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Owing to its novel properties, such as high electrical conductivity and large

specific surface area, graphene has been found as suitable support material for

the electrocatalyst design. This work reports the preparation of platinum-nickel

alloy nanoparticles (PtNi NPs) electrocatalyst by electrodeposition of PtNi NPs

onto graphene support. The obtained PtNi/graphene electrocatalysts were

characterized by high resolution transmission electron microscopy (HRTEM),

energy-dispersive X-ray microscopy (EDX), X-ray diffraction (XRD), X-ray

photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA)

indicating the controllable morphological and compositional profiles of PtNi

NPs on graphene. The electrocatalytic characteristics of PtNi/graphene toward

oxygen reduction reaction (ORR) were systematically investigated showing

comparable kinetic performance. Moreover, the graphene during

electrodeposition process induces carbon vacancies and defects, increasing

interaction between nanoparticles and graphene and enhancing

electrocatalytic stability by limiting aggregation of the nanoparticles during

accelerated stability test. This work opens a promising path for the preparation

of graphene-supported alloy electrocatalyst.
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1 Introduction

Electrochemical energy conversion and storage devices are critical enabling

technologies for carbon-neutral renewable energy (Gasteiger and Markovic, 2009).

These systems are required to be optimized in terms of cost, efficiency and longevity

to integrate into consumer and industrial applications (Gittleman et al., 2019). For many

of these devices, including fuel generators (electrolyzers) and fuel consumers (fuel cells),

the limiting factor for their efficiency and operational lifetime directly depends on
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performance of the electrocatalysts on the electrodes (Seh et al.,

2017; Li et al., 2020). Although notable achievement has been

made on non-platinum group metal (PGM) catalysts (Xie et al.,

2020), supported Pt-based catalyst is still the most efficient and

commonly used cathodic catalyst for oxygen reduction reaction

(ORR) in polymer electrolyte membrane (PEM) fuel cell (Tian

et al., 2020). To date, while major research efforts have been

underway to develop Pt-based metals to increase the active sites

number and intrinsic activities through their morphological and

compositional optimizations (Snyder et al., 2012; Seh et al., 2017;

Li et al., 2019), it must been recognized that support materials, by

maintaining good catalyst-support interaction and reactants/

products transport (Jha et al., 2008), are also vital and highly

influential in determining the performance, longevity and cost

effectiveness of the electrocatalyst (Sharma and Pollet, 2012). The

choice of support material to build good interaction with the

catalyst is not only to improve catalyst efficiency and life time but

also govern charge transfer (Sharma and Pollet, 2012). Therefore,

a wide category of nanostructured carbon based materials has

been investigated as catalyst supports for ORR, such as carbon

blacks (Dicks, 2006), mesoporous carbon (Yarlagadda et al.,

2018), carbon nanotubes (Knupp et al., 2008), carbon

nanofiber (Sebastián et al., 2012), and graphene (Kou et al.,

2011). The design principle of these carbon nanomaterials

applicable in electrocatalyst support is high specific surface

area for the dispersion of metal catalyst, high electrical

conductivity for electrochemical reactions, optimized

carbonaceous structures for transferring reactants/products,

and good thermal/chemical stability for catalytic durability

(Sharma and Pollet, 2012).

As an atomically thin sheet of hexagonally arranged carbon

atoms which offer fast electron transferring, graphene has attracted a

lot of interest for various applications (Higgins et al., 2016). The

unique structure of two-dimensional planner structure composed of

sp (Gittleman et al., 2019)-bonded carbon atoms with one-atomic

thickness enables superior electric conductivities to the carbon and

allows both the edge planes and basal planes to interact with themetal

nanoparticles (Higgins et al., 2016). Owing to these outstanding

electrical and mechanical properties, graphene has been found as

suitable support material for the electrocatalyst design (Yoo et al.,

2009; Soin et al., 2011; Niu et al., 2012; Suh et al., 2016). Recent

progress in preparation techniques has made it possible to

incorporate metal catalyst with graphene and study the properties

experimentally (Higgins et al., 2016). Many literatures suggested that

the electrochemical performance of graphene-supported

electrocatalyst is highly sensitive to the carbon supporting method

(Sharma and Pollet, 2012). Soin et al. used vertically aligned graphene

nanoflakes (FLGs) as Pt nanoparticle support for

electrocatalysis application. The FLGs were synthesized using

microwave plasma enhanced chemical vapor deposition method

and the Pt nanoparticles were deposited using sputtering

technique. Fast electron transfer kinetics were demonstrated

resulting from the highly graphitized edge structure of FLG

nanoflakes (Soin et al., 2011). Kou et al. (2011) reported a new

method to deposit catalyst by forming metal-metal oxide-graphene

triple-junction structure where the defects and functional

groups on graphene play an important role in stabilizing Pt

nanoparticles.

