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Heteroatomic zeolites as an important class of zeolites, have been widely

applied in industrially catalytic processes due to their unique properties. As

one of the most representative heteroatomic zeolites, titanosilicate zeolites

have been extensively used in the selective oxidations of organic substrates

with H2O2 such as cyclohexanone ammoximation, epoxidation of alkenes,

and phenol hydroxylation. In this review, recent advances in the synthesis of

TS-1 zeolite are briefly summarized, including use of low-cost raw materials

(organic templates, silicon, and titanium sources), development of new

synthesis routes (post-treatment synthesis, dry-gel conversion synthesis,

solvent-free synthesis, and microwave-assisted synthesis), and new strategy

for enhanced mass transfer in TS-1 crystals (synthesis of hierarchical and

nanosized TS-1 zeolite). This review might help researchers to have a deep

understanding on the synthesis of TS-1 zeolite and provide a new

opportunity for the design and preparation of highly efficient TS-1

catalysts in the future.
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1 Introduction

Zeolites have been used in many industrial processes as the efficient catalysts due to

their uniform micropores, large pore volumes, high surface areas, and excellent stabilities

(Corma, 1995; Cundy and Cox, 2003; Meng and Xiao, 2014). In general, zeolite structures

are always consisted of TO4 tetrahedra by sharing vertices, where the T atoms are major Si,

Al, or P atoms (Arends et al., 1997; Li et al., 2014). In many cases, if T atoms become

heteroatoms such as Ti, B, Ga, Fe, it is designated as heteroatomic zeolites (Dusselier and

Davis, 2018; Přech, 2018).

As one of the most representative heteroatomic zeolites, TS-1 zeolite is formed by

replacing silicon atoms in silicalite-1 zeolite with titanium atoms. In 1983, Taramasso

et al. from Italy firstly reported the synthesis of TS-1 zeolite (Taramasso et al., 1983). Later,

other titanosilicate zeolites were reported successively, mainly including Ti-Beta, Ti-ZSM-

11, Ti-MOR, Ti-MWW, Ti-ITQ-7 and so on (Blasco et al., 1998; Corma et al., 2000; Díaz-

Cabañas et al., 2000; Wu et al., 2001; Wu and Tatsumi, 2004; Wang et al., 2007). Among

them, TS-1 zeolite has paid much attention due to its wide applications, such as

cyclohexanone ammoximation, epoxidation of alkenes, phenol hydroxylation and

oxidative desulfurization (Perego et al., 2001).
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Due to the introduction of Ti species in the zeolite

framework, TS-1 zeolite with MFI structure (Du et al., 2017)

has obvious advantages such as good acid resistance, good

hydrophobicity, and excellent performance for selective

catalytic oxidations (Jin et al., 2007; Chen et al., 2011b). As

typical examples, cyclohexanone ammoximation and

epoxidation of alkenes have been performed in industrial

processes, where TS-1 was employed as catalysts and

hydrogen peroxide was used as a green oxidant under mild

conditions (Gao et al., 2000; Perego et al., 2001; Cheng et al.,

2016). In these oxidations, it is usually regarded that the tetra-

coordinated Ti species in the framework and TiO6 species are the

active centers (Wu et al., 2016; Xu et al., 2020).

In order to increase the catalytic performance and reduce the

cost, great efforts have been paid for the synthesis of TS-1 zeolite.

As a result, it is developed many new strategies and routes for

synthesis of TS-1 zeolites. In this review, we briefly summarized

recent advances in the synthesis of TS-1 zeolite, including use of

low-cost rawmaterials, development of new synthesis routes, and

preparation of hierarchical and nanosized zeolite crystals.

2 Use of low-cost raw materials

2.1 Organic templates

Tetrapropylammonium hydroxide (TPAOH) is the first

organic template for synthesis of TS-1 zeolite. However, the

TPAOH is costly. To reduce the cost, the researchers have made

great efforts for use of relatively cheap organic templates to

replace TPAOH. Using tetrapropylammonium bromide

(TPABr) to replace TPAOH with ammonia used as the alkali

source was successful to synthesize TS-1 zeolite (Müller and

Steck, 1994). However, the size of the obtained product was larger

than that of TS-1 zeolite synthesized with TPAOH as the organic

template. To overcome this problem, organic amines as alkali

sources such as hexamethylenediamine (Tuel, 1996),

methylamine (Shibata et al., 1997), ethanolamine (Liu et al.,

2016), and ethylamine (Zuo et al., 2011) were introduced in the

synthetic systems.

