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Bacterial keratitis (BK) is an acute infection of the cornea, accompanied by

uneven epithelium boundaries with stromal ulceration, potentially resulting in

vision loss. Topical antibiotic is the regular treatment for BK. However, the

incidence rate ofmultidrug-resistant bacteria limits the application of traditional

antibiotics. Therefore, a cationic aggregation-induced emission luminogens

(AIEgens) named TTVP is utilized for the treatment of BK. TTVP showed no

obvious cytotoxicity in maintaining the normal cell morphology and viability

under a limited concentration, and revealed the ability to selectively combine

with bacteria in normal ocular environment. After light irradiation, TTVP

produced reactive oxygen species (ROS), thus exerting efficient antibacterial

ability in vitro. What’s more, in rat models of Staphylococcus aureus (S. aureus)

infection, the therapeutic intervention of TTVP lessens the degree of corneal

opacity and inflammatory infiltration, limiting the spread of inflammation.

Besides, TTVP manifested superior antibacterial efficacy than levofloxacin in

acute BK, endowing its better vision salvage ability than conventional method.

This research demonstrates the efficacy and advantages of TTVP as a

photodynamic drug in the treatment of BK and represents its promise in

clinical application of ocular infections.
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1 Introduction

Bacterial keratitis (BK) is the sixth leading cause of global vision loss, accounting for

3.2% of the 36 × 106 cases in both developing and developed countries, which may be

associated with trauma, contact lens wear, ocular surgery, or deficiency of corneal

sensation (Davis et al., 2020; Khan et al., 2020; Blindness, 2021). BK is characterized

by epithelial defect with corneal stromal inflammation and ulceration. As the progression

OPEN ACCESS

EDITED BY

Jingjing Guo,
Nanyang Technological University,
Singapore

REVIEWED BY

Fang Hu,
Southern Medical University, China
Yu Cai,
Hangzhou Medical College, China
Guorui Jin,
Xi’an Jiaotong University, China
Meng Gao,
South China University of Technology,
China

*CORRESPONDENCE

Chen Peng,
cpengrr@tongji.edu.cn

Ben Zhong Tang,
tangbenz@cuhk.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Organic Chemistry,
a section of the journal
Frontiers in Chemistry

RECEIVED 03 November 2022
ACCEPTED 28 November 2022
PUBLISHED 04 January 2023

CITATION

CaiW, Shen T,Wang D, Li T, Yu J, Peng C
and Tang BZ (2023), Efficient
antibacterial AIEgens induced ROS for
selective photodynamic treatment of
bacterial keratitis.
Front. Chem. 10:1088935.
doi: 10.3389/fchem.2022.1088935

COPYRIGHT

© 2023 Cai, Shen, Wang, Li, Yu, Peng
and Tang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fchem.2022.1088935

https://www.frontiersin.org/articles/10.3389/fchem.2022.1088935/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1088935/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1088935/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1088935/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.1088935&domain=pdf&date_stamp=2023-01-04
mailto:cpengrr@tongji.edu.cn
mailto:cpengrr@tongji.edu.cn
mailto:tangbenz@cuhk.edu.cn
mailto:tangbenz@cuhk.edu.cn
https://doi.org/10.3389/fchem.2022.1088935
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.1088935