In this study, we used one-pot flash Joule heating (FJH) method

to obtain high-quality graphene (Zhu et al., 2022), and synthesized

graphene-supported platinum-nickel alloy nanoparticles (PtNi NPs)

electrocatalysts (PtNi/graphene) via electrodeposition method as

developed by Zhao et al. (2007a). The electrocatalytic

characteristics of PtNi/graphene toward oxygen reduction reaction

(ORR) were systematically investigated. Up to our knowledge, this

technique is used for the first time for Pt-based alloy nanoparticle

electrochemically deposited onto graphene materials. The properties

of prepared catalyst are analyzed with transmission electron

microscopy (TEM), Thermogravimetric analysis (TGA), X-ray

diffraction (XRD), X-ray photoelectron spectra (XPS), and Raman

spectroscopy. Finally, the electrochemical stability of PtNi/graphene

upon accelerated degradation is also assessed.

SCHEME 1
Schematic illustration of the electrodeposition process of PtNi NPs onto graphene according to previous work by Zhao et al. (2007b) Black, red,
white, green and blue elemental ball represents atom carbon, oxygen, platinum, nickel and hydrogen, respectively.

Frontiers in Chemistry frontiersin.org02

Li et al. 10.3389/fchem.2022.1061838

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1061838


2 Materials and methods

2.1 Materials

All of the chemicals are of analytical grade and used

without further purification. Commercial references of

Vulcan carbon-supported Pt electrocatalyst (50 wt%, TEC-

10E50E) was purchased from TKK, Japan. Other reagents are

as follows: isopropanol (IPA, >99.9%, analytical reagent

grade, Kermel), Nafion D521 dispersion (5 wt%, EW =

1100, Ion Solution Inc), potassium tetrachloroplatinate

(K2PtCl4, 98%, RHAWN), nickel dichloride (NiCl2, 99%,

RHAWN), sulfuric acid (H2SO4, 95–98 wt%,

analytical reagent grade, SCR, China), perchloric acid

(HClO4, 70%, Sigma Aldrich). Argon and oxygen gases

having high purity (>99.99%) were purchased from

Yihong Gas Company, China. Deionized water (20 ± 1°C,

pH 7, ρ = 18.3 MΩ/cm) was purified by passing through

pure compact ultrapure water system (Arium mini,

Sartorius).

FIGURE 1
(A) HRTEM image, (B) particle size distribution diagram, and (C) thermogravimetric analysis of PtNi/graphene. (D) HAADF images and (E) Pt and
(F) Ni EDS maps of Pt−Ni binary alloy nanoparticles supported on graphene.

FIGURE 2
XRD patterns of bare flash graphene and as-made PtNi/
graphene.
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2.2 Preparation of the Pt-Ni (2:1) alloy
graphene-supported electrocatalyst

The electrodeposition approach is developed from

previous study by Zhao et al. (2007a). Preparation of PtNi/

graphene catalyst by electrochemical reduction—The process

of electrochemical reduction and loading were carried out in

a three-electrode cell controlled by a DH7003 workstation. A

Pt wire (99.9%) was used as the counter electrode, and Ag/

AgCl was used as the reference electrode. All potentials listed

are referenced to the reversible hydrogen electrode (RHE).

Graphene was functionalized and branched with many

functional groups in 0.5M K2SO4 by using cyclic

voltammetry 50 cycles with potentiodynamic scanning

from -0.13–2.07 V vs. RHE at 200 mV s−1, Pt2+, and Ni2+

were combined with the functional groups of the graphene

in the mixed solution of 2 mM K2PtCl4, 1 mM NiCl2, and

0.1M K2SO4 by cycling the potential between 0.57 and 1.57 V

vs. RHE at 100 mV s−1 for 100 cycles. Finally, PtNi/graphene

catalyst was formed on the surface of GC as Pt2+ and Ni2+ were

reduced into nanoparticles and uniformly loaded on

graphene in 0.1M H2SO4 by cycling from 0 to 1.27 V vs.

RHE at 100 mV·s−1 for at least 30 cycles or more if the cyclic

voltammetry curve had not yet reached a steady state.

