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Ubiquitin chains are flexible multidomain proteins that have important biological
functions in cellular signalling. Computational studies with all-atom molecular
dynamics simulations of the conformational spaces of polyubiquitins can be
challenging due to the system size and a multitude of long-lived meta-stable
states. Coarse graining is an efficient approach to overcome this problem—at the
cost of losing high-resolution details. Recently, we proposed the back-mapping
based sampling (BMBS) approach that reintroduces atomistic information into a
given coarse grained (CG) sampling based on a two-dimensional (2D) projection of
the conformational landscape, produces an atomistic ensemble and allows to
systematically compare the ensembles at the two levels of resolution. Here, we
apply BMBS to K48-linked tri-ubiquitin, showing its applicability to larger systems
than those it was originally introduced on and demonstrating that the algorithm
scales very well with system size. In an extension of the original BMBS we test three
different seeding strategies, i.e. different approaches from where in the CG
landscape atomistic trajectories are initiated. Furthermore, we apply a recently
introduced conformational clustering algorithm to the back-mapped atomistic
ensemble. Thus, we obtain insight into the structural composition of the 2D
landscape and illustrate that the dimensionality reduction algorithm separates
different conformational characteristics very well into different regions of the
map. This cluster analysis allows us to show how atomistic trajectories sample
conformational states, move through the projection space and in sum converge
to an atomistic conformational landscape that slightly differs from the original CG
map, indicating a correction of flaws in the CG template.
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1 Introduction

Nowadays molecular dynamics (MD) simulation is a well established tool to investigate
proteins and protein complexes at atomistic resolution. However it can still be computationally
very expensive to obtain convergent MD trajectories for larger protein systems consisting of
several thousand atoms. One typical way to overcome these limitations is to use coarse graining.
Here, the number of degrees of freedom is significantly reduced by combining multiple atoms
into one “super-atom” or “bead”.
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We used coarse grained (CG) MD simulations to study a chain of
ubiquitin (Ub) proteins. Ub consists of 76 amino acids and plays an
important role in cellular signaling. In a process called “ubiquitylation” an
isopeptide bond is formed between a lysine group of a substrate protein
and the C-terminal carboxylate group of an Ub molecule. Starting from
this first Ub molecule other Ub moieties can be attached to form poly-
ubiquitin chains (Ub-chains) of various lengths. The first attached
ubiquitin offers eight potential linkage-sites: the N-terminal
methionine (M1) and seven lysine residues (K6, K11, K27, K29, K33,
K48, K63). Depending on the involved linkage-sites, chain length and
topology, Ub-chains signal their substrate proteins for different functions,
e.g., DNA damage tolerance or proteasomal degradation. (Pickart and
Eddins, 2004; Komander and Rape, 2012).

To understand and explain differences in the physiological
behavior of polyubiquitin chains one needs tools to characterize
their conformational space. This is a challenging task due to a very
dynamic behavior of Ub-conjugates and their conformational
diversity. Thach et al. (2016) CG MD simulations in combination
with dimensionality reduction and clustering techniques can be used
to obtain a detailed description of the statistical ensemble of
configurations populated by Ub-chains. Recently Berg et al. (2020)
used a modified MARTINI v2.2 (Marrink et al., 2007; Monticelli et al.,
2008; de Jong et al., 2013) CG force field and machine learning to
describe and compare conformational spaces of di- and tri-Ub linked
via all eight linkage-sites as well as free ubiquitins. Coarse graining
massively speeds up the exploration of the phase space, but can
potentially lead to inaccuracies. To assess the results of the CG
sampling of tri-Ub we conducted extensive atomistic simulations
(4 µs of simulation time in total) of K48-linked tri-Ub-chains
starting from an extended conformation. We compared the phase

spaces of CG and atomistic simulations by projecting all data to the
same two-dimensional space (see Figures 1A,B, details on the
projection method are given in Section 2).

Already at first sight, the comparison reveals that while the
atomistic proteins quickly evolved from the extended starting
conformation to more compact structures with contacts between
the Ub-domains, large parts of the CG conformational space was
not sampled during the 4 µs of atomistic simulations.

Out of the 40 brute-force atomistic simulations only two sampled
the area in the middle of the map, corresponding to a completely
collapsed conformation (see Figure 1B). In order to get a better
understanding of the meaning of the different regions of the map,
in particular those visited by the CG model but not the atomistic one,
we colored the projection of the CG simulations based on the pairwise
distance between the centers of geometry (CoG) of the three Ub
moieties (Figures 1C–E). The conformational landscape can roughly
be divided into three parts, which are separated by a “T”-like shape of
more frequently sampled areas: the upper-right part represents
conformations where the first and second Ub moieties are in close
contact; the lower-left side contains conformations with close contacts
between the second and third moieties; and lastly there is a gradient in
terms of the distance between the first and the third moiety from the
upper-left hand side to the lower-right hand side.