In the aforementioned systems, the question is whether

organic amines act as templates or only as alkali sources. Li

et al. (1999) confirmed that the organic amines just acted as alkali

sources rather than as organic templates when the amount of

TPABr in the gel was enough.

Although the direct ability of organic amines for the synthesis

of TS-1 zeolite is much weaker than that of TPA+, TS-1 zeolite

could be synthesized successfully under the synergistic effect of

alkali metal cations or seed crystals with some organic amines.

For example, Ma et al. (1996) reported a successful synthesis of

TS-1 zeolite in the presence of 1, 6-hexandiamine and

n-butylamine as well as sodium hydroxide. However, the

presence of sodium ions in the system partially hindered the

introduction of Ti species into the zeolite framework, leading to

the formation of anatase TiO2. Later, Zhang et al. (2009)

synthesized TS-1 zeolite in the absence of alkali metal ions

using hexamethyleneimine (HMI) with the addition of active

TS-1 precursor from the conventional TPAOH system.

2.2 Silicon and titanium source

It has a great challenge for the synthesis of catalytically

active TS-1 zeolite with all titanium species in the framework

(Zhang et al., 2016b; Lin et al., 2021), which is strongly related

to the selection of silicon and titanium sources in the

synthesis. In the beginning, Taramasso et al. (1983)

reported that tetraethyl orthosilicate (TEOS) and tetraethyl

titanate (TEOT) as silicon and titanium sources were used for

the synthesis of TS-1 zeolite. Notably, TEOT hydrolyzed

rapidly, partially forming extra-framework titanium species.

To solve this problem, Xing et al. (2021) reported the

optimized synthesis of TS-1 zeolite from self-made polymer

containing titanium and silicon prepared by TEOS and TEOT.

Due to the well hydrolysis resistance of Ti-Diol-Si polymer,

silicon and titanium sources have suitable matching for the

hydrolysis rate in the crystallization process, which is

conducive to the formation of high-quality TS-1 zeolite

without extra-framework titanium species (Figure 1).

Thangaraj et al. (1992) proposed to replace traditional TEOT

with tetrabutyl titanate (TBOT) due to the hydrolysis rate of

TBOTmatched with TEOS, thus avoiding the formation of extra-

framework titanium species. In addition, they also reported the

reduction of these extra-framework titanium species in the

synthesis by changing the feeding sequence or adding

isopropanol.

Compared with organic esters of TBOT and TEOS, inorganic

silicon and titanium sources are much cheaper. Thus, the

researchers have developed many inorganic titanium and

silicon source as the raw materials for the synthesis of TS-1

zeolite. For the inorganic titanium sources, it has been reported

titanium fluoride (TiF4, Jorda et al., 1997), TiCl3 (Gao et al.,

1995), TiCl4 (Shibata et al., 1997; Zuo et al., 2011), and Ti(SO4)2
(Zhang et al., 2006). For the inorganic silicon sources, it has been

reported colloidal silica (Zuo et al., 2011), fumed silica (Shibata

et al., 1997; Zhang et al., 2009), solid silica gel (Zhang et al., 2006).

For examples, when TiCl3 was used for titanium source (Gao

et al., 1995), hydrolysis of TiCl3 is relatively slow compared with

TBOT, thus avoiding the formation of the extra-framework

titanium species. When the TiF4 was employed (Shibata et al.,

1997; Zuo et al., 2011), it is also avoided the formation of extra-

framework titanium species in the TS-1 zeolite because TiF4 is

more stable than TBOT in the synthesis. Catalytic tests in

cyclohexanone ammoximation and hydroxylation of phenol

showed that these TS-1 zeolites from inorganic sources were

comparable with the TS-1 zeolites from the organic esters.
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Furthermore, Zhang et al. (2006) reported that solid silica gel and

titanium sulfate were used as raw materials to synthesize TS-1

zeolite with good catalytic performance. In this case, a SiO2-TiO2

precursor with Si-O-Ti bonds was prepared for the hydrothermal

synthesis. Table 1 briefly summarized the synthesis of TS-1

zeolites using various raw materials. Obviously, the use of

inorganic titanium and silicon as raw materials simplifies the

synthetic steps, avoids the generation of anatase, and reduces the

cost of TS-1 zeolite.