of BK or without timely and appropriate treatment, corneal

abscess, stromal lysis and corneal perforation may lead to

severe visual loss ultimately (Han et al., 2020; Tuft et al.,

2022). Among bacterial pathogens, Staphylococcus aureus

(S.aureus) is the predominant pathogen inducing keratitis

since it is a common inhabitant on ocular surface (Silva et al.,

2019; Zhang et al., 2019). The cornea of rats infected by S. aureus

was therefore widely utilized to perform the experimental

keratitis research (Zhang et al., 2021; Zhang et al., 2022b). At

present, BK is commonly administrated with topical eye drops of

broad-spectrum antibiotics such as levofloxacin (LVFX),

ciprofloxacin and moxifloxacin (Li et al., 2020a). The overuse

and misuse of antibiotics are the most important determinant for

the occurrence of antibiotics resistance, even with super bacteria

occurred (Zhou et al., 2020). In BK, the prognosis of the disease is

severely affected by an increasing resistant trend towards widely

used empirical antibiotics, such as combinations of

cephalosporin or glycopeptide and aminoglycoside (Ung et al.,

2019). Besides, norfloxacin was reported to mediate apoptosis by

injuring mitochondrial transmembrane and activating death

proteins, and eventually leading to necroptosis through

RIPK1-RIPK3-MLKL pathway (Yang et al., 2020). In this

regard, there is still an urgent need to explore new targets

with low incidence of drug-resistance. Therefore, the

development of alternative effective antibacterial strategy is

urgently needed, which favors the reduction of emergency of

the resistance of bacteria.

In response to such a severe situation of drug resistance,

sterilization material based on light-to-heat conversion,

photocatalysis, chemocatalysis and biological extraction were

performed (Huo et al., 2021; Wang et al., 2022). Among

them, photodynamic therapy (PDT) utilized reactive oxygen

species (ROS) generation from photosensitizers (PSs) activated

with light irradiation, which has been regarded as a vital strategy

to deal with drug-resistant bacterial infections under the

background of post-antibiotic era (Chen et al., 2019; Qi et al.,

2019; Liu et al., 2021; Zhou et al., 2021). The generation of

abundant ROS could destroy bacterial cell membrane, inducing

necrosis and apoptosis of bacteria (Idris et al., 2012; Han et al.,

2016). Several studies have reported that PDT performed

excellent anti-bacterial ability in the treatment of periodontitis

(Li et al., 2021b), diabetic wound healing (Huang et al., 2021),

malignant tumor (Cheng et al., 2020), immunomodulatory

effects (Ayaz et al., 2020), rheumatoid arthritis (Lu et al.,

2018) and bacterial ocular infection (Peng et al., 2021; Li

et al., 2022). Encouragingly, PDT has advantage of excellent

light transmission property, which is appropriate in the

application of ocular infectious therapy (Fan et al., 2021).

Thus, PDT with good antibacterial ability and

biocompatibility showed a promising potential in the

treatment of ocular infectious diseases. However, traditional

PSs suffer from fluorescence quenching under irradiation, and

generate low ROS due to π-π stacking in the aggregate state,

which severely hindered their development of practical

application (Liu et al., 2013; Jiang et al., 2018).

Recently, luminogens with aggregation-induced emission

(AIEgens) features showed broad application prospects for

theranostic applications as PSs (Hu et al., 2018; Kang et al.,

2019; Dai et al., 2020; Abrahamse et al., 2022). A delightful

phenomenon could be observed that AIEgens exhibited excellent

fluorescence and effective ROS creation during aggregation state

while showing poor emission in the monomer state, which was

resulting from the restriction of intramolecular motions (RIMs)

(Mei et al., 2015; Wang et al., 2018a). AIEgens performed

promising characteristics of high-efficiency of ROS

production, low-toxicity and high-specificity targets (Li et al.,

2020b). In addition, AIEgens have been broadly applied in

fluorescent bioimaging due to splendid emission efficiency

and large stokes shift (Yu et al., 2017). AIEgens have been

reported to possess excellent biological applications, including

granulomas tracking and targeted theranostics for tuberculosis

(Liao et al., 2020), specific bacterial clearance and tumor

elimination (Li et al., 2020b), and accelerated reduction of

refractory internalized bacteria such as methicillin-resistant

Staphylococcus aureus (MRSA) (Ni et al., 2020; Li et al.,

2021a). Also, Hu et al. reported that M1-DPAN showed

specific AIE ability, along with outstanding photostability and

biosecurity, which take advantage of visualizing the occurrence of

bacterial infection. Besides, it has been reported that AIEgens

could selectively identify and aim at bacteria because of cationic

charge and appropriate hydrophobicity, and exhibited vision

defense via activating early intraocular immune response for

bacterial endophthalmitis (Li et al., 2022). Such selective

discrimination was attributed to the differences in membrane

potential between bacteria and mammals (Yuan et al., 2014).

