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This work prepared an ISAPO-34/SAPO-18 intergrown zeolite using phosphate

organoamine as the structure guiding agent. Physical-chemical

characterizations by XRD, SEM, TG, and BET showed that the SAPO-34/

SAPO-18 presents a cross-stacked cubic block-like microscopic

morphology, with characteristic diffusive diffraction peaks at 2θ = 16–18°

and 30–33° and a specific surface area of 557 m2 g−1. The series of copper-

based catalysts prepared from SAPO-34/SAPO-18 showed a shift of the active

temperature window to a lower temperature with increasing copper content.

Moreover, the Brønsted acid site decreased significantly due to copper ion

exchange and zeolite structure framework damage. Among them, the 1.2 wt%

sample showed the widest active temperature window, with a T90 range of

175–435°C. After low-temperature hydrothermal aging treatment, the zeolite

structure was eroded and the catalyst activity deteriorated significantly.
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Introduction

Due to the recent increasing seriousness of environmental pollution, theoretical

studies have explored methods to relieve this phenomenon based on two-dimensional

catalysts (Ren et al., 2022a; Ren et al., 2022b; Ren et al., 2022c; Ren et al., 2022d; Zhang

et al., 2022). The gas emissions of internal combustion engines have produced

considerable levels of pollution. China steadily ranks first worldwide in the

production and sales of internal combustion engines, with domestic sales reaching

46.813 million in 2020. Among these, diesel internal combustion engines comprised

6.341 m units, accounting for 13.5% of the total internal combustion engine sales and

showing a steady growth trend. Given this trend, the challenge of exhaust pollutant

emission is increasingly prominent and seriously threatens the sustainable development

of atmospheric ecological environments. The diesel vehicle emission standards in China

mainly follow European emission regulations, for which selective catalytic reduction

(SCR) technology provides a necessary way for diesel vehicles to meet VI emission

standards (Han et al., 2019). The core catalyst required by ammonia selective catalytic
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reduction (NH3-SCR) technology, an internationally recognized

efficient technology for nitrogen oxides (NOX), is shifted from a

vanadium, tungsten, and titanium system (Yang et al., 2014) to a

zeolite catalyst system (Chen et al., 2022). The latter is usually

composed of zeolite as a carrier of active metal elements (Zheng

et al., 2020; Jin et al., 2022; Yuan et al., 2022). The common

zeolite skeleton configurations include MFI (Yuan et al., 2016),

AEI (Wu et al., 2022), BEA (Lin et al., 2018), LTA (Lin et al.,

2021), CHA (Wang et al., 2015; Bergmana et al., 2020; Sun et al.,

2020; Zhang et al., 2021a; Bello et al., 2022), AFX (Li et al., 2022a),

etc. The zeolite SCR catalyst (Tsukamoto et al., 2019) represented

by CHA has advantages including good low-temperature activity,

a wide active temperature window, high nitrogen selectivity,

green environmental protection due to its unique micropore

structure, and suitable surface acidity (Xu et al., 2020;Wang et al.,

2021; Zhang et al., 2022a). In recent years, in-depth studies have

evaluated the formula, performance, and mechanism of an SCR

catalyst with single-structure zeolite. The corresponding

intellectual property rights are owned by foreign companies.

Polycrystalline/mixed crystal/intergrown zeolite SCR catalysts

also show excellent catalytic activity and durability. Zhang

et al. (2021b) reported greater catalytic activity, hydrothermal

stability, and sulfur aging resistance for a Cu/SAPO-18/

34 intergrown zeolite catalyst compared to those for Cu/

SAPO-18 and Cu/SAPO-34. As a typical representative,

SAPO-18/34 zeolite is a new type of zeolite (Boruntea et al.,

2019; Tsuchiya et al., 2020; Li et al., 2022b) composed of AEI and

CHA skeleton structure units in stacking faults. It has both the

pore canals and acidity of the two crystal phase structures, which

usually show better catalytic performance than a single zeolite.