2.3 Electrochemical measurement

The electrocatalysts were electrochemically characterized

in a three-electrode cell with a rotating disk electrode (RDE)

setup (Pine Instruments) controlled by a Donghua

potentiostat DH7003). The Pt wire (99.9%, Alfa Aesar) was

used as the counter electrode, and the Ag/AgCl (BASi) was

used as the reference electrode. The Pt loaded (15 μg cm−2)

glassy carbon (GC) disk (0.196 cm2, HTW) was immersed

into 0.1 M HClO4 as the working electrode. The thin film

catalyst layer on GC was formed by drop casting from a

catalyst ink and drying under a flow of Ar. The catalyst ink

was prepared by sonicating solid catalyst powder in a 4:

1 H2O:IPA volume ratio solvent solution with

concentration of 1 mgcatalyst ml−1. In order to well disperse

and stabilized the catalyst particles on the GC surface, 0.5 µL

of Nafion 5 wt% solution per mg of catalyst was added to the

ink. Cyclic voltammograms (CVs) were performed with Ar

purging at 294 K, with the potential scanned from 0.0 to 1.1 V

vs. RHE at 20 mV s−1, and were used to determine the

electrochemically active surface area of the Pt catalyst by

integrating hydrogen desorption (~0–~0.35 V vs. RHE). ORR

activities were measured in O2-saturated 0.1 M HClO4 at

294 K, with the potential scanned between 0.1 and 1.1 V

vs. RHE at 20 mV s−1 at a rotation rate of 1600 rpm. All

potentials are corrected for iR drop within the

electrochemical cell.

2.4 Physicochemical characterization

High angle annular dark field scanning transmission electron

microscopy (HAADF-STEM) images were taken of samples

supported on lacey carbon grids in a FEI talos F200x G2 TEM/

STEMoperated at 200 keV. Energy dispersive spectroscopy (EDS) in

the STEM mode was employed for elemental composition and

distribution of the catalyst particles. Thermogravimetric analysis

(TGA) of the catalysts was carried out under amixed gas atmosphere

(total flow: 25 ml min−1, O2:N2 = 1:4) at a constant rate of

10°C min−1, using a Netzsch STA 449 F3 system. The catalyst

(≈10 mg) was loaded into an alumina crucible and heated from

room temperature to 1000°C. X-ray diffraction (XRD) profiles were

collected on Bruker D8 spectrometer with Cu Kα radiation (λ =

0.15406 nm). X-ray photoelectron spectra (XPS) were carried out

using a Thermo Scientific K-Alpha X-ray photoelectron

spectrometer. The binding energy was corrected using the C 1 s

peaks (284.5 eV) as reference. Raman measurement was performed

on a Renishaw in via Raman spectrometer with an excitation

wavelength of 785 nm.

3 Results and discussion

The electrochemical deposition route of PtNi NPs on graphene

is illustrated in Scheme 1, where the synthesis of the PtNi/graphene

electrocatalyst was performed through an established three-step

process (Zhao et al., 2007b): 1) electrochemical activation to

generate oxide functional groups on graphene; 2) formation of

complexes of Pt(IV) and Ni(III) on the graphene through

oxidation of PtCl4
2− and Ni2+ from metallic salt solution; 3)

conversion of the surface complexes to PtNi alloy nanoparticles

through potential cycling. Figure 1A shows HRTEM image of

graphene after electrochemical deposition of PtNi NPs with

uniform size homogeneously decorated on the graphene. The

mean size of the Pt NPs on graphene was estimated to be 2.9 nm

(Figure 1B). STEM and corresponding elemental mapping

demonstrate the homogeneous distribution of the PtNi NPs and

the molar ratio of Pt to Ni was found to be near 2:1 by EDS,

confirming that the platinum and nickel precursors have been

electrochemically and fully reduced to PtNi NPs. (Figures 1D–F).

This alloy NPs-decorated graphene shows great potential as

electrocatalytic nanomaterials due to both accessible faces of the

carbon materials (Geim, 2009). And the metal loading of 20 wt% on

the graphene is determined by TGA (Figure 1C).

The XRD pattern of bare flash graphite obtained by FJH and

as-made PtNi/graphene is shown in Figure 2. The 2θ values at

26.5° and 42.7° display a sharp C(022) peak along with a weak

C(101) peak indicating the presence of turbostratic graphene

support (Zhu et al., 2022). The turbostratic graphite structure is

characterized by a two dimensional graphite structure in which

the layers are misaligned to each other via translation or rotation

while the interlayer spacing approaches that of crystalline
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graphite (0.335 nm) (Soin et al., 2011). After deposition of

electrocatalyst nanoparticles, the diffraction peaks at 40.0° for

Pt(111), 46.2° for Pt(200), and 67.5° for Pt(220) are observed,

indicating the characteristic fcc platinum lattice (Niu et al., 2012).

