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Ionic liquids have attracted attention due to their excellent properties and

potential for use as co-solvents, solvents, co-catalysts, catalysts, and as other

chemical reagents. This mini-review focuses on the properties and structures of

ionic liquids, the pretreatment of lignocellulosic biomass, and the development

of novel ionic liquid-based solid catalysts for cellulose and hemicellulose

derived HMF production.
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Introduction

As reported, lignocellulosic biomass is abundant (Zabed et al., 2017), has

carbon–neutral properties, and is a sustainable and non-edible green feedstock

(Hoang et al., 2021) that is a potential source material for the production of valuable

biofuels and chemicals. The percentage of each constituent is determined by the wood/

plant species, but, in general, is composed of cellulose (40%–50%), hemicellulose (25%–

30%), and lignin (15%–20%), as well as small amounts of pectin, nitrogen compounds,

and inorganic compounds (Kumar A. A. et al., 2020). The compound 5-

hydroxymethylfurfural (HMF) is known as the “sleeping giant” of renewable

intermediate chemicals, with derivatives that can be used in applications such as

pesticides, medicines, and biofuel chemistry (Osatiashtiani et al., 2015; Le et al., 2022;

Nasrollahzadeh et al., 2022). With current energy shortages and environmental pollution,

it is critical that we seek green, sustainable, and alternative solutions.
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Properties and structures of ionic
liquids

Ethyl ammonium nitrate, which is a liquid at ambient

temperature and pressure, was the first described ionic liquid

(IL) in 1914 (Walden, 1914; Angell et al., 2012). ILs have been

widely identified as green substitutes for organic solvents based

on their near-zero vapor pressures, high thermal stability and

devisable polarity, hydrophobicity, and excellent capacity as

solvents through modification of cations and anions (Zhang

et al., 2014; Amarasekara, 2016). To the best of our

knowledge, whether ILs can be recognized as green depends

on approaches to synthesis and internal physico-chemical

properties.

An IL can also be regarded as a salt, depending on whether its

melting point is below 100°C, as salts consist of large and

asymmetrical ions that typically have lower melting points

(Berthod et al., 2017). Generally, the melting temperature,

Tm, decreases with increased size, anisotropy, and internal

flexibility of the ions; however, Tm increases with enhanced

alkyl chain interaction (Weingärtner, 2008). Viscosity is one of

the most significant material properties of ILs. High values for

viscosity limit applications of ILs in various areas, since it reduces

rate of reaction and molecule diffusion by forming a circulation

barrier (Weingärtner, 2008). Tests of the thermal stability of ILs

have shown that decomposition happens slowly at nearly 200°C

(Berthod et al., 2017) in a process that hinges on the unique

cation and corresponding anion association. The thermal

stability of the imidazolium salts, along with the growth of the

number of alkyl substitutions, has been demonstrated (Ngo et al.,

2000). ILs involving linear side chains are more thermally stable

than comparable branched monocationic ones (Xue et al., 2016).

Halide anions can also decrease thermal stability to a certain

extent. Generally, cations account for viscosity, melting point,

and electrochemical stability, whereas anions are responsible for

hydrogen bonding and miscibility with other solvents or water

(Puripat et al., 2016).

The first-generation ILs defined dialkylimidazolium and

alkylpyridinium as cations and metal halide (FeCl4
− and

Al2Cl7
−) as anions sensitive to water and air. Cations of

quaternary ammonium and phosphonium containing

dialkylimidazolium, alkylpyridinium, ammonium, and

phosphonium, along with the classic anions tetrafluoroborate

(BF4
−) and hexafluorophosphate (PF6

−) made up the second

generation of ILs, which are not sensitive to either water or

air. Unfortunately, slow hydrolysis of these anions with increased

temperature leads to the production of hazardous and ecotoxic

hydrogen fluoride (HF). From a green, sustainability perspective,

second-generation ILs also show poor biodegradability, and are

neither cost-effective nor green (Deetlefs and Seddon, 2010).

Third-generation ILs are biodegradable cations and anions, and

natural compounds containing choline, amino acids, or

carbohydrates have been developed for IL production

(Egorova et al., 2017). Widespread commercial application of

ILs in various fields has been studied on account of these

attributes (Figure 1).

Because of the above-mentioned characteristics, ILs have

been identified as excellent solvents and catalysts for the

synthesis of HMF from biomass and associated derivatives

(Jiang et al., 2016; Li et al., 2018). Among IL cations, the

mono-imidazole type has exhibited excellent performance. To

facilitate the interaction between ILs and biomass or

carbohydrates, di-/tri-cationic ILs with higher density and

more hydrogen bonding were developed (Marullo et al., 2019;

Rathod et al., 2019; Prasad et al., 2021).

Catalytic transformation of
lignocellulosic biomass in IL-based
catalysts

Lignocellulosic biomass pretreatment is a significant process

in the production of biofuels and value-added chemicals, the

degradation of which is hindered by chemical properties,

chemical structure, and microscopic complexity. Therefore,

new approaches and reaction parameters are determined by

attributes such as the degree of crystallization and

polymerization of cellulose and the percentage of

hemicellulose and lignin (Mood et al., 2013; Abraham et al.,

2020) (Figure 2). Various ILs have been investigated to determine

their effectiveness in lignocellulose dissolution and degradation

to main compounds (Bian et al., 2014), although without the

desired target HMF yield due to the multiple steps necessary to

isolate HMF from raw materials.

