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Eugenol is a natural compound with well-known repellent activity. However, its

pharmaceutical and cosmetic applications are limited, since this compound is

highly volatile and thermolabile. Nanoencapsulation provides protection,

stability, conservation, and controlled release for several compounds. Here,

eugenol was included in β-cyclodextrin, and the complex was characterized

through X-ray diffraction analysis (XRD) and Fourier-transform infrared

spectroscopy (FTIR). Additionally, we used molecular dynamics simulations

to explore the eugenol–β-cyclodextrin complex stability with temperature

increases. Our computational result demonstrates details of the molecular

interactions and conformational changes of the eugenol–β-cyclodextrin
complex and explains its stability between temperatures 27°C and 48°C,

allowing its use in formulations that are subjected to varied temperatures.
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Introduction

Mosquitos are the main vectors of viral diseases that manifest predominantly in

tropical and subtropical regions of the world, such as dengue, yellow fever, zika, and

chikungunya (Paixão et al., 2018; Higuera and Ramírez, 2019; Barreto-Vieira et al., 2020).

The chemical protection conferred by repellents against mosquitos has been an effective

alternative to prevent their contact with the human skin (Ray, 2015; Mapossa et al., 2021).

Natural products remain an interesting source of new bioactive compounds with different

applications (Rayan et al., 2017; Galúcio et al., 2019; Do Nascimento et al., 2020; Newman

and Cragg, 2020; Santana et al., 2021), and these structures have been widely investigated

as a repellent against mosquitos (Tabanca et al., 2016; da Costa et al., 2019a). However,

these compounds have been reported to have a short shelf life, in part, due to their volatile

nature (Kayaci et al., 2013; Tan et al., 2019; Beltrán Sanahuja and Valdés García, 2021).

Eugenol (4-allyl-2-methoxyphenol) is a volatile and lipophilic phenolic natural
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compound belonging to the class of phenylpropanoid, and it is

mainly found in the essential oils of plants. Eugenol can be also

produced synthetically by the allylation of guaiacol with allyl

chloride (Moyer et al., 2002; Kuskoski et al., 2003). Eugenol is

responsible for clove aroma, and it is well known for to its wide

range of biological activities, such as antibacterial, antioxidant,

anesthetic, and anti-inflammatory (Jaganathan et al., 2011;

Kamatou et al., 2012; Roth-Walter et al., 2014; Xu et al., 2016;

Mateen et al., 2019; Methods, 2021). The U S Food and Drug

Administration also considers eugenol as a safe food additive for

human use (Kamatou et al., 2012; El-Saber Batiha et al., 2020),

and studies have demonstrated that eugenol has efficient

repellent activity against different mosquitos species, such as

Aedes aegypti (Miot et al., 2011; Afify and Potter, 2020), Culex

quinquefasciatus (Afify et al., 2019), and Anopheles gambiae

(Lupi et al., 2013; Thomas et al., 2017).

Several experimental studies have reported the formation

of inclusion complexes of eugenol with encapsulating agents,

such as β-cyclodextrin, to reduce the undesirable effects

(localized irritation of the skin and allergic contact

dermatitis), increase its aqueous solubility, and prolong its

biological activity (Yang and Song, 2005; Abarca et al., 2016;

Gong et al., 2016; Kfoury et al., 2018; de Freitas et al., 2021).

β-cyclodextrin (cyclohepta-amylose) is a cyclic

oligosaccharide formed by D-glucose monomers which are

produced by the enzymatic degradation of starch (Szejtli,

1998; Wüpper et al., 2021), and it is particularly interesting

for the encapsulation of volatile compounds, thus

representing a viable and efficient strategy to retain and

modulate the release of volatile and hydrophobic

compounds (Abarca et al., 2016; Kfoury et al., 2018;

Zheng et al., 2020). Cyclodextrin inclusion complexation

is widely used in food, cosmetics, agrochemical, and

pharmaceutical industries to increase the stability of

several volatile organic compounds due to its hydrophobic

cavities and hydrophilic exterior (Loftsson and Brewster,

1996; Szejtli, 1998; Muthu Vijayan Enoch and Swaminathan,

2004; Enoch and Swaminathan, 2005; Xu et al., 2021), which

creates a physical barrier between the nucleus and the shell

materials (Anaya-Castro et al., 2017).