Inspired by the previous studies, the design of cationic AIEgens,

which performed selectively elimination of bacteria over normal

cells is feasible.

In this study, we designed and synthesized a cationic AIEgens

named TTVP, possessing the ability of identification and

photodynamic antibacterial of Gram-positive bacteria (Lee

et al., 2020), for the therapeutic schedule of bacterial keratitis.

For the predominant position of S. aureus in pathogen of

keratitis, we work on S. aureus to evaluate the killing

efficiency of TTVP both in vitro and in vivo (Scheme 1). First

of all, TTVP exhibited no obvious cytotoxicity in maintaining the

normal cell morphology and viability under a limited

concentration, and selectively combined with bacteria rather

than normal ocular cells, which confirmed its biosafety in our

following research. Under white light irradiation, TTVP

generated abundant ROS production, leading to the death of

S. aureus. The excellent killing efficiency of TTVP to S. aureus

was further assessed via in vitro antibacterial activity studies.

Furthermore, TTVP was applied to treat S. aureus-induced

keratitis on a rat model, and excitingly, the infection recovery

treated with TTVP was faster than that with LVFX in vivo.
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Attracted by these results, the outstanding treatment efficiency

and good biosafety make TTVP promising for the clinical

treatment of bacterial keratitis.

2 Experimental section

2.1 Materials and reagents

TTVP was synthesized in compling with the literature

mentioned (Wang et al., 2018b). Other chemicals and reagents

were bought from J&K Scientific and Sigma-Aldrich. DMEM/

F12 cell medium, penicillin, streptomycin and fetal bovine serum

(FBS) were obtained from HyClone (United States). Yeasen

(Shanghai, China) provided cell counting kit (CCK)-8. S.

aureus was acquired from China General Microbiological

Culture Collection Center. SD rats were purchased from

Beijing Vital River Laboratory Animal Technology Co., Ltd.

(Beijing, China).

2.2 Characterization

Mother solution (5 mM) of TTVP was obtained through

dimethyl sulfoxide (DMSO) initially, and then mixed with PBS to

certain concentration. The aqueous dispersibility of TTVP in

water, PBS and DMEM at the concentration of 5 μM was

displayed excellently (Supplementary Figure S1). Ultraviolet-

visible (UV-Vis) absorption and fluorescence (FL) spectra

were measured by the Perkin Elmer Lambda

25 spectrophotometer and fluorescence spectrometry (Agilent

Cary Eclipse), respectively.

2.3 Preparation of bacterial solution

A single S. aureus colony on solid agar plate was added to

10 ml liquid Luria broth (LB) culture medium. After incubation

at 37°C overnight at 220 rpm, the bacteria were gathered by

centrifugation (9,000 rpm, 3 min) and washed twice. After being

resuspended with sterile normal saline, the concentrations were

measured at 600 nm (1.0 OD = 108 CFU ml−1). Finally, the S.

aureus suspensions were diluted with PBS for further use.

2.4 In vitro antibacterial analysis

A standard plate counting method was carried out to evaluate

sterilization effect of TTVP in vitro at concentrations of 0, 0.02,

0.05, 0.1 and 0.2 μM. The mixture was exposed to white light

lamp for certain min (5, 10, 15 and 30 min), while the control

group was exposed in dark. The treated bacterial suspension was

diluted (1:5000) and incubated on the agar plate at 37°C for 24 h,

followed by quantification and photo taking.