Kahani et al. (2017) synthesized N-allyl-N-methylmorpholinium

acetate ([AMMorph][Ac]) and successfully introduced it for the

pretreatment of rice straw. Compared to the most efficient solvent

imidazolium liquids, the morpholinium liquids are less toxic and less

expensive, while providing glucose yields of 98.4 ± 1.3% using

mixtures of [AMMorph][Ac]-DMSO (70:30, v/v) and

N-methylmorpholine-N-oxide (NMMO), [Bmim][Ac], and

NaOH at 120°C. Furthermore, using DMSO as a co-solvent could

minimize IL usage and enhance pretreatment efficiency by reducing

viscosity (Kahani et al., 2017).

Use of a novel integrated –SO3H functionalized IL catalyst [IL-

SO3H][Cl] and nickel sulfate (NiSO4.6H2O) co-catalyst resulted in a

maximum glucose conversion of 99.92%, with 21.80% HMF yield

when incubated at 175°C for 1.5 h in the aqueous phase (Kumar K.

et al., 2020). According to the pseudo-first-order kinetic equations,

the activation energy (Ea) and pre-exponential factor (A) was

confirmed to be 47.45 kJ/mol and 7.9 × 103 min−1, respectively,

for conversion of glucose into HMF. The research demonstrated an

effective synergistic effect of the IL catalyst and Lewis acidic co-

catalyst in clean synthesis of HMF from waste biomass derived

glucose, providing a promising pathway for the preparation of vital

platform chemicals and renewable fuels.
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Conversion of cellulose with IL-based
catalysts

The synthesis of HMF derived from cellulose involves several

steps: depolymerization, hydrolysis, isomerization and,

ultimately, dehydration (Tyufekchiev et al., 2018; Zhang et al.,

2018a; Zhang et al., 2018b; Naz et al., 2021). For different

processes, catalyst properties vary depending on the reactions.

Excessive Brønsted acid or Lewis acid can accelerate the side

reactions that produce by-products. Therefore, the “tailor-made”

development of satisfactory catalyst processing with the

appropriate ratio of Lewis acid to Brønsted acid is crucial for

increasing HMF yield. In addition, allylimidazole-type ILs have

strong advantages in cellulose dissolution (Liu et al., 2012).

At the beginning of the instantiation phase, metallic ILs

(i.e., Cr([PSMIM]HSO4)3 and CuCr([PSMIM]SO4)5) were

designed and applied to the cellulose-HMF system (Zhou et al.,

2013). Cr([PSMIM]HSO4)3 demonstrated higher catalytic

performance in the production of HMF, with 53% yield ascribed

to the bifunctionality and higher Brønsted acidity at 120°C.

Liu et al. (2022) prepared a series of reactions with different

proportions of Brønsted acid and Lewis acid ILs for the

degradation of cellulose to produce HMF. Among these,

[(HSO3-P)2im]Cl·ZnCl2 exhibited excellent catalytic

performance, with an HMF yield of 65.66% at 140°C for 3 h.

This study facilitated directional optimization of the catalyst. The

quantum chemical calculation method for molecular design was

used to predict the catalytic effect (different ratios of Brønsted

acid to Lewis acid) and investigate the catalytic mechanism.

Therefore, the solvation model density (SMD) model was

proposed in combination with Frontier orbital theory. In

addition, cellulose degradation experiments were performed to

verify the simulation results and inform discussion of the

catalytic mechanism (Liu et al., 2022).

FIGURE 1
Commonly used cations and anions for ionic liquid combination.

FIGURE 2
Different components of lignocellulosic biomass and the degradations.
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Conversion of hemicellulose by IL-
based catalysts

As the second most predominant component of

lignocellulosic biomass, hemicellulose is composed of pentoses

like xylose, arabinose, and hexose, including glucose, mannose,

galactose, and the amorphous polymer xylan (Ruiz et al., 2013).

There are few developments in the production of HMF derived

from mannose and galactose. Researchers demonstrated that

mannose is predominantly isomerized to fructose, which can

be efficiently converted into HMF, while galactose primarily

isomerizes to tagatose, which is the C-4 epimer of fructose

and weaker than fructose in yielding HMF (van Putten et al.,

2013).

When lignocellulosic biomass was employed as raw material,

cellulose with higher HMF yield than hemicellulose was

preferentially chosen for the synthesis of HMF, as the

research was aimed at improving the conversion efficiency of

cellulose (Menegazzo et al., 2018). Considering the complex

components involved, the conversion conditions for HMF are

difficult to control.

Conclusion and outlook

HMF yield close to 100% will eventually be achieved by

adjusting the approach to isolation of the compound from

feedstock and optimizing IL-based catalyst reaction

conditions. This cost-effective, green, sustainable catalyst

system, which inhibits by-products, is easily functionalized,

and has no adverse environmental impact, will lead to

significant advances in future industrial-scale HMF

production. Density functional theory (DFT) and molecular

dynamics should be applied in biomass conversion to aid in

the development of reliable reaction pathways.
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