Now the question arises whether the fact that the atomistic
simulations do not visit substantial parts of the CG conformational
space results from insufficient length of the atomistic simulations or
unphysical conformations produced by the CG model. One method
that is very well suited to address this question is back-mapping based
sampling (BMBS) (Hunkler et al., 2019).We introduced this technique
by analysing a rather drastically coarsened model of oligopeptides. The

FIGURE 1
2D projections of K48-linked tri-Ub trajectories from coarse grained (Berg et al. (2020)) (A) and two independent sets of atomistic simulations (B). (B) The
atomistic simulations are colored based on free energy values, the CG map is gray and the same as in (A); three exemplary conformations from the atomistic
simulations and their location in themap are illustrated. A red sphere is attached to the first residue, indicating the proximal unit, and a green sphere is attached
to the last residue, indicating the distal moiety. (C–E) 2Dmap colored by the center of geometry (CoG) distance between two of the three Ubmoieties in
the CG simulations.
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application of BMBS allowed to reintroduce atomistic and dynamic
information to the studied systems as well as to correct inaccuracies in
the CG sampling. The core idea behind the method is the following: by
navigating in two-dimensional free energy landscapes of very
efficiently produced CG ensembles, selected conformations can be
back-mapped to higher (e.g., atomistic) resolution to start new short
explorative atomistic simulations in order to sample all of the
accessible phase space as fast as possible. The convergence/
divergence of the initial CG and obtained BMBS-guided atomistic
landscapes is monitored quantitatively using a selected metric (earth
mover’s distance (EMD) (Applegate et al., 2011)). Details are given in
Section 2.2 and (Hunkler et al., 2019).

In the following we show how the BMBS algorithm can be used
to resolve the question whether the discrepancies between the CG
and atomistic landscapes stem from insufficient atomistic sampling
or from a major flaw in the CG model. Moreover, we demonstrate
here that BMBS is applicable to much larger systems compared to
the ones it was introduced on. We extend the originally introduced
BMBS scheme with analysis of the influence of the initial weights/
biases of the back-mapped configurations used to start the
atomistic BMBS simulations. We also perform detailed analysis
of the atomistic ensemble obtained with BMBS applying a newly
introduced clustering scheme Hunkler et al. (2022).

2 Methods/Computational details

2.1 Simulation details

All atomistic simulations were performed using either the
2016.4 or the 2020.4 version of the GROMACS package (Bekker
et al., 1993) with a modified GROMOS 54A7 force field (Schmid et al.,
2011) and the SPC/E water model. The force field was altered by the
introduction of an isopeptide bond, to be able to simulate the
covalently linked Ub moieties. Furthermore the following settings
were used: the time step was set to 2 fs, the temperature was set to
300 K using the velocity rescale thermostat and the pressure was set to
1 bar with the Parrinello-Rahman barostat. As an integrator
algorithm, the leap-frog algorithm was used. Long range
interactions were computed with the particle mesh Ewald method,
where a Fourier grid spacing of .16 nm and a pme-order of 4 were
used. For Coulomb and van-der-Waals interactions, a cutoff of 1.4 nm
was used. In order to constrain all bonds, the LINCS algorithm was
applied.

For the CG simulations a modified MARTINI force field was used
(based on MARTINI v2.2) (Marrink et al., 2007; de Jong et al., 2013)
where protein-water interactions were increased to avoid proteins
being too sticky. TheMARTINI non-polarizable CG water was used as
the solvent. The temperature was set to 300 K using the velocity rescale
thermostat, pressure was kept at 1 bar by the Parrinello-Rahman
barostat. The Verlet cut-off scheme was applied, the LINCS algorithm
was utilised for bond constraining and the leap-frog integrator was
used. A 10 fs time step was used due to the soft elastic network
potentials (IDEN) (Globisch et al., 2013). The cutoff distance for
short-range van-der-Waals interactions was set to 1.1 nm, and
electrostatics were treated by the reaction field method with a
cutoff distance of 1.1 nm and a dielectric constant of 15. For more
details on how the MARTINI force field was modified see Berg et al.
(2018).

2.2 Back-mapping based sampling

The back-mapping based sampling (BMBS) algorithm (Hunkler
et al., 2019) was used to efficiently reintroduce atomistic resolution to
CG simulations and is shortly summarised here. BMBS uses a low-
dimensional projection of CG free energy surfaces to initiate new
atomistic simulations and consists of the following steps: 1) CG
simulations are projected to a two-dimensional landscape; 2) a
number of selected CG structures are back-mapped to full
resolution atomistic level; 3) new short atomistic simulations are
run from the selected structures to rapidly explore the phase space;
4) convergence or divergence is monitored by comparing CG and
atomistic probability distributions in low-dimensional space. Those
steps rely on five main components: high-dimensional collective
variables (CVs) applicable to both CG and atomistic
configurations, a dimensionality reduction scheme, a method to
select starting configurations from the CG ensemble (seeding), a
back-mapping strategy and a statistical metric to monitor
convergence. All of them are described below.