SCHEME 1
Schematic illustration of AIEgen TTVP for efficient photodynamic antibacterial therapy of BK.
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2.5 Assay for reactive oxygen species

ROS accumulation of TTVP was assessed According to a

given standard protocol. The mixture of TTVP (0.1 μM) and

DCFH-DA was incubated under a white light lamp (20 mW/cm2

power) for 15 min. The fluorescence intensity was recorded via a

microplate reader before irradiation and every 1 min interval for

16 times (λex = 480 nm, λem = 525 nm). Meanwhile, OD values

of DCFH-DA solution and PBS were recorded as control.

2.6 Zeta potential measurement

S. aureus was collected and resuspended with PBS, followed

by incubating with different concentrations of TTVP (0, 0.02,

0.05, 0.1 and 0.2 μM) for 15 min. Then Zeta potential was

measured via a Malvern Zetasizer.

2.7 Co-culture of bacteria and cells

S. aureus was co-cultured with human corneal epithelial cells

(HCECs) to test the selective affinity of TTVP against bacteria. S.

aureus suspension was added to pre-cultured adherent HCECs,

along with different concentrations (0, 0.02, 0.05, 0.1 μM) of

TTVP for 15 min. The slides were sealed and photographed using

a fluorescence microscope.

2.8 In vitro cytotoxicity

The possible cytotoxicity of TTVP is a crucial issue to be

examined before application. In general, cell viability, cell

morphology and live/dead staining were performed to

evaluate the biosafety of TTVP in vitro. In order to explore

the biosafety of TTVP in keratopathy, research based on normal

cells of ocular surface was necessary. Hence, HCECs were

selected to evaluate the toxicity of TTVP.

Adherent HCECs were cultured in 96-well plates, being

divided into irradiation group (20 mW/cm2, group a) and dark

group (group b). After co-cultured with TTVP (0–1.0 μM) for

15 min, HCECs were placed in light or dark environment during

the following 15 min. HCECs were continued culturing in the

incubator for 24 h after removal of TTVP. Also, the cells were

incubated for 24 h at the same concentration of TTVP in dark

(group c) to detect the intrinsic cytotoxicity. Afterward, CCK-8

reagent was incubated for 2 h to obtain the fluorescence intensity

at 450 nm. In addition, the cellular morphology of HCECs after

incubation for 24 h was also recorded via optical microscopy.

For the live/dead staining analysis, HCECs were intervened

with TTVP (0, 0.05, 0.1, 0.2 μM) for 24 h. Live and dead cells were

labeled with calcein AM and PI, which excited green and red

fluorescence under microscope, respectively.

2.9 Hemolysis assay

The hemocompatibility of TTVP was detected through

hemolysis assay. Saline was added to the whole blood to wash

several times until the supernatant was colorless. After diluting

with saline to 2% red cell suspension, different TTVP

concentrations (0, 0.02, 0.05, 0.1, and 0.2 μM) were added to

the above red cell suspension, and heated at 37°C for 1 h. After

centrifugation (3,000 rpm, 5 min), the images were captured and

the ratio of hemolysis was calculated by the absorbance of

supernatants at 540 nm recorded by a microplate reader. The

erythrocytes treated with distilled water were regarded as positive

control.

2.10 Animal experiments of antibacterial
test

2.10.1 In vivo antibacterial test on infected
keratitis

The animal procedures involved were in accordance with the

Association for Research in Vision and Ophthalmology

Statement of Shanghai Tenth People’s Hospital. Six weeks of

SD male rats were used to simulate the occurrence of BK as

previously described with minor adjustments (Josyula et al.,

2021). After general anesthetization by chloraldurate, 0.5%

proparacaine hydrochloride ophthalmic solution was

performed for local anesthesia. Prior to any operation, the

images of rat corneas were captured. The operative eye was

then scratched using a blade, and then S. aureus suspension

(50 μl, 1 × 108 CFU/ml) was placed over the ocular surface.