Zhao et al. (2016) used triethylamine and N, N-diisopropyl

ethylamine as double templates to prepare AEI/CHA

intergrown SAPO zeolite and its catalyst, which not only

increased the catalytic activity but also significantly reduced

the carbon deposition rate. This dual template method is the

most common way to prepare symbiotic molecular sieves.

However, compared to single templates, it is more difficult to

prepare molecular sieves with double templates, and the effects of

the proportion, distribution, and chemical state of the templates

on the synthesis are more complex. Therefore, the efficient

preparation of AEI/CHA symbiotic molecular sieves requires a

template.

The present study used phosphate organic amine (Li et al.,

2022c) as a template and phosphorus source in a synthesis

environment at a pH of 6–7. A SAPO-34/SAPO-

18 intergrown zeolite with a hydrogen API-CHA structure

was directly prepared and its physicochemical properties and

catalytic activity were analyzed by characterization methods

including XRD, SEM, and BET. The effects of factors such as

active component content and low-temperature hydrothermal

inactivation on the performance were studied to provide a

reference for the performance research and application of

intergrown zeolite SCR catalysts.

Experimental methods

Reagents

The reagents included SAPO-18/SAPO-34 zeolite (self-

made, SiO2:P2O5:Al2O3 = 1:3.74:3.81); copper nitrate

(analytically pure, Shanghai McLean Biochemical Technology

Co., Ltd.); nitric acid (analytically pure, Tianjin Kemio Chemical

Reagent Co., Ltd.); deionized water (self-made).

Preparation of the zeolite catalyst

A 0.1N copper nitrate solution was prepared, 200 g of which

was weighed and placed in a 500 ml beaker. Next, 10 g of SAPO-

18/SAPO-34 zeolite was added to the solution. Nitric acid was

then added until pH = 3, stirred, and reacted in a water bath at

80°C. A series of copper-based catalysts were prepared. Those

with copper contents of 0.3wt%, 0.8wt%, and 1.2wt% were

labeled as 0.3, 0.8, and 1.2, respectively.

Characterization of the zeolite catalysts

XRD characterization was performed using a SmartLab SE

X-ray diffractometer (Rigaku Corporation) to analyze the crystal

structures of the samples. SEM characterization was performed

using an Apero-Lowvac high-resolution field emission scanning

electron microscope (Thermo Fisher) to observe the sample

microstructure. BET characterization was performed using an

ASAP 2460 specific surface area and porosity analyzer

(Micrometrics) to analyze the specific surface area, pore

volume, and pore size of the test samples. NH3-TPD

characterization was performed using an AutoChem II

2920 chemical adsorption instrument (Micrometrics) to

analyze the surface acidity characteristics of the samples. TG-

DSC characterization was performed using a STA449F5 Jupiter-

type synchronous thermal analyzer (NETZSCH) to assess the

mass and heat changes of the samples at increasing temperatures.

Evaluation of the catalyst activities

The catalytic performance was tested in a miniature fixed-

bed activity evaluation device, as shown in Figure 1. For these

tests, 5 g catalyst powder was fully ground to prepare a

40–60 mesh sample and placed in a quartz reaction tube with

a 15 mm inner diameter. Both ends were sealed with quartz

cotton to form a catalyst bed. The evaluation device comprised a

simulation gas distribution system, a programmed heating

device, and a gas analyzer. The simulated tail gas composition

was as follows: [NO] = 500 PPM, [NH3] = 500 PPM, [H2O] =

10 vol.%, [O2] = 10 vol.%, with N2 as the equilibrium gas, and an
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airspeed of 30,000 h−1 (default conditions). The NO conversion

rate, NH3 conversion rate, N2O content, and N2 selectivity were

calculated according to the following formula:

xNO � nNOin − nNOout

nNOin

× 100% (1)

sN2 �
n NH3in − n NH3out + n NOin − n NOout − n NO2out − 2 nN2Oout

n NH3in + n NOin − n NOout

× 100%

(2)

where NO (out), NO2 (out), N2O (out), and NH3 (out) are the

outlet concentrations of NO, NO2, N2O, and NH3 and NO (in)

and NH3 (in) are the inlet concentrations of NO and NH3.