The α-, β-, and γ-cyclodextrins are subclasses of

cyclodextrins widely used for nanoencapsulation, and they

could be differentiated by the presence of 6, 7, and

8 glucopyranose units, respectively, that determine the

size of their internal cavity (Szejtli, 1998; Saha et al., 2016;

Jansook et al., 2018). These cyclodextrins have a truncated

cone-shaped molecular form, and their hydrophobic cavities

have a remarkable ability to form non-covalent inclusion

complexes with a variety of compounds (Lee et al., 2020;

Pena et al., 2022). During the formation of an inclusion

complex, water molecules are displaced to the outside of the

lipophilic cavity, due to the presence of new lipophilic guest

molecules that induce a new equilibrium (Anaya-Castro

et al., 2017). This water displacement and the formation

of a stable complex depends on the binding forces present in

the inclusion complex (e.g., hydrophobic interactions, van

der Waals attractions, hydrogen bonds, and electrostatic

interactions) and temperature (Alvira, 2018; Lee et al., 2020).

Temperature is an important variable to assess the

stability of the inclusion complexes, and understanding its

influences on the formation of intermolecular interactions

and mass loss is crucial to the experimental tests that

evaluate the repellent efficiency (Kayaci and Uyar, 2011;

Abarca et al., 2016; Celebioglu et al., 2018). Several

studies have performed computational analyses to

investigate the formation of inclusion complexes formed

between the oligosaccharides and the natural products (de

Sousa et al., 2016; Mustafa et al., 2021; Rezaeisadat et al.,

2021). Similarly, experimental studies have investigated the

formation of these complexes between eugenol and its

derivates with β-cyclodextrin (Alvira, 2018; Joardar et al.,

2020) and have identified a slower controlled release of

eugenol at elevated temperatures, such as 50°C, 75°C, and

100°C (Kayaci et al., 2013; Celebioglu et al., 2018).

In the present study, we analyzed the eugenol–β-
cyclodextrin inclusion complex through X-ray diffraction

analysis (XRD) and Fourier-transform infrared spectroscopy

(FTIR) and its chemical stability and binding affinity using

molecular dynamics (MD) simulations and binding free

energy calculations, respectively. The representative

structures of the analyzed systems are shown in

Supplementary Figure S1.

Materials and methods

Chemical reagents

The eugenol (CAS: 97-53-0, medium molecular weight: 164.2 g/

ml, and purity: 99%) and the commercial β-cyclodextrin (CAS: 7585-
39-9,mediummolecularweight: 1,134.98 g/ml, and purity: 97%)were

obtained from Sigma Aldrich Laboratory (São Paulo, Brazil).

Synthesis of inclusion complexes

The inclusion complex was formed through co-precipitation

and solvent evaporation (Ayala-Zavala et al., 2008), in which the

hydroalcoholic solution of β-cyclodextrin was incorporated into

an alcoholic solution of eugenol to obtain molar ratios 1:1, 2:1,

and 2:3 in duplicate, to compare and analyze the influence of

concentration molars in the final product of the complexes. The

physical mixture was obtained by maceration, in grade and pistil,

until the formation of a paste and homogenized for 15 min; then,

it was allowed to rest for 24 h in an isolated environment, dried at

50°C for 12 h, and stored as other inclusion complexes.
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Characterization of the inclusion
complexes

X-ray diffraction
The measurements were recorded in a divergent beam

diffractometer (model: Empyrean from PANalytical) with a

θ–θ goniometer, ceramic X-ray tube sealed with a cobalt

anode, monochromatic radiation of Co-Kα1 (λ = 1.789 ″A"),
long fine focus 1800W, and a Fe kβ filter. The detector PIXel3D

2 × 2 area was used with an active length of 3.3473° (2θ–2Theta)
and 255 active channels. The following instrumental conditions

were applied in the analyses: voltage of 40 kV and current of

40 mA, solar encapsulation slits of 0.04°rad (in the incident and

diffracted beams), 2°–80° (2θ) sweep range, and 0.04° step size in

2θ with 1s time/step in continuous scan mode. Phase

identification was performed using PANalytical’s HighScore

Plus 4.8.0 software.