After being inoculated for 24 h, the rats were classified into

four groups: 1) S. aureus-infected eyes treated by PBS, 2) S.

aureus-infected eyes treated by TTVP under dark condition, 3) S.

aureus-infected eyes treated by TTVP with light irradiation

(20 mW/cm2 power, 15 min), and 4) S. aureus-infected eyes

treated by LVFX. Photographs of the ocular surface were

captured before treatment, as well as 1, 3 and 7 days after

intervention to observe the infection and inflammation. The

clinical inflammatory scores were calculated to qualify the

severity. Seven days after treatment, eyeballs were fixed for

H&E staining, Masson staining and immunohistochemistry

staining analysis, or homogenized for spread plate assay.

2.10.2 Clinical inflammatory scores
Clinical inflammatory scores of anterior segments, including

size of corneal opacity area (grades 1–4, less than 25% to more

than 75%), opacity density of cornea (grades 1–4, slightly misty

to dense opacity) and hypopyon (grades 1 and 2, paracentral

cornea involved or not) were performed to evaluate the severity

of BK as previously reported (Zhang et al., 2019). Thus, the score

of normal cornea was 0, while that of different groups was

between 0 and 10.
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2.10.3 Spread plate test
The isolated corneas were homogenized in 0.5 ml of sterile

PBS, diluted and cultured on agar plates for 24 h, followed by

quantification and photo taking.

2.10.4 HE, Masson and immunohistochemistry
staining analysis

Eyeballs were fixed 7 days after infection for H&E and

Masson staining to describe the bacterial histopathological

reaction. Meanwhile, tumor necrosis factor-α (TNF-α) is the

common primary inflammatory protein. Immunohistochemical

staining of TNF-α was performed to display the inflammation at

the site of the infected corneal lesions at 7 d follow-up. All photos

were collected under the optical microscope.

2.11 In vivo biosafety

2.11.1 Organ structure
At the end time points, the rats were sacrificed to harvest the

heart, spleen, kidney, liver and lung for histopathology in vivo.

After being fixed overnight, the tissues were embedded,

sectioned, and stained with H&E, following standardized

protocol. Neutral gum was applied to immobilize the sections,

then the slides were imaged under an optical microscope.

2.11.2 Serological assay
Whole blood of rats was reversed and centrifuged to obtain

serum. Functions were measured according to the instructions.

Liver and kidney functions including alanine aminotransferase

(ALT) and aspartate aminotransferase (AST) and creatinine

(CRE) were measured. Total cholesterol (T-CHO) and

triglyceride (TG) reflected blood lipids, while potassium (K+),

calcium (Ca2+), and chlorine (Cl-) represented electrolytic levels.

2.12 Statistical analysis

SPSS 23.0 software and GraphPad Prism 5 were utilized for

statistical analyses. ImageJ version 1.48 was used for quantification

of bacterial colonies. One-way ANOVA was carried out between

multiple groups. p < 0.05 were identified as statistically significant.

3 Results and discussions

3.1 Optical property

The synthesis and purification of TTVPwere under the guidance

to the previous study (Wang et al., 2018b). As represented in Figure 1,

UV—Vis and FL spectra were performed to verifythe optical

characteristics of TTVP. After incubating TTVP in S. aureus for

15min, red fluorescence was obviously visible under 365 nm UV

irradiation, indicating that TTVP had a remarkable bioimaging effect

on S. aureus (Figure 1A). Afterward, as shown in Figure 1B, TTVP

solutions alone photoexcited by 489 nm showed no obvious difference

in FL intensity under different concentrations. After a mixture with S.

aureus at room temperature for 15 min, FL intensity showed the

emission maximum wavelength at around 620 nm under

concentration-dependent manner. The phenomenon might be due

to the change of TTVP aggregation states of TTVP in response to S.

aureus. TTVP has a strong affinity for S. aureus and may become a

valuable visualization reagent for bacterial research.