2.2.1 Collective variables: Residue-wise minimal
distances

In principle many different CVs/feature sets can be used in
combination with the BMBS workflow. The specific choice of a CV
is almost exclusively dependent on the given system. The only
requirement regarding the CV is that it has to be able to describe
the system in both resolutions (in the atomistic and the CG model).
Therefore it must rely on coordinates that are present in both models.
The CVs which we use here to describe and analyse the tri-Ub system
are the residue-wise minimal distances (RMD). It has been shown
before that the RMD are very well suited to describe the domain-
domain configurations in ubiquitin chains since they are sensitive to
the protein interfaces and to the distances and relative orientations of
the domains (Berg et al., 2018; Berg and Peter, 2019; Berg et al., 2020).
For one conformation of tri-Ub such a CV is a 432 dimensional vector,
which contains the minimal distances of each of the 72 Cα atoms (the
highly flexible residues 73–76 of ubiquitin were not considered) of
each Ub domain to any Cα atom of each of the other moieties. This set
of internal coordinates describes a distance as well as a relative
orientation of individual ubiquitin moieties towards each other and
can be applied to both atomistic as well as CG systems (if a backbone
bead is present at any Cα location).

In order to describe the RMD vector of tri-Ub, the distal, middle
and proximal moieties are abbreviated as A, B and C. In this notation
“proximal” refers to the moiety with a free C-terminus with which the
chain can be linked to the substrate and “distal” denotes the terminal
moiety which is linked by its C-terminus to the middle Ub-unit. These
three domains can be formulated as A = (a1, a2, a3, . . . , an), B = (b1, b2,
b3, . . . , bm) and C = (c1, c2, c3, . . . , co), where ai, bj and ck are positions
of the Cα or the backbone beads respectively. Then pairwise distance
matrices DA,B, DB,C and DA,C are computed. By taking the minimum
values in each respective row and column the vectors of the residue-
wise minimum distances between all three moieties (AB, BA, BC, CB,
AC, CA) are calculated. Those vectors are then concatenated to one
high-dimensional representation (432 dimensions) of the considered
tri-Ub conformation, the RMD vector. All CG configurations are
projected to two dimensions by using their RMD vectors as input
features for the dimensionality reduction method encodermap (Lemke
et al., 2019; Lemke and Peter, 2019).
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2.2.2 Dimensionality reduction: Encodermap
Encodermap (Lemke et al., 2019; Lemke and Peter, 2019) utilizes an

autoencoder architecture but adjusts the autoencoder loss function by
adding a multidimensional-scaling-like loss term [Equations 1 to (Eq. 3)].
This additional loss function transforms all distances by a sigmoid
function (Eq. 4) and is termed as sketch-map loss due to its
connection to the sketch-map dimensionality reduction method
Ceriotti et al. (2011). The sketch-map loss function enables
encodermap to reproduce the connectivity between high-dimensional
data points in a 2D map, meaning that conformations with similar high-
dimensional CVs are also located close to each other in the 2D projection.
Furthermore, the autoencoder architecture enables the method to project
huge amounts of data in a very short time.

Lencodermap � kaLauto + ksLsketch + Reg (1)

Lauto � 1
N

∑N
i�1

D Xi, ~Xi( ) (2)

Lsketch � 1
N

∑N
i≠j

SIGh D Xi, Xj( )( ) − SIGl D xi, xj( )( )[ ]2 (3)

Here, ka, ks are adjustable weights, Reg is a regularization used to
prevent over-fitting; N denotes the number of data points to be
projected; D (·, ·) is a distance between points, X is the high-
dimensional input vector, x is the low-dimensional projection (the
bottleneck layer); SIGh and SIGl are sigmoid functions of the form
shown in Eq. 4,

SIGσ,a,b D( ) � 1 − 1 + 2
a
b − 1( ) D

σ
( )a( )

−b
a

, (4)

where a, b and σ are parameters defining the range of distances to
preserve.

Once the network has been trained, the encoder works as a
mathematical function that maps the high-dimensional inputs to
the low-dimensional projection. In this mapping function lies one
of the main advantages of the encodermap algorithm, namely the
extremely efficient projection of additional high-dimensional input
data points to the low-dimensional space.

Since the encodermap method is non-linear, the axes of the
resulting 2D space do not necessarily allow a physical
interpretation in terms of order parameters. Therefore we chose to
omit the x- and y-axes for all 2D plots shown in this manuscript.
Adding these axes would in our opinion rather mislead the reader than
help in understanding the figures.

Similar to the choice of CVs, a different dimensionality reduction
method can be chosen to be used with the BMBS workflow. However,
such a method should fulfill a few requirements. First it has to be
possible (and preferably fast) to project additional data points to the
low-dimensional space. And secondly the method should be able to
separate different structures reliably in the low-dimensional space (2D
or 3D if one wants to visualize the projection). Encodermap performs
remarkably well in both of these tasks and is extremely efficient in
projecting data once it is trained.