No characteristic peaks of Ni were detected suggesting that Pt is

well alloyed with Ni (Suh et al., 2016). The slight positive peak

shift of C(002) with PtNi incorporated can be attributed to the

change of the interlayer distance in the graphene during

electrochemical oxidation/reduction process (Niu et al., 2012).

The formation and deposition of the PtNi NPs on graphene was

further confirmed by XPS (Figure 3). Figure 3A shows Pt 4f XPS

spectra which can be deconvoluted into Pt0, PtⅡ, and PtⅣ. The

observed binding energy of Pt0 is 71.49 and 74.93 eV agreeing well

with the reported value of Pt0 (Suh et al., 2016; Peng et al., 2017). The

binding energy of PtⅡ and PtⅣ is observed to be 72.56 and 77.09 eV,

respectively. The relative distribution of Pt0 specie is found to be

~62 at% with the rest being present as oxides in oxidation states,

suggesting the well metallic state of the Pt-based electrocatalysts. As

shown in Figure 3B, metallic Ni and Ni oxide species were also

observed indicating the main Ni 2P peaks which corresponds to Ni

2P3/2 and Ni 2P1/2, respectively (Yu et al., 2022). By mainly

presenting in the Ni species based on the peak areas of Ni 2P,

the presence of Ni oxide such as NiO and Ni(OH)2 can promote an

increase of metallic Pt and a decrease of Pt oxides states due to the

alloying effect of Ni on Pt (Wang et al., 2010). The presents of Ni

oxide may result from the electrochemical oxidation during

electrodeposition process of PtNi NPs.

Figure 4A shows the cyclic voltammograms of the bare

graphene and resulting PtNi/graphene in 0.1 M HClO4.

Representing hydrogen adsorption/desorption process, the

reversible hydrogen underpotential deposition (HUPD) in an

electrochemical system can be used to determine electrochemical

active surface area (ECSA), which is essential for understanding the

utility of Pt by evaluating the number of available electrochemically

active sites (VlietVan Der et al., 2012). Comparing with bare flash

graphene, it can be observed that the HUPD peaks between 0.05 and

0.4 V vs. RHE and oxidation/reduction between 0.6 and 1.2 V vs.

RHE of the Pt surface are clearly presented for PtNi/graphene,

indicating the presence of active Pt (Kocha et al., 2017). ECSA can

be calculated from HUPD charges and the amount of Pt loading on

the electrode (Eq. 1): (VlietVan Der et al., 2012)

ECSA � QH/(Pt loading × 0.21) (1)

where QH is the average charge of hydrogen adsorption/

desorption (mC), and the value of 0.21 is known as the

charge for the monolayer if hydrogen adsorption on the Pt

surface. The corresponding ECSA of Pt is determined to be

73.9 m2/g for the PtNi/graphene which is comparable to

commercial reference of Pt-based electrocatalyst supported by

Vulcan carbon (Garsany et al., 2014). The obtained well-defined

hydrogen adsorption/desorption characteristics can be

contributed by the fact of the small size of PtNi NPs

dispersed uniformly on graphene planes (Figure 1A).

The ORR activities of PtNi/graphene were characterized by a

RDE setup in 0.1 M HClO4 as shown in Figure 4B. The current

density for reduction of oxygen was significantly increased with

deposition of PtNi NPs on the graphene, exhibiting characteristic

Pt electrocatalytic ORR behaviors. Koutechy-Levich (K-L)

Equation (Eq. 2) was applied to quantitatively evaluate the

ORR activities (Miah and Ohsaka, 2009)

1
j
� 1
jd

+ 1
jk

(2)

where j is the measured current density (mA/cm2), jd is the diffusion

limiting current density under the potential region of 0.2–0.65 V vs.