3.2 In vitro antibacterial test

The antibacterial property in vitro was tested through

traditional spread plate method, and the bacteriostasis was

evaluated intuitively by comparing the number of viable

bacteria (Zhang et al., 2022a). The bacterial growth in the

plate was recorded and the antimicrobial rate of TTVP was

calculated. First of all, as shown in Figure 2A, TTVP exerted

negligible toxicity without light irradiation process after various

concentrations of TTVP intervened. Next, the S. aureus

incubated with TTVP was irradiated in an intensity of

40 mW/cm2 for 15 min, showing good bactericidal ability at

FIGURE 1
(A) The picture of S. aureus incubated with TTVP at different
concentrations for 15 min under 365 nm UV light. (B) FL spectra of
TTVP with or without incubation with S. aureus for 15 min
(Excitation wavelength = 489 nm). The insert was the
photograph of TTVP solution (5 mM) dissolved in DMSO.
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the concentration of 0.02 μM. In order to optimize the

illuminance, we halved the light intensity of 20 mW/cm2 and

performed at different durations including 5, 10, 15 and 30 min.

As shown in Figure 2A, the antibacterial effect of TTVP exhibited

a dose-dependency feature, and enhanced gradually along with

the increased concentrations ranging from 0 to 0.2 μM.

Amazingly, S. aureus was killed effectively with irradiation

(20 mW/cm2) for 15 min, along with 0.1 μM TTVP co-

cultured (Figure 2B). In order to better bactericidal effect, this

intervention method was applied for further experiments.

3.3 Antibacterial mechanisms of TTVP

Under light irradiation (20mW/cm2), we further explored the

mechanisms of TTVP killing S. aureus by measuring the ROS

generation ability within 15min. As shown in Figure 3,

Supplementary Figure S2, abundant ROS was generated by TTVP

FIGURE 2
(A) Representative photographs of S. aureus treated by TTVP at different concentrations and irradiation conditions. (B) The surviving colony
count of S. aureus treated by TTVP in light condition (20 mW/cm2) for 15 min. (C,D)Cell viability and Live/dead staining images of HCECs treatedwith
TTVP, (a) with light after incubation with TTVP for 15 min and (b) without light after incubation with TTVP for 15 min (c) treated by TTVP for 24 h
without light (scale bar: 100 μm). *for comparison among different concentrations of TTVP (0.02, 0.05, 0.1, 0.2, 0.5 and 1 μM) versus TTVP
(0 μM) in light and dark conditions. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

FIGURE 3
ROS generation of TTVP at 0.1 μM under light irradiation
(20 mW/cm2) for 15 min.
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FIGURE 4
(A) Representative photographs of rat eyes before and at 1, 3 and 7 days after treatment. (B) The bacterial cultures on agar plates from the
corresponding cornea. (C) Clinical score of rat eyes after different treatments; (D) the number of surviving S. aureus in corneas after different
treatments at 7 days. # for group PBS versus groupNormal, *for group TTVP+Dark, TTVP+ Light, LVFX versus group PBS, *p or #p < 0.05, **p or ##p <
0.01, ***p or ###p < 0.001, ****p or ####p < 0.0001, and NS for not significant.
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at the concentration of 0.1 μM under white light irradiation, which

demonstrated that AIEgens could generate efficient ROS in an

aggregation state. The possible mechanism was the block of energy

consumption by the way of non-radiative channels and aggregation-

induced intersystem crossing (AI-ISC), inducing the transfer of

facilitated energy state between singlet (S1) and triplet (T1) (Xu

et al., 2015b; Yang et al., 2016). What’s more, our previous research

has showna terrific generation of singlet oxygen in the aggregation state,

inducing the antibacterial ability ofTTVP(Lee et al., 2020). Thus, TTVP

was expected to be a meaningful photosensitizer for PDT evolvement.