The formula for the heating program T was as follows:

T � 1
12

× t + 25 (3)

where the unit of the T is °C; t represents the time with the unit of

second.

Low-temperature hydrothermal aging
treatment

To investigate the hydrothermal stability of the SAPO-18/

SAPO-34 zeolite at low temperature, an SCR catalyst with 1.2%

copper content was aged for 100 h at 90°C under 10%water vapor

at a space speed of 30,000 h−1. The age and fully dried samples

were labeled as 1.2-a. The NH3-SCR catalytic activity of the aged

samples was investigated in a micro fixed-bed reactor.

Results and discussion

Catalytic performance

Figure 2A shows the NO conversion curves of the series

copper-based SAPO-18/SAPO-34 catalyst in the standard

NH3-SCR reaction. With increasing copper content, the ion

exchange sites on which copper ions bonded to the molecular

sieve as well as the formed active species are generally believed

to change, with the temperature window shifting from higher

to lower temperatures. The common copper active species in

Cu-based zeolite SCR catalysts include Cu2+, [Cu(OH)]+, Cu-

O-Cu, CuOx, etc. (Borfecchia et al., 2015; Shan et al., 2019; Liu

et al., 2020; Khurana et al., 2022). Figure 2A shows that when

the copper content increased from 0.3wt% to 0.8wt%, the

range of the active temperature window T90 (the temperature

at which the NO conversion rate is 90%) widened from

325–525°C to 170–425°C. Accordingly, the NO ignition

FIGURE 1
Equipment diagram for the evaluation of the activity of the NH3-SCR catalyst. 1. Nitric oxide. 2. Ammonia. 3. Nitrogen. 4. Oxygen. 5. Propane. 7.
Other Gases. 8. Filter. 9. Globe valve. 10. Mass flowmeter. 11. One-way valve. 12. Mixer. 13. Heating furnace. 14. Reactor. 15. Gas analyzer. 16.
Computer.
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temperature T50 (the temperature at which the NO conversion

rate is 50%) decreased from 250°C to 160°C. Kwak et al. (2012)

reported that at low copper content, the active component

copper preferentially occupied the sites in the D6R cage, while

some copper ions migrated to the CHA cage when the copper

content increased. At a copper content of 1.2wt%, the low-

temperature performance of the catalyst decreased slightly

and the T50 temperature increased to about 165°C compared

to 0.8wt%, and the high-temperature activity increased

slightly, with the temperature window widening to

175–435°C. All Cu-based SAPO-18/SAPO-34 catalysts

showed excellent nitrogen selectivity of close to 100%, as

shown in Figure 2D.

Figure 2B shows the outlet ammonia concentrations of the

series of copper-based SAPO-18/SAPO-34 catalysts during the

activity test. In general, the SAPO-18/SAPO-34 intergrown

zeolite showed poor ammonia storage performance, with

ammonia escape concentrated at 100°C–300°C. At

temperatures above 100°C, the adsorbed NH3 showed

excessive desorption. Due to the lower temperature and the

poor catalyst activity, NH3 could not fully participate in the

selective catalytic reduction reaction, resulting in a sharp increase

in its desorption capacity. When the number of catalytic active

centers was small, this situation was particularly prominent. The

amount of NH3 escape ranked from high to low was as follows:

under 0.3wt%> 0.8wt%> 1.2wt%. N2O production showed the

opposite trends as those for ammonia escape, as shown in

Figure 2C. At lower copper content, less secondary pollutant

N2O was generated (Isapour et al., 2022), which may be related to

the species of CuOX crystal cluster; however, the overall

production was <10 PPM, which met the relevant limit

requirements for national emission standards.