The parameters for encodermap used in this work are given in
Table 1. We used encodermap version 2.0.1 and its implementation
from https://github.com/AG-Peter/encodermap.

2.2.3 Seeding
The obtained two-dimensional projection of the CG ensemble is

used to seed new short atomistic MD simulations from back-mapped
CG structures. If the starting conformations are chosen properly, it
takes the BMBS simulations only a fraction of the simulation time
compared to a standard MD to sample a comparable amount of the
available phase space. In the original BMBS paper Hunkler et al. (2019)
the starting configurations were chosen based on the minima in the
two-dimensional CG landscape (Figure 2A). In this paper we want to
explore in more details different seeding strategies and study their
influence on the BMBS performance. In addition to the original
seeding method, which we call here minima-focused, we test
Boltzmann-weighted and uniform seeding (see Figure 2).

For the minima-focused seeding we chose the starting structures
to replicate the deepest free-energy minima of the CG 2D distribution
and their weighting as well as possible. To achieve this we applied a
binning to the 2D CG space and created a list with the most populated
bins. Then we randomly chose a data point from the highest populated
bin and repeated this until the percentage of starting structures from
this bin approximately matched the percentage of data points in this
bin. This procedure was reiterated for all the most populated bins until
a predefined number of starting conformations (50 in this paper) were
obtained.

The Boltzmann-weighted seeding was chosen to also include rare
conformations in the starting structures. We binned the 2D space as
before but randomly picked one bin and accepted or rejected this bin
with a Monte Carlo criterion (a probability proportional to the bin’s
population). A random data point from the accepted bin was chosen as
a starting structure and the process was repeated until 50 data points
were selected. Such a procedure allowed us to include rare
conformations and retain as well as possible the original CG
distribution given a very limited sample size (50 points).
Theoretically with a much larger sample size this procedure would
converge to a random selection of starting configurations from the full
high-dimensional configuration space.

Lastly we chose a uniform seeding (with uniform referring to a
uniform distribution in the 2D space). We again used the same
binning as before and randomly chose one bin. From this bin one
data point was randomly selected and the bin was then removed from
the pool of available bins (the removal of a bin becomes important if
the number of chosen data points approximates the number of
available bins). This was again repeated until 50 starting points
were selected.

The results of different seedings are compared in Section 3.1.

2.2.4 Back-mapping
In the main part of the original paper the back-mapping was done

by taking an atomistic structure with CVs similar to a target CG
structure. Then an external restrictive potential was applied to the

TABLE 1 Encodermap parameters used to generate the 2D projection shown in this work.

Encodermap parameters Nsteps Nlayers Nneurons σhighD A B σlowD a b ka ks

Values 10,000 3 300 20 12 10 1 2 10 1 500
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atomistic structure during an energy minimization step in order to
force its conformation to retain the CVs of the CG target. In this work
we used CG trajectories generated with the MARTINI model and thus
applied the “backward” (Wassenaar et al., 2014) script to reintroduce
an atomistic resolution into selected CG structures.

2.2.5 Statistical metric: Earth mover’s distance
Tomonitor a similarity between two conformational phase spaces,

e.g., a CG and atomistic sampling, we use the earth mover’s distance
(EMD) (also known as Wasserstein’s metric or Mallows distance). It is
a metric that describes how similar or dissimilar two given
multivariate distributions are. For a formal definition of the
method see e.g., Applegate et al. (2011). In order to be able to
quantitatively compare the EMD values we use unity-based
normalized EMDs. This implementation of the EMD brings all
values into the range (0,1) (Eq. 5).

EMD′ � EMD −min EMD( )
max EMD( ) −min EMD( ), (5)

with min(EMD) = 0 and max(EMD) = 1.62. The coefficient max
(EMD) is hereby defined as the EMD for the comparison of the CG 2D
projection with a uniform rectangular 2D distribution with the same
amount of data points. The dimensions of this 2D rectangular area are
given by the minimum and maximum x and y values of the CG
projection. By implementing the EMD in such a way, a value of
0 means that two given distributions are exactly identical and a value
of 1 means that two distributions are as dissimilar as the CG projection
compared to a uniformly distributed data set. In order to compute the
EMDs we used the python implementation pyemd v0.5.1 (Pele and
Werman, 2009).

2.3 Clustering scheme

To analyse atomistic ensembles of such complex systems as tri-Ub
we use a recently introduced clustering scheme which can effectively
work with large amounts of high-dimensional data Hunkler et al.
(2022). In this iterative clustering workflow we use HDBSCAN
(Campello et al., 2015) as the clustering algorithm and combine it

with two different dimensionality reduction algorithms, namely cc_
analysis (Diederichs, 2017) and encodermap (Section 2.2.2).
HDBSCAN is a hierarchical density-based clustering algorithm
which is able to find clusters of different shapes and densities
requiring only a small number of input parameters (at least one).
The cc_analysis is a multidimensional-scaling-like method that
minimizes the differences between Pearson correlation coefficients
of high-dimensional data points and the scalar product of low-
dimensional vectors representing them.