3.4 Imaging of HCECs cells and S. aureus
mixure

The zeta potential value of pure S. aureus was −25.31 ±

0.54 mV, while the values were increased to −21.76 ±

1.04, −21.06 ± 1.13, −20.71 ± 0.90 mV, and −18.99 ± 1.50 mV

after incubated with TTVP (0.02, 0.05, 0.1 and 0.2 μM), which

verified the affinity of TTVP to S. aureus (Supplementary Figure

S3). The co-culture method of HCECs and S. aureus was further

employed to verify the selective killing ability of TTVP. As shown

in Supplementary Figure S4, in a co-culture system of HCECs

and S. aureus, red fluorescence was observed in S. aureus (area

circled) and extremely weak in HCECs. TTVP could bind S.

aureus specifically under certain concentrations for the surface

charge discrepancy. Such a high selectivity reduced the damage

on the normal corneal cells, thus implying promising application

in BK treatment.

3.5 Biocompatibility evaluation

The biocompatibility of AIEgens should be taken into serious

consideration prior to biological application. Since TTVP was

administrated on the cornea, HCECs were performed to evaluate

FIGURE 5
(A) H&E staining (scale bar: 100 μm), (B) Masson staining (scale bar: 25 μm), and (C) Immunohistochemistry staining of TNF-α (scale bar:
100 μm) of cornea in different groups.
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the biosafety. In Figure 2C, no significant difference was observed

in cell viability of HCECs incubated with TTVP at concentrations

under 0.1 μM in dark and light condition. Meanwhile, the cellular

morphology and density were observed visually by optical

microscope. In Supplementary Figure S5, no obvious cell

morphology change and density decrease were observed after

TTVP incubation. What’s more, live/dead staining of HCECs

was performed to evaluate the cytotoxicity of TTVP. As shown in

Figure 2D, the results showed no meaningful differences between

live and dead fluorescence after being treated with TTVP

(0–0.2 μM) under dark or light condition (20 mW/cm2,

15 min), indicating low cytotoxicity of TTVP. In general, a

hemolysis ratio no more than 10% was considered safe and

acceptable for biological application (Xu et al., 2015a). It was

found that the hemolysis rates were less than 1% after TTVP was

added to blood, and calculated to be 0.27% ± 0.001% at the

concentration of 0.2 μM (Supplementary Figure S6). Therefore,

TTVP in our study was expected to be a promising option in vitro

for further application.

3.6 In vivo treatment of BK

3.6.1 Clinical observation
Encouraged by the high antibacterial activity, we employed

TTVP to treat severe BK, which is prone to relapse and often

leads to refractory ocular damage and blindness. Based on the

promising antibacterial efficacy and reliable security of TTVP, we

FIGURE 6
H&E staining of main visceral organs at 7 days post treatment (heart, liver, spleen, lung and kidney, scale bar: 100 μm).
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established an experimental keratitis rat model to investigate

whether TTVP could be applied for bacterial keratitis treatment.

As shown in Figure 4A, after inoculation for 24 h, all rats

appeared conjunctival congestion, corneal opacity and

decreased corneal transparency to the same extent. Then, after

different treatments, obvious differences in ocular manifestation

were observed in these groups. In the PBS and TTVP under dark

condition groups, the infection worsened severely over time.

Three days after infection, the rat cornea exhibited prominent

clinical manifestations of edema and muddiness at the damaged

lesions. On the contrary, in TTVP with light group (20 mW/cm2

power, 15 min) and LVFX group, the severity of infection was

well-controlled, while the TTVP under light condition exhibited

better antibacterial efficacy. At day 7, the groups treated with PBS

and TTVP without light irradiation showed severe bacterial

infection, displaying a more pyknotic corneal opacity.

Amazingly, the eye symptoms were alleviated and the

transparency of the ocular surface was enhanced in the TTVP

with light irradiation group, which was superior to the LVFX

groups.

In Figure 4C, the groups treated by TTVP with light

irradiation showed significantly lower clinical scores than dark

or PBS groups. This demonstrates that light activation of TTVP

could effectively reduce the degree of infection, which was

consistent with the photographs of rats’ corneas. The

strengthened antibacterial ability may be attributed to the

ROS potency after light irradiation.