Physicochemical properties of the
intergrown zeolite

Figure 3A shows the XRD pattern of the SAPO-34/SAPO-

18 intergrown zeolite. The characteristic diffraction peaks are

attributed to 2θ = 9.79°, 13.22°, 16.41°, 18.18°, 19.51°, 21.05°,

23.56°, 24.47°, 25.47°, 26.45°, 31.27°, and 31.61°, respectively. By

comparison to the standard spectrum diagram in Figure 3A, the

FIGURE 2
NH3-SCR performance of a series of copper-based SCR catalysts. (A) No conversion; (B) NH3 outlet concentration; (C) N2O outlet
concentration; (D) N2 selectivity.
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characteristic diffraction peaks of the SAPO-34 zeolite were

attributed to 2θ = 9.64°, 13.08°, 14.20°, 16.28°, 18.05°, 19.35°,

20.94°, while the characteristic diffraction peaks of SAPO-18

zeolite were attributed to 2θ = 9.60°, 13.08°, 14.78°, 15.48°, 16.97°,

19.28°, 19.49°, 20.12°, 24.85°, and 26.11°. In contrast, the

characteristic diffraction peaks of the SAPO-34/SAPO-

18 intergrown zeolite were wide and weak in the range of

2θ = 16–18° and 30–33°, which were not observed in the

above two single crystal zeolites. The ellipsoidal CHA

structure and the pear-shaped AEI structure have similar

skeleton topologies and the hexagonal prism cage (D6R) is

key to the connection of the two lattices (Zhao et al., 2017).

Where the D6R cage of CHA structural zeolite is straight and

parallel, AEI structural zeolite shows a cross-oblique and parallel

distribution. Therefore, the SAPO-34/SAPO-18 intergrown

zeolite was more inclined to cross-stack on the cubic bulk

crystal, with the microstructure shown in Figures 3B,C.

Figure 3B shows the microstructure photos of the SAPO-34/

SAPO-18 intergrown zeolite, displaying generally irregular cross-

stacked cube blocks. The crystal size is 3–5 μm, and the

morphology obviously differs from those of SAPO-34 and

SAPO-18 zeolites, which intuitively confirmed the formation

of a eutectic structure. The intergrown crystal surface of SAPO-

34/SAPO-18 was not smooth, but rather showed defects and

damage, possibly because the use of the concentrated sol-gel

system to prepare the intergrown zeolite affected the nucleation

and growth process. The industrial pure-grade silicon and

aluminum sources may have also contributed to the irregular

morphology. After low-temperature hydrothermal aging, the

defects on the SAPO-34/SAPO-18 crystal surface expanded

and showed a tendency for fragmentation, indicating that its

structure was damaged, as shown in Figure 3C.

Figure 3D presents the nitrogen physical adsorption test

results of the SAPO-34/SAPO-18 intergrown zeolite. The

nitrogen isotherm absorption/desorption curve of the

intergrown zeolite showed type I isotherm characteristics,

as defined by IUPAC, and had a type H4 hysteresis

loop. That is, in the interval 0 < P/P0 < 0.01, the

adsorption curve rose sharply with increasing relative

pressure, indicating that the intergrown zeolite had

structural characteristics of microporous materials (Lu

et al., 2022). According to the gap width distribution curve,

the median pore size was approximately 0.36 nm (Horvath-

Kawazoe method); the narrow and sharp distribution reflected

FIGURE 3
(A) XRD patterns; SEM photo of a SAPO-34/SAPO-18 intergrown zeolite: (B) fresh sample (30,000x) and (C) aged sample (20,000x). (D) N2

adsorption-desorption isotherms and porosity distribution curve of a SAPO-34/SAPO-18 intergrown zeolite.
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the regular lattice and orderly pore distribution of the

intergrown zeolite. Moreover, the two-phase symbiosis did

not significantly change the skeleton types of the CHA and

AEI structural zeolites.