In this clustering workflow the probability density in the cc_
analysis projection is used as the clustering space (intermediate
dimensionality; usually between 10 and 40 dimensions), while the
2D encodermap space is utilized to efficiently process large data sets
and assign additional conformations to already identified clusters. The
provided data set is clustered iteratively until a specified amount of
conformations is assigned to clusters or until a specified amount of
clustering iterations have been performed. In the process of assigning
conformations to clusters a root-mean-square deviation (RMSD)
cutoff of Cα atom positions is used to obtain conformationally very
defined clusters.

For applying the clustering scheme to the tri-Ub system we set the
HDBSCAN parameters “min_cluster_size” and “min_samples” to
80 and used an RMSD cutoff distance of 3 Å. The clustering
scheme was run for three iterations.

3 Results and discussion

3.1 BMBS

We applied the BMBS method to the K48-linked trimer of
ubiquitin with three different seeding algorithms: minima focused,
Boltzmann weighted, and uniform (see Section 2.2.3 for detailed
description). In each case we chose 50 starting points. For every
starting structure we ran an atomistic MD simulation for 50 ns with a
cumulative simulation time of 2.5 µs for each seeding. The location of
the 50 starting points is shown in Figure 2. The BMBS simulation
trajectories were projected to the original CG landscape and can be
seen in Figures 3A–C. These three maps show that the choice of

FIGURE 2
Seeding strategies used in this paper: (A) minima focused (red points), (B) Boltzmann weighted (blue points), (C) uniform (green points). Each seeding
consists of 50 back-mapped conformations. Their projections are shown on the original CG landscape (gray gradient, same as in Figure 1 (A)).
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starting points heavily influences the resulting conformational space (a
detailed analysis of the obtained conformations and their spreading in
the 2D projections is discussed in Section 3.3).

The BMBS with all three seedings visited the bottom part of the
CG 2D map which was not sampled by the two initial 4 µs atomistic
simulations (compare to Figure 1B). Notably the uniformly seeded
trajectories retain the “T” shaped arrangement of free-energy minima
of the original distribution even though only few of the starting
conformations were selected in those parts of the map. This
indicates a rather quick progression of the trajectories that were
seeded near the rims to the center part of the 2D projection.

A purely visual comparison of the obtained maps can be
misleading as it is important to not only cover the CG phase space
but to properly sample the free energy minima. For a quantitative
comparison of such two-dimensional distributions we use the EMD,
which fits perfectly into the BMBS workflow. The EMD is not sensitive
to bin sizes (can be applied for comparing different histograms), is
symmetric, and is more sensitive to similarities in highly populated
regions than to the rarely populated ones. The EMD values comparing
the original CG projection with the time evolution of the differently
seeded BMBS projections are shown in Figure 3D. Contrary to visual
perception, the EMD plot shows that both the minima-focused and
Boltzmann-weighted seedings produce atomistic ensembles whose
projections resemble the CG target map much better (an EMD
value of .13 after 50 ns of simulation time of the individual runs)
than the projection of the uniformly seeded trajectories (.179). On the
other hand, the uniformly seeded BMBS approaches the CG
distribution very quickly, especially in the first 10 ns of individual
simulation time. To put these EMD values into perspective, the
comparison of the projection of the initial 4 µs atomistic
simulations to the CG distribution gives an EMD of .815.

Therefore we can address the initial question on the reason of the
discrepancy between the CG and atomistic ensembles. By applying the
BMBS algorithm to the K48-linked tri-ubiquitin, we obtained
150 atomistic BMBS trajectories which provide enough evidence to

confidently say that the CG ensemble does not include a large amount
of unphysical conformations. Given enough simulation time, the two
initial atomistic trajectories would most likely also have sampled the
conformations that reside in the lower parts of the 2D map.

The generation of these new atomistic trajectories is however only
one aspect of the BMBS algorithm. Another part is the monitoring and
comparison of the 2D histograms which develop over time. This
analysis is provided in the next section.

3.2 EMD monitoring

In order to analyse the temporal/chronological development of the
BMBS compared to the CGmap we extracted 2D projections of BMBS
trajectories for different sampling times. We chose to generate one
histogram every 250 ps of individual simulation time for a good
temporal resolution. This resulted in 200 projections for each
seeding approach. For each of these histograms we computed the
EMD to the CG 2D map and obtained EMD values shown in
Figure 3D and Figure 4.