3 Development of new synthetic
routes

3.1 Conventional hydrothermal synthesis

Hydrothermal synthesis is a conventional method for

synthesis of TS-1 zeolite reported by Taramasso et al. (1983).

In general, there are two steps including gelling and

crystallization in the hydrothermal synthesis, where anatase is

FIGURE 1
(A) Synthesis of TS-1 zeolite from Ti–diol–Si polymers. (B) Photograph of the liquid rawmaterials and solid polymer products. (C) Types of alkyl
titanates, alkyl silicates and alkyl diols used. (D) Transesterification reaction. (E) Photograph of the Ti–diol–Si polymers. Reprinted with permission
from Xing et al. (2021). Copyright 2021 Royal Society of Chemistry.
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easily produced. Thus, in the process of hydrothermal synthesis,

crystallization promoters, protective agents, and/or additives

such as isopropyl alcohol, ammonium carbonate, and/or

glycine (Thangaraj et al., 1992; Fan et al., 2008; Wang et al.,

2016, 2021; Zhang et al., 2018, 2021) would be added to obtain

the anatase-free TS-1 zeolite.

TABLE 1 Overview of the synthesis of TS-1 zeolites using various raw materials.

Entry Silicon sources Titanium sources Template + alkali source Ref.

1 TEOS TEOT TPAOH Taramasso et al. (1983)

2 TEOS TBOT TPAOH Thangaraj et al. (1992)

3 Ludox AS40 Titanium tetraisopropoxide TPABr + NH3 Müller and Steck (1994)

4 TEOS TBOT TPABr + hexamethylenediamine Tuel (1996)

5 Fumed silica TiCl4 TPABr + methylamine Shibata et al. (1997)

6 Colloidal silica TBOT TPABr + ethanolamine Liu et al. (2016)

7 Colloidal silica TiCl4 TPABr + ethylamine Zuo et al. (2011)

8 Fumed silica TBOT Hexamethyleneimine Zhang et al. (2009)

9 TEOS TiF4 TPAOH Jorda et al. (1997)

10 TEOS TiCl3 TPAOH Gao et al. (1995)

11 Silica gel Ti(SO4)2 TPAOH Zhang et al. (2006)

FIGURE 2
(A) Epoxidation routes directed by TiO4 (closed sites) and TiO6 (open sites) species in the TS-1 zeolites; (B) 1-Hexene conversion over the
different TS-1 zeolites; (C) 1-Hexene conversion and product selectivity of the recycle test using TS-1-TL0.2-36. Reprinted with permission from
Wang et al. (2021). Copyright 2021 Elsevier.
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Fan et al. (2008) reported that the addition of (NH4)2CO3

could reduce the value of pH and then decrease rate in the

crystallization of TS-1 zeolite, which was well matchable with the

speed of Ti species entering into the TS-1 framework. As a result,

the obtained TS-1 zeolite has high content of Ti species in the

framework, giving high catalytic activities in oxidations of a

variety of organic substrates. Wang et al. (2021) reported that

anatase-free TS-1 zeolite could be synthesized from the help of

L-lysine. The presence of L-lysine not only limited the formation

of extra-framework titanium species but also ensured efficient

incorporation of TiO6 (open sites) into the anatase-free TS-1

zeolite. In olefin oxidation of 1-hexene, the TS-1 zeolite from the

L-lysine exhibited higher activity than the conventional TS-1,

which is owing to the coexistence of TiO4 and TiO6 species in

appropriate proportions in the TS-1 catalyst (Figure 2).

Recently, Lin et al. (2021) reported the reversed-

oligomerization with UV irradiation to synthesize TS-1 zeolite

by matching the hydrolysis rate of Ti and Si species. Different

from the conventional route to avoid the formation of Ti

oligomer by slowing down the hydrolysis of Ti precursor, this

approach reverses the oligomerization of Ti monomer and

accelerates the hydrolysis of Si-alkoxide simultaneously, which

is matchable with the hydrolysis rate of Ti species. With the UV

irradiation, the hydrolysis time of TEOS reduced from 120 to

60 min and the time of Ti oligomer formation by TBOT was less

than 1 min, while the subsequent de-oligomerization of Ti

oligomers to Ti monomers was successfully achieved within

60 min (Figure 3).