The XRF test results in Table 1 show an elemental

composition of SAPO-34/SAPO-18 intergrown zeolite of

SiO2:P2O5: Al2O3 = 1:3.74:3.81, which is related to the use

of phosphoric acid-organic amine as template agent. The

intergrown zeolite had low copper ion exchange efficiency

and the copper content was only 0.3wt% after constant

exchange at 80°C for 8 h. The copper content increased to

0.8wt% after two more exchanges. After three exchanges, the

copper content loading rate was only 1.2 wt%. However, with

increasing rounds of ion exchange, the specific surface area of

the corresponding zeolite catalyst decreased significantly.

The specific surface area of the SAPO-34/SAPO-

18 intergrown zeolite was as high as 557 m2 g−1 and

decreased to 487 m2 g−1 after three rounds of copper ion

exchange. This may occur due to damage to the SAPO-34/

SAPO-18 intergrown zeolite structure in the hot water

environment used in ion exchange.

Figure 4A shows the test results of the synchronous thermal

analysis of the SAPO-34/SAPO-18 intergrown zeolite. The

weight loss curve (TG) shows two main weight loss intervals

at 40–150°C and 150–300°C and a weight loss rate of about

9 wt%. Below 150°C, the weight loss is obvious (up to 7 wt%),

which is related to the rapid evaporation of excessive free

water adsorbed by the zeolite. The heat curve (DSC) also

reflects the water evaporation and heat absorption at this

stage. With increasing temperature, the remaining water

bound in the zeolite begins to volatilize and the organic

amine template agent undergoes thermal decomposition

with heating. The significant slowing of mass and heat

changes at 150–300°C were attributed to the new

phosphoric acid-organic amine template used in the SAPO-

34/SAPO-18 synthesis process effectively avoiding the

excessive use of template agent compared to the traditional

method. The use of phosphoric acid-organic amine as a

structure-diverting agent allowed the accurate and efficient

use of organic amine molecules, thus improving

environmental protection and economic benefits.

Ammonia adsorption characteristics

The surface acidity of zeolite catalysts is generally believed

to have an important influence on NH3-SCR performance.

The surface acidity and amount of acid in zeolite SCR catalysts

are usually characterized by NH3-TPD. Figure 4B shows the

temperature-programmed ammonia desorption curves of the

TABLE 1 XRF and BET results of SAPO-34/SAPO-18 zeolite and its catalysts.

Sample number Fraction mole ratio Copper content (wt%) Specific surface area (m2·g−1) Median pore diameter (�Å)

SAPO-18/SAPO-34 SiO2:P2O5: Al2O3 = 1:3.74:3.81 0 557 3.60

0.3 — 0.3 523 3.60

0.8 — 0.8 508 3.61

1.2 — 1.2 487 3.61

FIGURE 4
(A) TG-DSC curve of a SAPO-34/SAPO-18 intergrown zeolite. (B) NH3-TPD curves of the series of copper-based SCR catalysts.
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series of copper-based SAPO-34/SAPO-18 zeolite catalysts.

The three main characteristic peaks were attributed to weak,

medium-strong, and strong acid sites, respectively (Pérez-

Uriarte et al., 2016; Xu et al., 2017; Shin et al., 2018). The

weak acid site at low temperatures corresponded to a weak

Lewis acid (T = 220°C), the medium strong acid site at middle

temperatures corresponds to strong Lewis acids and some

active copper species sites (T = 420°C), and the strong acid

adsorption site at high temperatures corresponded to a

Brønsted acid (T = 510°C). As shown in Figure 4B,

increasing copper content was associated with a decreased

acid content of the zeolite catalyst and acid peak intensity to

varying degrees. The Brønsted acid position was particularly

obvious. Regarding the main factors affecting Brønsted acid

sites, 1) during the ion exchange, Cu occupies the hydroxyl

site of Si-OH-Al in the six-member ring of zeolite to form

Cu2+, with Brønsted acid sites decreasing accordingly

(Villamaina et al., 2019). 2) During ion exchange reactions,

the high-temperature water environment damages the

structure of the SAPO-34/SAPO-18 zeolite, leading to a

significant reduction of Brønsted acid sites (Liu et al.,

2022). 3) The copper loading amount in the zeolite is

exceeded and the active components mainly exist as

[Cu(OH)]+ and CuOx clusters (Lee et al., 2021). The

generation of CuO may lead to the dealuminization of

the zeolite skeleton; that is, the destruction of zeolite

Brønsted acid (Si-OH-Al) (Di Iorio et al., 2015; Millan

et al., 2021; Negri et al., 2021). Based on the above factors,

we further investigated the effect of low-temperature

hydrothermal aging treatment on the performance of the

NH3-SCR catalyst.