RHE, and jk is the kinetic current density which can be obtained

based onK-L equation to adjust formass transport limitations. (Miah

and Ohsaka, 2009) As shown in Figure 4C, both mass activities and

FIGURE 3
(A) Pt4f and (B) Ni2p XPS spectra profiles of as-made PtNi/graphene.
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specific activities of PtNi/graphene and commercial reference of

Vulcan carbon-supported Pt electrocatalyst were evaluated based

on the calculated jk at 0.9 V vs. RHE. The PtNi NPs supported on

graphene exhibited a substantially higher both mass activity and

specific activity compared to Pt electrocatalyst supported on Vulcan

carbon. In addition to alloy effect and electronic ligand effect from the

second transitionmetal Ni,(Stamenkovic et al., 2007) the outstanding

ORR performance can be explained by the decreased charge transfer

resistance (RCT) due to excellent electrical conductivity of the

graphene. Wang et al. (2010) EIS technique was conducted to

study the RCT of graphene obtained using FJH method in our

previous work, (Zhu et al., 2022) and a near-vertical curve in the

low-frequency region and a semicircle in the high-frequency region

for the graphene was observed, indicating the low RCT.

Moreover, It is reported that the density of monovacancy site on

graphene plays key role in its electrocatalytic performance (Lim and

Wilcox, 2012). The representative Raman spectrums of flash

graphene nanomaterial and PtNi/graphene obtained through

electrodeposition method are shown in Figure 5A. A sharp G

band peak at ~1585 cm−1 and 2D band peak at ~2620 cm−1 were

clear observed for graphene, indicating its high degree of

graphitization (Zhu et al., 2022). For PtNi/graphene, rather than

graphene from which D band was barely found, we can see a sharp

and high D band and defect-induced D′ peak at ~1320 cm−1 and

~1620 cm−1, respectively. The intensity ratio of D and D′ band (ID/

ID’) is commonly used to illustrate the defect nature in the atomic

structure of the graphene (Eckmann et al., 2012). As displayed in

Figure 5B, the value of ID/ID’ for PtNi/graphene is 3.1, which is much

higher than that of graphene (0.9), suggesting the formation of many

structural defects or disorders on the graphene support where PtNi

NPs are deposited(Zhu et al., 2022). The conclusion is also supported

by analyzing the intensity ratio of D and G band (ID/IG) (Figure 5B).

This defects evolution in graphene can be ascribed to the process of

PtNi NPs electrodeposition during which electrochemical cycling

induces and enables additional defects to facilitate metallic ions

diffusion through the graphene layer (Jaber-Ansari et al., 2014).

Using density functional theory (DFT) modelling and Raman

spectra, (Jaber-Ansari et al., 2014) has revealed that, upon

potential cycling, defectivity is initiated with vacancy formation

and chemical functionalization through the interaction between

graphene and absorbates such as metallic ions and oxygen. DFT

also indicates that graphene defect sites lower the activation energy of

oxygen dissociation and reduce the stability of intermediate HO*

species, thermodynamically driving ORR toward 4e− pathway and

facilitating its kinetic activities (Figure 4C). (Lim and Wilcox, 2012)

An accelerated stability test (AST) of PtNi/graphene was also

performed by cycling potentials between 0.6 and 1.1 V vs. RHE in

0.1 M HClO4 at 50 mV s−1 under Ar atmosphere as suggested in

FIGURE 4
(A) Cyclic voltammograms and (B)ORR polarization curves of bare flash graphene and as-made PtNi/graphene. (C) Kinetic activities at 0.9 V vs.
RHE and (D) ECSA retained during AST of PtNi/graphene and commercial reference Pt/Vulcan carbon.
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our previous work (Li et al., 2017), and the ECSA was evaluated

for every 2000 cycles. As shown in Figure 4D, PtNi/graphene

performs with better ECSA retention than commercial references

of Pt/Vulcan. This general improvement is expected as the defect

sites of graphene support (Figure 5A) reserves strong interaction

with PtNi NPs(Lim and Wilcox, 2011), preventing sintering of

alloy nanoparticles and extending its ECSA retention. Further

study needs to be undertaken to investigate the effects of

graphene defectivity to electrocatalytic activity and stability.

4 Conclusion

In summary, novel Pt-Ni binary alloy nanoparticles

electrocatalysts supported on graphene nanomaterials were

successfully prepared by electrodeposition method. The PtNi

NPs with sizes of ~3 nm uniformly dispersed on graphene

surface and loading of metals was determined to be 20 wt%.

The resultant PtNi/graphene exhibits excellent electrocatalytic

activity and stability toward the reduction of oxygen. In

addition to the improved surface electronic properties due to

characteristic of graphene, the formation of structural defects

and disorders on graphene support during electrodeposition

process can also attribute to the electrocatalytic performance of

PtNi NPs. These results indicate that graphene nanomaterials

could be a good candidate as a supporting material of

electrocatalysts, and electrodeposition method is promising for

the preparation of high-performance graphene-supported alloy

electrocatalysts.
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