Powder X-ray diffractometry is a useful method to confirm

the formation of complex powder or microcrystalline states;

therefore, the XRD technique is only applied to materials

(solid-state matter). In the present study, it was applied to

analyze the materials: free β-cyclodextrin (β-CD), eugenol–β-
cyclodextrin (EG-β-CD) complexes, and physical mixture (PM).

Fourier transform infrared spectrometry

The spectroscopic investigations were performed to identify

the functional groups of the eugenol–β-cyclodextrin complex in

the middle infrared spectral region—Middle-IR

(4,000–400 cm−1)—using a Thermo Scientific Fourier

transform infrared spectrometer (model: Nicolet iS50 FTIR), a

KBr (potassium bromide) beam splitter, an IR source, and a KBr

DTGS detector. The measurements were obtained by

transmission with KBr pellets (0.15 g) + sample (0.002 g), with

an average of 100 scans and a resolution of 8 cm−1. Data were

acquired using OMNIC software. As a pre-treatment, the

samples were dried at 105°C for 24 h.

Molecular modeling studies

Molecular docking
To investigate the most stable conformation of eugenol in

complex with β-cyclodextrin, we performed molecular docking

using AutoDock Vina (Trott and Olson, 2009). This

computational method allowed us to describe the molecular

interactions of the eugenol with the internal cavity (lipophilic)

and external surface (hydrophilic) of the β-cyclodextrin
nanoparticle. Herein, we used the crystallographic structure of

β-cyclodextrin (PDB code: 3EDJ) as the starting point to perform

the simulations (Buedenbender and Schulz, 2009). We used the

following spatial coordinates for the docking grid: X = 69.62, Y =

67.16, and Z = 40.77, with dimensions of X = 40, Y = 40, and Z =

40 Å. The docking simulations were performed with 10 runs, and

a total of 10 conformations per compound were set to perform

the docking. The formation of the intermolecular interactions,

such as H-bond, π-interactions, and hydrophobic interactions,

were analyzed using BIOVIA Discovery Studio (BIOVIA, 2017).

Molecular dynamics simulations
To perform the MD simulations, we selected the lowest

energy structure of the eugenol/β-cyclodextrin complex

obtained from the docking simulations. First, the atomic

charges of eugenol were calculated using the restrained

electrostatic potential atomic partial charges (RESP) protocol

(Wang et al., 2000; Wang et al., 2004) using the Hartree–Fock

method with the 6-31G* basis set (Bayly et al., 1993) available in

the Gaussian09 program (Frisch et al., 2009). The carbohydrate

force field Glycam06 (Kirschner et al., 2008) was used to treat β-
cyclodextrin, and the general AMBER force field (GAFF) was

used to treat the complex formed with the eugenol (Wang et al.,

2004). The complex was solvated in a cubic water box using the

TIP3P model (Jorgensen et al., 1983; Jorgensen et al., 1996), and

the distance between the box wall and atoms of the system was set

to 12.0 Å.

The geometry and the inter- and intra-atomic distances of

hydrogen molecules, water molecules, and the eugenol–β-
cyclodextrin complex were optimized in seven minimization steps

using 100,000 cycles of steepest descent and the conjugate gradient

method (Hestenes and Stiefel, 1952). The β-cyclodextrin–eugenol
complex was investigated in four different temperatures: 27°C, 38°C,

48°C, and 58°C. In the MD simulations, the systems were heated to

their final temperature (300 K) to equilibrate the density andmaintain

the constant pressure (1 atm). The SHAKE algorithm

(AndersenRattle, 1983) was applied for all hydrogen molecules of

the analyzed systems. A total time of 50 ns of MD simulation was

performed using NPT ensemble.

