Mordred 1.1.1 (Moriwaki et al., 2018), and CDK 1.1

(Willighagen et al., 2017). Requests for chemical synthesis for

all of the compounds can be placed using the vendor’s compound

ID. A total of 1,911 descriptors have been stored in this database.

3.3.1 PPI library search
Users can search for compounds included in the DLiP-PPI

library by keywords, chemical strings (SMILES and SMARTS), and

chemical drawings (Figure 5). In the keyword search, a PDB ID of

the PPI-target complex used in docking simulations for PPI

modulator prediction, receptor or peptide name, type of

secondary structure or motif of the PP interface (PPI type), motif

ID (Eukaryote Linear Motif, ELM ID) (Kumar et al., 2019), and

motif sequence can be entered to search for compounds. The

advanced search functions allow users to filter compounds by

physicochemical or drug-likeness properties. The initial positions

of the two cursors in the physicochemical search indicate 25% and

75% interquartile deviations for each chemical property in the

library. The drug-likeness search allows users to filter compounds

from the PPI library by RO5, QED drug-likeness score (Bickerton

et al., 2012), and fraction of sp3 carbon atoms.

3.3.2 PPI curation search
Users can search for known PPI inhibitors by keywords,

chemical strings (SMILES and SMARTS format), and chemical

drawings (Figure 6). The target search can be applied by selecting

a specific PPI target from the list of PPI-target names. The list of

PPI targets in this database was created by curating and

integrating targets registered under different target names in

several public databases into a common PPI-target name. By

using the common PPI-target name, users can easily find

compounds related to the same PPI target from different data

sources. These compounds are labeled with activity information

(active or inactive) for the selected targets. If the users are only

interested in compounds favorable for inhibiting PPIs, a drug-

likeness search can filter compounds satisfying the RO4 (MW >
400, ALogP >4, number of rings >4, and number of hydrogen-

bond acceptors >4).

FIGURE 6
PPI curation search page at which users can select a target of interest from a list of 105 PPI target names, and search for PPI-related compounds
by pre-defined drug-likeness rules such as Lipinski’s rule-of-5, rule-of-4, and beyond-rule-of-5.
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3.3.3 Search example and case study
Using this interface, users can search for trends among the

known PP modulators. Users can easily find a specific target

from a PPI list in the PPI curation search page, and then

obtain the related compounds and the corresponding

physicochemical properties on the compound information

page. Alternatively, users can find new chemical structures

for a particular PPI target by searching the curated data in this

database; such a search yields chemical structures from the

search results of the PPI-active compounds of interest.

Furthermore, by inputting the substructure into the

substructure search function, it is possible to find new

compounds from the PPI library with substructures similar

to those of the specific PPI target.

3.3.4 Schema and future improvements
The DLiP database system is accessible to anyone at https://

skb-insilico.com/dlip. Details of this database schema are

shown in Supplementary Figure S3. In the future, we will

import additional PPI library compounds as well as

supplementary experimental data on PPI inhibition. We will

implement functionality in the interface that allows pre-

registered users to submit the results of their PPI

experiments and all guest users to view the submitted

compounds and activity data. Furthermore, one of the goals

of this database is to apply it to computational chemistry, and

we plan to implement a function to download the descriptor

data in a format that can be used as input for building

prediction models.

4 Conclusion

The DLiP database system was developed to facilitate

searching of chemical structures and molecular descriptors

related to PPI-oriented chemical libraries. This PPI-oriented

library contains unique synthetic compounds with novel

chemical structures designed based on the structures of

different PP interfaces. Known PPI-related compound data

associated with 105 PPI targets were collected from public

databases and literature sources and then integrated into this

database. Furthermore, by using the web interface, users can

easily filter compounds of interest from different data sources

according to the RO4, which is an important index for PPI

modulators. This database may provide new clues for PPI drug

discovery by filling gaps in chemical data between those for

small- and medium-sized molecules.
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