3.2 Post-treatment synthesis

The principle of post-treatment synthesis is to remove B or

Al in the structure of ZSM-5 zeolite, generating lattice vacancies,

followed by introduction of Ti species into the zeolite framework

(Zhang et al., 1999). Generally, the post treatments mainly

FIGURE 3
(A) XRD patterns and (B) UV spectra of R-TS-1 (with UV irradiation and without additives), TS-1 (with additives), and W-TS-1 (without UV
irradiation and additives). (C) Representation of the synthetic procedures. Reprinted with permission from Lin et al. (2021). Copyright 2020 Wiley-
VCH GmbH.
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include gas-solid isomorphous substitution with TiCl4 and

liquid-solid isomorphous substitution with aqueous solution

of (NH4)2TiF6 (Xu et al., 1992; Liu et al., 2006).

Kraushaar and Van Hooff (1988) firstly reported the

dealuminated ZSM-5 zeolite with HCl aqueous solution to

form lattice vacancies and then reacted with TiCl4 to insert

titanium species to obtain TS-1 zeolite. The catalytic

performance in phenol oxidation for the obtained TS-1 zeolite

was similar with that of TS-1 zeolite under hydrothermal

conditions (Kraushaar and Van Hooff, 1989).

Yoo et al. (2000) described that the content of Ti in Ti-ZSM-

5 zeolite increased with the decreasing of SiO2/Al2O3 ratio when

H-ZSM-5 zeolite was a precursor. The structure and surface area

of H-ZSM-5 zeolite were not affected in the process of the

treatment. Compared with the direct hydrothermal synthesis

of TS-1 zeolite, the obtained TS-1 zeolite by the post-treatment

synthesis had relatively high conversion and selectivity in

cyclohexanone ammoximation.

Liu et al. (2004) reported the effects of B-ZSM-5 zeolite

precursors with different molar ratios of SiO2/B2O3 on the

incorporation of titanium species into the ZSM-5 framework.

With the decrease of SiO2/B2O3 ratio, the more hydroxyl nests

could be obtained after HCl treatment, thus more titanium

species could be incorporated into the zeolite framework,

giving higher catalytic activity in propylene epoxidation.

Post-treatment synthesis of TS-1 zeolite avoids the formation

of anatase in the products and the employment of organic

titanium as the raw material, which could significantly reduce

the cost of TS-1 zeolite. However, this repeatability is relatively

poor and synthetic procedures are relatively complex, compared

with conventional synthesis of TS-1 zeolite.

3.3 Dry gel conversion

In 1990, Xu et al. (1990) firstly reported a dry gel conversion

(DGC) to prepare high silica and all silica zeolites. For this

method, silica or aluminosilicate gels are mixed with organic

templates and then crystallized in the presence of water vapor in a

specific reactor. Compared with the hydrothermal synthesis, the

dry gel conversion has the advantages of high yield, avoidance of

separation, and reduction of wastes (You et al., 2013). Followed

this idea, many researchers have devoted to synthesizing TS-1

zeolite using DGCmethod (Ke et al., 2007; Wang et al., 2013; Wu

et al., 2014a; Yue et al., 2014; Zhang et al., 2016a; Du et al., 2019).

Zhang et al. (2016a) showed a one-step DGC method to

synthesize shaped TS-1 zeolite by the employment of a small

amount of TPAOH. Using this method, the TPAOH/SiO2 ratios

could be reduced to 0.1, which greatly decreased the cost of TS-1

zeolite. The obtained TS-1 zeolite showed nanosized crystals

(50–200 nm). Particularly, it is one step for preparation of the

shaped TS-1 zeolite, which is favorable for industrial applications

of TS-1 zeolite catalysts.

Du et al. (2019) synthesized hierarchical TS-1 zeolite by

simply adjusting the dry gel preparation process without the

addition of mesoporous organic templates using DGC method.

The key to this success is to prepare the loosely porous dry gel by

grinding, which was helpful for fast diffusion of steam inside the

dry gel (Figure 4). Moreover, the surface Ti content of TS-1

zeolite obtained by this method was significantly higher than that

of the internal section, contributing to the excellent catalytic

performance in the oxidation of bulky sulfur compounds.