Results and discussion

Experimental characterization of inclusion
complexes

X-ray diffraction (XRD)
The diffraction pattern of the β-cyclodextrin–eugenol

complexes in different stoichiometric proportions showed

a similar trend, demonstrating only some different

intensities between the 2:3 ratio and the others, in which

the peaks are presented in greater intensity, in 3600 counts

(Figure 1). However, all analyzed complexes show

considerable differences when compared to the diffraction

pattern of free β-cyclodextrin and the physical mixture

(Figure 1). The free β-cyclodextrin diffractogram presents

many Bragg reflections, highlighting the high-intensity
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peaks in °2θ (CoKα): 5.3°, 10.5°, 12.4°, 14.8°, 18.2°, 22.1°, and
26.8°, as observed in studies carried out with β-cyclodextrin
and other guests (Wang et al., 2011; Gong et al., 2016; Yang

et al., 2016; Jiang et al., 2019), having as characteristic peak

the angle °2θ at 5.3° provided by the database of

software used.

We found a significant difference between the diffractograms

of free β-cyclodextrin and the β-cyclodextrin and eugenol

FIGURE 1
Diffraction patterns of free β-cyclodextrin (β-CD), inclusion complex of eugenol–β-cyclodextrin in a 1:1 ratio, inclusion complex of eugenol–β-
cyclodextrin in a 2:1 ratio, inclusion complex of eugenol–β-cyclodextrin in a 2:3 ratio, and physical mixture (PM) were analyzed using the
diffractograms.

FIGURE 2
Diffraction patterns of free β-cyclodextrin (β-CD), eugenol–β-cyclodextrin (EG-β-CD) complex, and physical mixture (PM) were analyzed using
the diffractograms.
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complexes, indicating the occurrence of encapsulation and the

interaction between eugenol and β-cyclodextrin, given a

reordering in the crystal structure, by the disappearance of

peaks in 10.5° and 12.4 °2θ (CoKα) and contraction of the

unit cell with decreasing dhkl, that is, by increasing the angle,

as observed for 6.8, 13.7, 21.2° and 24.4 °2θ (CoKα), data that

corroborate the results previously found (Yang and Song, 2005;

Abarca et al., 2016; Dos Passos Menezes et al., 2017), which may

be associated with changes in the molecular organization of β-
cyclodextrin during the production of complexes.

The peak shifts indicate that the diffraction pattern of free

β-cyclodextrin was altered when the eugenol was incorporated

into the host molecule cavity. In studies that present the

physical mixture diffractogram between eugenol and β-
cyclodextrin, crystalline peaks of β-cyclodextrin were

detected at a lower intensity, indicating that there was no

marked difference in the crystalline form of β-cyclodextrin
(Abarca et al., 2016; Gong et al., 2016), as seen in Figure 2.

Furthermore, it is also important to note that the peak

intensities in the eugenol–β-cyclodextrin complex were

attenuated in relation to the same peaks in the free β-
cyclodextrin spectrum, indicating greater structural disorder

or loss in the degree of crystallinity for the complex (Figure 2).

This fact is attributed to the rapid precipitation of the complex

during preparation, which makes regular crystal growth

insufficient (Yang and Song, 2005).

In this analysis, the diffractograms of the pure species were

compared with the values obtained of the complex (Cao et al.,

2005). The differences obtained from the analyses, such as the

appearance or disappearance of peaks or changes in relative

intensities, evidenced the formation of the inclusion complex

since the principle of the complexation is associated with an

increase in the degree of amorphization of the substances

involved in the formation of the complex in the solid-state

(Ribeiro et al., 2008; Gao et al., 2020).

Fourier transform infrared spectrometry (FTIR)
The FTIR technique is a very helpful tool to prove the

interaction of both guest and host molecules in their inclusion

complexes in a solid phase (Singh et al., 2010). Figure 3 shows the

FTIR spectra for 1) β-cyclodextrin, 2) physical mixture of

eugenol and β-cyclodextrin, 3) inclusion complex of

eugenol–β-cyclodextrin in a 1:1 ratio, 4) inclusion complex of

eugenol–β-cyclodextrin in a 2:1 ratio, and 5) inclusion complex

of eugenol–β-cyclodextrin in a 2:3 ratio. The spectra bands which
characterize the absorption regions of β-cyclodextrin are

associated with the stretches, referring to the symmetric and

asymmetric deformation of the hydroxyl group (OH) in the

range of 3,600–3,000 cm−1, that showed the characteristic bands

of primary and secondary OH groups in 3384.57 cm−1.