In addition to the time evolution of the minima-focused BMBS
(red lines in both figures) provided in Figure 3D, Figure 4 shows the
reversed timeline of the minima-focused BMBS histogram (orange
line) to the CG map. By reversed we mean that the projection of the
last frame of each minima-focused trajectory is the starting point from
which the histogram grows contrary to the original timeline, meaning
that each histogram starts from a point where the trajectory could
sample for some time and therefore will most likely be in some meta
stable state. The forward timeline (red line in Figure 4) has a non-
monotonic behaviour with the initial decrease in EMD values (the two
histograms become more similar to each other) until about 13 ns,
followed by an increase and plateauing of the values at about .13. The
same behaviour was found in the original (Hunkler et al., 2019) paper
for a predictive CG model based on extrapolated data and could be
explained as a correction of flaws in CG sampling. To reduce the

FIGURE 3
Projections of 50 atomistic simulations obtained using BMBS with minima-focused (A), Boltzmann-weighted (B) and uniform (C) seedings. (D) EMD
values between CG and BMBS projections as a function of sampling time. Colors of the projections and EMDs lines correspond to the coloring in Figure 2.
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influence of the seeding bias on the 200 time-resolved histograms we
also included the reversed timeline (orange line in Figure 4). This
timeline shows that the BMBS trajectories moved away from their
initial seedings. With increasing simulation time the trajectories
approach their original starting points, which leads to a decrease in
the EMD values. This clearly shows that the BMBS trajectories move
away from the most populated areas in the CG 2D map and indicates
that the underlying CG distribution of conformations is not perfectly
representing the conformational ensemble corresponding to the
atomistic Hamiltonian.

Using EMDs we also monitored and compared the behaviour of
different seeding approaches to each other. Figure 5 compares the
minima-focused (red curve) and Boltzmann-weighted (blue curve)
seedings to the histograms generated by the last 10 ns of the
simulations from the respective other seeding. With this
comparison we can identify if two sets of trajectories converge
to sample a shared part of phase space or whether they diverge over
time to different accessible areas of the conformational space. The
blue curve in Figure 5 changes only slightly, while there is a much
more significant decrease in the red curve. The minima-focused
histograms are more similar to the histogram representing the last
10 ns of the Boltzmann-weighted trajectories than vice versa
(reflected by the generally lower EMD values). These
observations allow us to draw two conclusions. First, the

minima-focused trajectories initially move away from their
seeding points but then do not change much in the remaining
simulation time. And secondly, the Boltzmann-weighted
trajectories significantly move away from their original seeding
and approach the same areas in the 2D map as the minima-focused
trajectories. This shows that the two systems evolve in the same
general direction, even though they are partially sampling quite
different areas of the 2D map at the end of the simulations.

Lastly we assess the question if the convergence of MD simulations
can be monitored using EMDs. Generally, a continuous upwards or
downwards trend in the EMD values indicates that the corresponding
atomistic ensemble has not converged yet. However, even if the EMD
curve has not changed significantly over a longer period of time, that
does not imply that a convergence has been reached. As can be seen in
Figure 3D the EMD plots from 25 to 50 ns of individual simulation
time for all three seedings only show a very minimal change over time.
But by comparing the three curves quantitatively, one observes higher
EMD values for the uniform seeding compared to other two
approaches, consequently the uniform simulations cannot be
converged. Overall this means that none of the three BMBS
ensembles can be considered converged and that an additional
simulation time has to be invested to cover the full phase space
and produce an ensemble that is representative of the actual
atomistic free-energy landscape. However, the EMD of 2D

FIGURE 4
Time resolved EMDs of both forward (red solid line, same as in Figure 3D) and reversed (orange dotted line) timelines of minima-focused BMBS
histograms to the CG map.

FIGURE 5
EMDs of the entire trajectories of theminima-focused seeding to the histogram of the last 10 ns of the Boltzmann-weighted seeding (red curve) and vice
versa (blue curve).
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histograms can be an additional easily employed and efficient
indicator of the current degree of non-convergence.

The general workflow which we propose in this manuscript is
compatible with any atomistic force field, water model or CG
model (as long as the CV of choice is available in both the
atomistic and CG representations). In Hunkler et al. (2019) we
demonstrated the use of the BMBS with different CG models,
moreover it can be very informative in comparing the 2D
probability distributions of various atomistic or coarse grained
force fields with each other. As an example one could take the
results of the comparison of the probability distributions generated
by the two force fields used in this work (modified GROMOS
54A7 and modified Martini v2.2). We have shown that the resulting
2D distributions differ and have interpreted this difference as flaws
in the CG model (i.e. due to the shape of the minima-focused EMD
curve). Yet, it would be difficult to prove whether the discrepancies
in the 2D projections actually stem from the CG or the atomistic
model (or both). If however, we would now make the same
comparison using a different atomistic force field (but the same
back-mapped starting conformations), we could compare both the
atomistic 2D distributions with the CG model, as well as the
atomistic distributions with each other. This could lead to a
much better understanding of the origin of the differences in
the 2D projections and be useful for efforts to improve
simulation models in either resolution.