Low-temperature hydrothermal stability

Figure 5A shows the NO conversion curve of a 1.2 wt% sample

before and after low-temperature hydrothermal aging. Figure 5A

shows significantly decreased catalyst activity with aging.

Moreover, the temperature window basically disappears, and

the NO ignition temperature exceeds 200°C. The results of crystal

phase structure characterization Figure 5B demonstrated that,

after aging, the catalyst presents an amorphous state and the

characteristic diffraction peak of SAPO-34/SAPO-18 zeolite

almost completely disappears. The above results suggest that

the crystal phase structure of the copper-based SAPO-34/SAPO-

18 zeolite catalyst was destroyed after low-temperature

hydrothermal aging treatment, leading to irreversible

inactivation (Woo et al., 2018) (Figure 6).

Ma et al. (2020) reported that the Si-O(H)-Al bond of SAPO-

34 zeolite was prone to hydrolysis in low-temperature

hydrothermal environments. Woo et al. (2020) believed that

the hydrolysis first formed Si (2Al) (2OH) and Si (3Al) (OH),

which were finally transformed into silicon clusters. Gao et al.

(2013) reported that SAPO-34 zeolite structures with more Si-

O(H)-Al bonds showed more serious hydrolysis damage. Wang

et al. (2019) studied the effect of SAPO-34 zeolite hydrolysis on

active species, in which Cu(OH)+ was transformed into spinel-

structured CuAl2O4, with significantly decreased catalytic

activity. Leistner et al. (2015) confirmed the loss of the active

Cu2+ species lost after the water vapor treatment of Cu-SAPO-34.

Zhang et al. (2022b) proposed that the hydrolysis of the Si-O(H)-

Al bond and the loss of active copper species jointly induced Cu/

SAPO-34 inactivation, with inactivation the easier under a larger

proportion of the two.

FIGURE 5
Performance changes of the 1.2 wt% copper content catalyst before and after low-temperature hydrothermal aging. (A) NO conversion.
(B) XRD patterns.

Frontiers in Chemistry frontiersin.org07

Ye et al. 10.3389/fchem.2022.1069824

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1069824


Conclusion

First, SAPO-18/SAPO-34 intergrown zeolite was

prepared using phosphoric acid-organic amine, which has

a unique crystal phase structure and microstructure,

displaying the typical adsorption characteristics of zeolite

microporous materials. Phosphoric acid-organic amines act

as both a phosphorus source and a structure-diverting agent.

The excessive use of structure-diverting agents can be

avoided by use of a synthetic stoichiometric ratio. TG-DSC

test results did not show an obvious thermal decomposition

phenomenon of organic amines. Secondly, with increasing

active component content, the state of copper species

changed due to migration, and the active temperature

window of the Cu-based SAPO-18/SAPO-34 catalyst

shifted toward low temperatures. At copper

contents <0.8wt%, the T50 was 160°C, and the T90 range

was 170–425°C, showing the optimal performance. Finally,

the SAPO-18/SAPO-34 intergrown zeolite showed three

main ammonia adsorption sites, and the Brønsted acid

sites of the zeolite carrier were lost due to copper

occupying the exchange sites during the ion exchange.

However, a more important incentive is the structural

damage of SAPO zeolite in the low-temperature

hydrothermal process. After low-temperature

hydrothermal aging treatment, the temperature window of

the 1.2wt% Cu content sample almost disappeared, with the

crystal phase structure seriously damaged.
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FIGURE 6
Schematic diagram of the destruction of zeolite and its catalyst by low-temperature hydrothermal aging treatment.
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