We also observed the CH bands of the β-cyclodextrin ring

and methyl groups in the range of 2,940–2,840 cm−1. These

FIGURE 3
Comparison between the FTIR spectra for the β-cyclodextrin, physical mixture of eugenol and β-cyclodextrin, inclusion complex of
eugenol–β-cyclodextrin in a 1:1 ratio, inclusion complex of eugenol–β-cyclodextrin in a 2:1 ratio, and inclusion complex of eugenol–β-cyclodextrin
in a 2:3 ratio.
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results were also described in previous studies (Celebioglu et al.,

2018; Hadian et al., 2018), and the bands between 1,700 cm−1 and

1,600 cm−1 are associated with HOH bonds which are also

abundant in the compound (Abarca et al., 2016). IR spectra

are particularly sensitive to the presence of water; therefore, the

spectral region of interest presents this contribution assigned to

the HOH bending mode (Venuti et al., 2015). In addition, the

spectra display the OH bending vibration in the range of

1,030–1,015 cm−1 and C-O-C stretch, between 1,159 and

1,143 cm−1. These elongation vibrations were described

previously in the literature (Celebioglu et al., 2018; Gao et al.,

2020). A broad hydroxyl band of pure β-cyclodextrin spectrum

(Figures 3, 4) shows the maximum absorption at 3,384.57 cm−1,

found in the FTIR spectrum of the inclusion complexes which is a

good indication of their formation due to the stretching

vibrations of the different β-cyclodextrin OH groups (Yang

and Song, 2005; Kayaci et al., 2013; Celebioglu et al., 2018;

Briñez-Ortega et al., 2020).

Table 1 shows some increase and decrease in intensity

changes due to the insertion of the part ring into the electron-

rich cavity of β-cyclodextrin. Some bands showed little or no

changes in the band upon complexation, implying that the

inclusion of guest molecules in the CD cavity does not affect

this vibrational mode. Although the spectrum of the inclusion

complex appears almost similar to that of β-cyclodextrin alone,

these results indicate the formation of the inclusion complex due

to the weak interactions when partial inclusion of the ligand

occurs (Stepniak et al., 2015; Vestland et al., 2015).

FIGURE 4
Comparative spectra between free β-cyclodextrin, inclusion complex, and physical mixture.

TABLE 1 Comparison between the intensity of free β-cyclodextrin, inclusion complexes, and physical mixture.

Functional group Wavenumber (cm−1)

β-CD Inclusion complex 1:1 Inclusion complex 2:1 Inclusion complex 2:3 PM

ν[OH] symmetric and antisymmetric 3,384.57 3,372.39 3,366.12 3,369.93 3,368.89

ν[CH] 2,922.69 2,926.89 2,926.17 2,926.78 2,927.73

ν[C–O–C] 1,158.57 1,156.85 1,156.64 1,156.92 1,157.10

ν[O–H] bending vibration 1,027.80 1,027.42 1,028.06 1,027.57 1,028.02
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In relation to the presence of eugenol in the composition of

the complex, it can be proven by the presence of absorption

regions at 1515.50 cm−1 (Figure 3), related to the C=C bonds of

the aromatic ring of the compound that usually appears in the

region between 1650 and 1250 cm−1 corresponding to the

vibration of the C=C groups and CH flexion of the alkene/

aromatic groups of the eugenol (Yang and Song, 2005; Kayaci

et al., 2013; Celebioglu et al., 2018). Additionally, frequencies

between 1,200 cm−1 and 1,000 cm−1 are related to the presence of

CO stretches (Yang and Song, 2005; Scremin et al., 2018). In

addition, for eugenol, the characteristic bands are found in the

ranges of 3,380–3,360 cm−1 due to the axial stretching of the OH

group (Rodríguez et al., 2021). Therefore, the results presented

previously indicate the efficiency of the encapsulation process of

the eugenol molecules by the β-cyclodextrin (Wang et al., 2011).