In addition, the corneal tissues were isolated from each

group, and then homogenized and distributed on the spread

plate to quantitatively evaluate the surviving bacterial colonies.

The plates displayed nearly no colony formation in TTVP with

light irradiation group, which showed better therapeutic effects

than LVFX, further indicating the remarkable therapeutic

efficacy of TTVP against BK (Figures 4B, D). Due to the

incidence of bacteria resistance after antibiotics application,

the sterilization process of TTVP under light condition

showed great potential for the treatment of S. aureus-infected

keratitis.

3.6.2 Histopathological analysis
Figure 5 displayed photomicrographs of corneal tissue

sections stained with H&E, Masson and

immunohistochemistry staining of different groups. The

normal cornea is composed of five layers, with continuous

corneal epithelium and endothelial layer, as well as stromal

connective tissue layer with no inflammatory-cell infiltration

(Bharti and Kesavan, 2017). Masson staining is used to display

the fibers in the tissue and visualize the structure of collagen in

the stromal tissue (Meng et al., 2019). However, in PBS and

TTVP without light irradiation groups, the epithelial layer was

dense and stratified, the stromal layer was apparent edema and

massive inflammatory infiltration, and the endothelial layer

was focally dense. In comparison with these two groups,

TTVP under light irradiation group revealed less severity of

corneal edema and reduced inflammatory cell infiltration,

which could be attributed to rapid sterilization via ROS

generation to alleviate inflammatory response. And the

groups treated with LVFX showed less antibacterial ability

than TTVP with light irradiation. Next,

immunohistochemistry staining of TNF-α was performed to

assess the therapeutic efficacy, which was a vital index to

evaluate the Inflammation levels. The results showed that the

cornea treated with TTVP under light condition exhibited a

significant reduction in inflammation levels. All the

FIGURE 7
Blood biochemistry examination analysis of rats after different treatments. (A) AST (B) ALT (C) TG (D) T-CHO (E) CRE (F) K+ (G) Ca2+ (H) Cl−.
Group Normal (1), Group PBS (2), Group TTVP + Dark (3), Group TTVP + Light (4) and Group LVFX (5) (NS, not significant).
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histopathological results were consistent with the ocular

manifestations.

3.7 In vivo biosafety

In order to assess the biosafety of TTVP in vivo, H&E

staining was conducted on heart, liver, spleen, lung and kidney

to detect the structural damage, while several biochemical

indexes were applied to test the major functions of organs.

H&E staining and biochemical indexes are extensively used to

visually appraise the structural and functional change

respectively (Abdelhalim et al., 2018; Zhang et al., 2018;

Nguyen et al., 2019). As shown in Figure 6, no

histomorphological changes were revealed in main organs in

vivo, which proved the safety of TTVP in organ structure.

Meanwhile, no obvious discrepancy was shown in the

content of AST, ALT, TG, T-CHO, CRE, K+, Ca2+ and Cl−

among all groups, which indicated excellent liver and renal

functions, lipid levels, and electrolyte stabilization in this study

(Figure 7). TTVP was thus expected to be a promising option in

vivo for BK application.

4 Conclusion

To sum up, a TTVP-mediated and ROS-induced PDT

therapy was estimable in bactericidal research of BK. TTVP

displayed low toxicity and excellent biocompatibility, ensuring

further biological applications. TTVP could selectively combine

with S. aureus over corneal cells. TTVP possessed excellent ROS

release capacity, and showed specific antibacterial function

without apparent cytotoxicity. TTVP exhibited vital status of

photodynamic antibacterial therapy over BK injury. Our findings

demonstrated that TTVP showed promising possibility as

antimicrobials, which may take advantage of clinical

application of BK treatment. This work will stimulate

extensive application of TTVP as a novel therapy against BK

infection.
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