3.4 Solvent-free synthesis

In recent years, Xiao et al. reported the solvent-free

synthesis of zeolites without addition of any solvent (Ren

et al., 2012). It has been successfully synthesized pure silica

and aluminosilicate zeolites, aluminophosphate and

silicoaluminophosphate molecular sieves (Jin et al., 2013,

2014; Wu et al., 2014b; Wu et al., 2019). Compared with

conventional synthesis, solvent-free synthesis of zeolites has

obvious advantages, such as high zeolite yields, high autoclave

utilization, significantly reduced pollutants, reduced energy

consumption, simple synthesis processes, and significantly

reduced reaction pressures (Meng and Xiao, 2014).

Subsequently, it was also successful to synthesize TS-1

zeolite using this method (Zhu et al., 2015; Cui et al., 2017;

Fu et al., 2020; Wang et al., 2020; Liu et al., 2022).

Zhu et al. (2015) reported the synthesis of TS-1 zeolite using

fumed silica, titanium sulfate, TPAOH and zeolite seeds as raw

materials under solvent-free conditions. Notably, TS-1

synthesized by this route has almost the same catalytic

performance with that of TS-1 zeolite synthesized by

conventional hydrothermal method in the catalytic oxidation

of hexane. Liu et al. (2022) reported the improved synthesis of

TS-1 zeolite from solvent-free synthesis, obtaining the anatase-

free nanosized TS-1 zeolite product. It just mixed the untreated

seed solution prepared by TPAOH and TEOS, silicon source, and

titanium source, then ground and crystallized (Figure 5). By

studying the possible mechanism of TS-1 zeolite, it was found

that the seed solution is the key factor to obtain nanosized TS-1

zeolite. This method has the advantages of simple operation and

high yield, which might open a new opportunity to prepare

nanosized TS-1 crystals for industrial applications.

3.5 Microwave-assisted synthesis

Microwave-assisted method as a novel route for zeolite

synthesis came into the view of researchers in the 1980s and

had also been used to synthesize TS-1 zeolite. Prasad et al. (2002)

reported TS-1 zeolite could be obtained by microwave-assisted

route and the crystallization time of TS-1 (Si/Ti = 33) was as short

as 30 min. Moreover, the morphology of TS-1 zeolite could be
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FIGURE 4
Mechanism of the formation of HTS-1 zeolite. The dry gel with compact structure was converted to conventional TS-1 (a–c) and loose compact
structure was converted to hierarchical TS-1 (d). Reprinted with permission from Du et al. (2019). Copyright 2018 Elsevier.

FIGURE 5
The schematic process of synthesizing anatase-free nanosized TS-1 zeolite under solvent-free conditions. Reprinted with permission from Liu
et al. (2022). Copyright 2021 Elsevier.
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controlled with microwave irradiation. Jin et al. (2009) showed

that the use of microwave led to the formation of the small

crystals adhered to each other through the b-orientation, forming

a stacked TS-1 zeolite. Yang et al. (2006) proved that TS-1 zeolite

prepared under microwave irradiation has a high

hydrophobicity, leading to the enhanced adsorption capacity

of styrene and 1-hexene, thus obtaining the improved catalytic

performance of epoxidations.

With the help of microwave irradiation, the modulation of

the coordination environments of Ti active sites could also be

successful (Xu et al., 2020). TS-1 zeolite with octahedral

coordination Ti species (mononuclear TiO6) was synthesized

by adding zeolite seeds and microwave irradiation. The obtained

TS-1 zeolite with mononuclear TiO6 feature had good catalytic

activity and stability in the epoxidation of 1-hexene.

4 The strategies for enhanced mass
transfer

Most of the catalytic active site in TS-1 zeolite are located

inside of the micropores. In general, the reactants should diffuse

into the micropore at first, then access to the active sites.

However, the microporous size of the ten-membered ring of

TS-1 zeolite is too small to diffuse the reactants and products,

which strongly influences the catalytic activities (Du et al., 2016).

FIGURE 6
The proposed route for the formation of bulky particles formed by TS-1 zeolite nanocrystals in the presence of H2O2. Reprinted with permission
from Shan et al. (2010). Copyright 2010 Wiley-VCH.