To summarize, the EMD, especially if used in a time resolved
fashion, is a very useful tool to analyse (2D) projections of the
sampled phase space of MD trajectories. We showed that the EMD
can be used to follow atomistic trajectories (that were specifically
seeded based on the minima of a CG template map) evolution over
time compared to the CG template. By first approaching the
seeding template but then moving away from it, the EMD curve
alludes to a correction of flaws in the CG map. This assessment of
the quality of the CG model is one of the strongest features of a
minima-focused back-mapping based sampling. The uniform
seeding on the other hand is primarily useful in order to obtain
atomistic conformations from all the CG space as fast as possible.
However, if one wants to generate a (close to) converged atomistic
ensemble that realistically represents the actual conformational
landscape, the Boltzmann-weighted seeding is the best choice. It is
on the one hand much faster in sampling of low energy
conformations compared to the uniform seeding (assuming the
CG model is somewhat viable) and on the other hand it includes
less bias of the CG map compared to the minima-focused seeding.

3.3 Cluster analysis

For the choice of starting configurations and the monitoring of the
convergence, the BMBS scheme relies on the 2D projection of the CG
configurational space. This is a radical reduction in dimensionality
considering the size of tri-Ub. Thus we decided to assess a quality of
this map by performing a clustering analysis in the high-dimensional
space of the atomistic configurations sampled with BMBS. Such
clustering can provide information on general conformational
trends in the map (similar to the change in CoG distances between
Ub moieties shown in Figures 1C–E) or show if the 2D projection is
able to separate relatively similar conformations. Additionally it allows
us to study the behaviour of individual short trajectories, e.g., whether

the same conformations were sampled by trajectories from different
origins (i.e. different seeding schemes and different starting regions on
the 2D map). This can complement the convergence analysis based on
the EMDs discussed in Section 3.2. Considering the system sizes and
complexity we used a recently developed clustering scheme which is
specifically designed to efficiently cluster large MD trajectories
Hunkler et al. (2022) (see Section 2.3).

We applied the clustering workflow to the combined atomistic
data of all three seeding schemes (upper left inset in Figure 6). The data
set contains 7.44 million conformations and 30% of these were
assigned to 61 clusters after three iterations of the clustering
process (the RMSD cutoff was set to 3 Å). As described in details
in Section 2.3, the clustering was performed in the intermediate-
dimensional space determined by cc_analysis and the resulting
clusters were then projected into the 2D map. They are shown in
Figure 6 including tri-Ub structures belonging to four example clusters
(structure bundles in the insets) to demonstrate the structural
consistency obtained by the clustering method (the shown cluster
numbers are used as they are assigned during the clustering process
and do not reflect any meaningful ordering e.g., by cluster size). The
compact placement of the clusters on the map shows that the 2D map
is a meaningful representation of the high-dimensional
conformational landscape - a property that was important for the
use of this projection for BMBS and for the comparison of the
atomistic and CG sampling with EMD.

The coloring based on the CoG distances shown in Figures 1C–E
provides a general understanding of the map. In order to get a more
detailed insight we show 10 clusters (including representative tri-Ub
configurations) from all parts of the 2D map (see Figure 7). These
clusters were selected based on their location in the 2D projection.
Conformations at the left hand side of the map (example clusters
19 and 59) are in general open chain conformations, meaning that
the proximal and distal moieties extend to opposite directions from
the middle moiety. The two clusters 20 (the largest cluster
containing 3.5% of all conformations) and 38 in the center of the
map adopt a collapsed conformation where each of the three
moieties are roughly in equal distance to each other. Those are
the most stable conformation in the system. One possible reason for
this stability is that the hydrophobic patches on the distal and the
middle moieties (primarily the part around the residues Ile 44 and
Val 70) are orientated towards the other units and are thereby
shielded from solvent. Cluster 38 intersects in the 2D projection
with cluster 20. They are however still identified as two different
clusters since they differ (mostly) in a small rotation of the distal
moiety. This is a nice illustration of the precision and sensitivity of
the proposed clustering workflow and its ability to pick up such
minimal structural differences and separate the conformations into
different clusters. Other examples of clusters overlapping in the 2D
projection but having small structural differences identified by
clustering in a higher-dimensional space are circled in Figure 7.
In the clusters 51 and 52 (on the right hand side of the map) the
middle and distal moieties (green sphere) are further apart than in
the most populated cluster 20 (middle of the map). Especially in
cluster 51, the proximal moiety is almost located between the other
two. For cluster 7 the situation is exactly reversed, here the distal
and middle chains are more distant and the proximal chain is
located in between the two other units. So the clusters shown here
confirm the general trends that we derived from the CoG distance
distributions.
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By using this clustering analysis we can also try to verify our
statement about the ability of BMBS to correct flaws in the CG
sampling using the minima-focused seeding. In Section 3.2 we
argued (based on the minima-focused BMBS vs CG EMD plots)
that the atomistic BMBS trajectories partially move away from the

area in the 2D projection they were seeded in and thereby generate
an atomistic 2D distribution that slightly differs from the CG one.
This process can be seen as a mending of inherent defects in the CG
model. To verify this, we inspect a few clusters and follow
individual trajectories in the 2D landscape (Figure 8A). We start

FIGURE 6
Projections of 61 clusters from the combined BMBS trajectories (gray gradient). Bundles of the structures (colored according to the secondary structure)
from selected clusters are shown to visualize the homogeneity of the found clusters. The upper left inset shows the projection of the combined BMBS
trajectories in the original CG landscape.