FIGURE 7
Growth model of the TS-1 zeolite (MFI-type crystal). Reprinted with permission from Liu et al. (2020). Copyright 2019 Elsevier.
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To solve this issue, it is desirable to synthesize TS-1 zeolite with

fast mass transfer (Wang et al., 2022). In the past decades, great

advances have been made for synthesis of hierarchical and

nanosized TS-1 crystals, effectively eliminating diffusion

constraints.

4.1 Synthesis of hierarchical TS-1 zeolite

Hierarchical TS-1 zeolite usually has both microporosity and

mesoporosity even macroporosity, which not only has fast mass

transfer but also reduce the coke formation in the reactions. At

present, there are two methods for the synthesis of hierarchical

TS-1 zeolite (top-down and bottom-up routes) (Chen et al.,

2016). Bottom-up route is to introduce mesopore into TS-1

zeolite by addition of mesoporous templates in the synthesis,

including hard templates and soft templates. Top-down route is

to introduce mesopore by the extraction of framework

composition from post-treatments such as alkali (Valtchev

et al., 2011). Many reviews have summarized the synthesis of

hierarchical TS-1 zeolite, therefore this part is not discussed in

this review (Ren et al., 2017; Yang et al., 2020a; Bai et al., 2021).

4.2 Synthesis of nanosized TS-1 crystals

In addition to the hierarchical TS-1 zeolite, nanosized TS-1

crystals are very favorable for fast mass transfer, thus improving

the catalytic performances (Wang et al., 2022). At present, the

synthesis of nanosized TS-1 crystals mainly includes

organotemplate directing, additive assistance, and seed direction.

4.2.1 Organotemplate directing
Organic template not only plays an important role in

structural directing but also controls crystalline morphology in

the synthesis of zeolites. There are many literatures for synthesis

of nanosized TS-1 crystals using unique organic templates (Xu

et al., 2019; Shen et al., 2020; Ma et al., 2022). Na et al. (2011) firstly

reported that TS-1 zeolite nanosheets with single-unit-cell thickness

could be successfully synthesized from quaternary ammonium salt

surfactant [C16H33–N
+(CH3)2–C6H12–N

+(CH3)2–C6H13] as a

structure-directing agent. The obtained product has a large

external specific surface area (580m2/g) and short diffusion

pathway (2 nm along the b-axis). 4-coordinated Ti species and

more active sites on the external surface of TS-1 zeolite

nanosheets resulted in the excellent performance in epoxidation

not only for small linear alkenes but also for large alkenes. After

reduction of the silanol in the external surface to increase the

hydrophobicity of TS-1 zeolite by post-fluoridation, the catalytic

activity and epoxidation selectivity of the cycloalkene would be

significantly improved.

Li et al. (2020) used the bolaform surfactant

[C6H13–N
+(CH3)2–C6H12–N

+(CH3)2–(CH2)12–O–(p-C6H4)2–

O–(CH2)12–N
+(CH3)2–C6H12–N

+(CH3)2–C6H13] as a structure-

directing agent to synthesize TS-1 zeolite nanosheets with superior

interlayer stability and house-of-cards-like structure. Compared with

the traditional TS-1 zeolite and hierarchical TS-1 zeolite synthesized

by organosilane surfactant [3-(trimethoxysilyl) propyl]

octadecyldimethylammonium chloride (TPOAC), the obtained

TS-1 nanosheets exhibited excellent catalytic activity, recovery,

and stability for the selective oxidation of bulk cyclic alkenes in

liquid phase.

Although TS-1 nanosheets could be synthesized using

organic templates, the high cost of organic template limits its

practical applications. Further efforts should be done to develop

low-cost organic templates for synthesis of TS-1 nanosheets.

4.2.2 Additive-assisted synthesis
Additives such as inorganic and organic agents, polymers,

and amino acid, can influence the crystallization of TS-1 zeolite,

forming nanosized crystals (Shan et al., 2010; Xu et al., 2012;

Shakeri and Dehghanpour, 2019; Yang et al., 2020b; Ji et al., 2021;

Li et al., 2021). Compared with designed organic templates, it is

economical to use such additives to control the morphology of

zeolite crystals.

Li et al. (2021) synthesized TS-1 crystals with the size less

than 100 nm by a two-step method using L-lysine as an additive.