FIGURE 7
Selected clusters and their representative conformations in the BMBS projection (the same as in Figure 6). In all inset plots themiddlemoiety of the tri-Ub
system is positioned in the sameway. A red sphere is attached to the first residue, indicating the proximal unit, and a green sphere attached to the last residue,
indicating the distal moiety. Conformations from clusters overlapping in 2D map are circled.
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again with cluster 59 (left side of the map with extended
conformations). Of the 150 independent trajectories 8 were
initiated in or around that state but leave the cluster during the
simulation time (a projection of one such trajectory is illustrated in
Figure 8C). Figure 8D shows the cumulative number of members of
cluster 59 versus the simulation time of the individual trajectories.
This plot illustrates that the simulated trajectories indeed first
sample cluster 59 and quickly populate it until around 11 ns of
individual simulation time, but then the amount of conformations
that are assigned to the cluster decreases. From around 25 ns
onwards the cluster is not expanding. This means that after the
first half of the simulated time all trajectories that have been
initiated in this cluster (due to the high population of that
specific area in the CG projection) have moved away from it.
This example complements the correction trend observed in the
EMD plots (Figure 4).

Next we show an example of two intersecting clusters 36 and
56 which are formed by several atomistic trajectories (Figure 8A).
Figure 8B shows projections of two selected trajectories forming
these clusters. In this case four BMBS trajectories that were
initiated in and around a local minimum of the CG projection
moved away from their seeding points and formed clusters in a less
populated area of the CG map. This is another illustration where
the 2D distribution of the atomistic BMBS trajectories slightly
differs from the CG template distribution. This time, however, the
BMBS trajectories do not collectively abandon one area of the map,

but rather collectively move towards one specific section that was
not heavily populated by the CG model.

4 Conclusion

We have applied back-mapping based sampling to obtain a
conformational free-energy landscape of a flexible multidomain
protein—K48-linked tri-ubiquitin—at atomistic resolution. BMBS
had been introduced for much smaller peptides, where we had
shown that the method is able to very efficiently generate a
correctly weighted atomistic ensemble based on a 2D projection
of a coarse grained simulation ensemble. For tri-Ub we first
generated a 2D projection of a set of extensive CG simulations
with the help of the dimensionality reduction method
encodermap. From projecting the structures from a long (4 µs)
atomistic simulation onto this 2D map, we found that these
simulations had only visited a very limited part of the CG 2D
landscape. By employing the BMBS algorithm, we found that the
entire CG map is accessible to the atomistic trajectories, i.e. the CG
simulations had in fact not sampled unphysical conformations.
Rather, free energy barriers between different (metastable)
conformational states are too high to be easily overcome on the
timescales accessible to the atomistic model. This successful
application of BMBS to tri-Ub illustrates that the method scales
very well with system size. Furthermore we compared different

FIGURE 8
Monitoring of the sampling for three selected clusters. (A) The convex hulls of clusters 36, 56 and 59 in the 2D map. (B) A projection of one exemplary
trajectory that contributes to the forming of clusters 36 and 56. The trajectory is colored based on the simulation time (staring from red to blue). (C) Example of
one trajectory that leaves cluster 59. (D) The cumulative count of frames contributing to cluster 59 over the individual simulation time.
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seeding methods to initiate the atomistic simulations in the 2D
projection: minima focused, Boltzmann weighted and uniform. We
argue that Boltzmann weighted seeding is more advantageous in its
ability to retain a correct free energy profile on the one hand and,
on the other hand, to explore bigger areas of conformational space.
In this context we also illustrate and discuss the use of the EMD
metric for the comparison of different (2D) distributions in a time-
resolved fashion. Lastly, we employed a recently introduced
conformational clustering workflow to the combined atomistic
BMBS trajectories. In doing so we illustrate which parts of the
2D map represent which structural conformations. In this context
we also show that the encodermap algorithm separates different
conformational characteristics very well into different regions of
the 2D map, which validates the whole BMBS approach. Finally, we
show how individual atomistic BMBS trajectories sample
conformational states, move through the 2D map and in sum
converge to an atomistic 2D distribution that slightly differs
from the CG one, indicating a correction of flaws in the CG
template.
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