The introduction of L-lysine inhibited the growth of the crystals,

resulting in the formation of nanosized TS-1 crystals. In addition,

L-lysine also reduced the pH value of the gel system, which is

conducive to incorporate Ti to the TS-1 zeolite framework.

Compared with TS-1 zeolite obtained without L-lysine, the

conversion of benzene and the yield of phenol increased from

28.9% to 50.2% and 17.1%–30.8%, respectively.

Polyethylene glycol is also a good additive to synthesize

nanosized TS-1 crystals with high Ti content in the

framework and low content of anatase TiO2, resulting in good

catalytic performance in hydroxylation of phenol, oxidation of

dibenzothiophene, and deep desulfurization of fuels (Shakeri and

Dehghanpour, 2019).

In addition to the organic additives, inorganic additives could

be also used for synthesis of nanosized TS-1 crystals. Shan et al.

(2010) prepared the TS-1 bulky particles formed by nanocrystals

with the addition of H2O2 and the aggregation of TS-1

nanocrystals was promoted by the strong interaction between

Ti species and H2O2 (Figure 6). Compared with organic

additives, the use of inorganic additives has obvious advantage

for reduction of the cost.

4.2.3 Seed-directed synthesis
In the process of zeolites synthesis, zeolite seeds could provide

crystal nucleus to reduce the crystal size. Nanosized TS-1 crystals has

also been prepared by seed-directed synthesis (Chen et al., 2011a; Zuo

et al., 2012; Li et al., 2019; Liu et al., 2020).

Liu et al. (2020) reported that nanosized (50–100 nm) TS-1

zeolite could be efficiently prepared by using the recovered

Frontiers in Chemistry frontiersin.org09

Luan et al. 10.3389/fchem.2022.1080554

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1080554


mother liquor within 3–8 h. The growth of TS-1 zeolite can be

explained by that the reactive SiO2 (especially monosilicate

species) polymerized into SimOn species to form the special

secondary building units (SBUs) and then these SBUs

assembled into the MFI cage, eventually forming the MFI

zeolite crystal (Figure 7). The recovered mother liquor not

only provides a certain amount of SBU-type SimOn species for

fastening the homogenous nucleation but also enhances the

supersaturation of active silica species for the formation of

nanosized crystals.

Li et al. (2019) synthesized nanoscale TS-1 (360 nm ×

190 nm × 640 nm) by seed-directed method in the dry gel

system containing tetrapropylammonium bromide (TPABr)

and n-butylamine. Chen et al. (2011a) obtained hierarchical

nanocrystalline TS-1 aggregates with supermicro/mesopores

using TPAOH as a single organic template with the assistance

of zeolite seeds. The nanocrystalline TS-1 aggregates with the size

of 300–500 nm overcame the filtration difficulties in separation,

which is helpful for industrial preparation of nanosized TS-1

catalyst at a large scale.

5 Conclusion and outlooks

In summary, we simply reviewed recent advances for TS-1

zeolite synthesis. To reduce the TS-1 cost, it is discussed the use

of low-cost rawmaterials including various organic templates, silicon

and titanium sources. Furthermore, we described new routes for

synthesis of TS-1 zeolite such as post-treatments, dry-gel conversion,

solvent-free, and microwave-assisted approaches, which are helpful

for reduction of environmentally unfriendly wastes in the synthesis.

Finally, it is shown the new strategies for fast mass transfer such as

introduction of hierarchical porosity into TS-1 crystals and

controllable TS-1 crystals to nanosizes or nanosheets.

Although there are great progresses in the synthesis of TS-1

zeolite, there are still challenges. For examples, industrial

preparation of TS-1 zeolite is generally under strong alkaline

media, where a large amount of silica species are dissolved in the

mother liquor. Therefore, it is strongly desirable to synthesize TS-

1 zeolite under near neutral conditions; Currently, it is necessary

to use organic templates for the synthesis of TS-1 zeolite, which is

costly. Therefore, it is expected to develop an organotemplate-

free route for the synthesis of TS-1 zeolite. In view of the wide

applications of TS-1 zeolite in the industrial progresses, it should

be continuously explored novel strategies for the synthesis of TS-

1 zeolite with reduced cost and enhanced catalytic performance.
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