Generally, the comparative analysis of the physical mixture

with the inclusion complex (Figure 4) presents the simple sum of

the β-cyclodextrin and ligand bands (Zheng et al., 2020). A

similar result was observed in the spectra. In the region of the

absorption bands of the C–H stretches, we noted an overlap of

the complex bands with that of β-cyclodextrin, without changes
in the wavenumbers of the pure components. Similar results were

noted in the region between 1,700 cm−1 and 1650 cm−1, where

stretch bands C=C with subtle deformation were observed. These

results suggest that the simple mixture of the two components in

the solid phase is not enough to prove the formation of the

inclusion complex, once the shape, intensity, and position of the

peaks vary. These observations, combined with the results

obtained by XRD, can be considered strong evidence of the

formation of the inclusion complex.

Molecular modeling analyses

Molecular interactions and formation of
host–guest complex model

Molecular modeling analyses have been widely applied to

assess the conformational, magnetic, and electronic

properties of molecules (de Castro et al., 2014; de Sousa

et al., 2016; de Souza Farias et al., 2021; Mustafa et al., 2021).

Here, these computational analyses of the host–guest

interactions were performed to better understand the

formation of the eugenol–β-cyclodextrin complex and to

provide additional insights into the complex model,

especially when it is subjected to different temperatures in

an aqueous solution.

The molecular analyses of the inclusion complex using

molecular docking demonstrated that eugenol predominately

had van der Waals interactions with the interior cavity of the

β-cyclodextrin. Previous studies demonstrated that the geometric

optimization of eugenol using density functional theory led

eugenol to project its structure onto the external surface of

the host (Mahboub, 2014; Chowdhry et al., 2015). Figure 5

shows the final conformation acquired by eugenol when

complexed with β-cyclodextrin, obtained from molecular

docking. The complex showed binding energy equal

to −4.0 kcal mol−1, and two hydrogen bond interactions were

formed in the complex which contributed to the stability of

eugenol in the inclusion complex. These molecular findings agree

with the results reported previously (Joardar et al., 2020).

Molecular dynamics simulations of eugenol–β-
cyclodextrin complex at different temperatures

Experimental thermal analyses, in general, reveal marked

structural differences between isolated molecules and the

inclusion complexes. In addition, these analyses exhibit a

typical sharp melting endotherm at temperatures over 250° C,

which is indicative of the anhydrous and crystalline state of the

analyzed molecules; it also exhibits effects regarding their

dehydration and degradation process (Seo et al., 2010; Piletti

et al., 2017; Rodríguez et al., 2021). Since previous studies have

identified a slower controlled release of eugenol at elevated

temperatures, such as 50°C, 75°C, and 100°C (Kayaci et al.,

2013; Piletti et al., 2017; Celebioglu et al., 2018), we analyzed

the eugenol–β-cyclodextrin complex using a gradual temperature

increase to evaluate the behavior and stability of the complex in

aqueous solution, which is also compatible with its applications

in repellent formulations (Mapossa et al., 2021).

Computationally, we demonstrated that when the temperature

is increased, it directly affects the interaction and stability of the

complex (see RMSD plot, Figure 6A).

Between temperatures 27°C and 48°C, the complex showed

stability, and eugenol maintained its interactions. However, we

noted that for the temperature of 58°C, the RMSD plot showed

high fluctuations (Figure 6), and eugenol was shown to be

unstable in the complex, thus losing some of its interactions

with the host and leaving the β-cyclodextrin cavity. Low stability

of the inclusion complex can be attributed to poor interaction

and orientation of eugenol inside the β-cyclodextrin cavity. These
results demonstrate that the high temperatures impair the

formation of the eugenol–β-cyclodextrin complex, reducing its

interactions and leading to the departure of the eugenol from the

complex. We conjecture that the complex will remain stable in

solution when subjected to moderate temperatures due to the

protection and stability provided by the β-cyclodextrin.
Since the binding affinity depends on the molecular

interactions formed between eugenol and the β-cyclodextrin
surface and directly affects the temperature increase

(Supplementary Figures S2, S3, S4), we investigated the β-
cyclodextrin–eugenol complex using different temperatures.

The electrostatic (Eelec) and van der Waals (Evdw) energies of

the analyzed systems (Figure 7) were calculated using the LIE

implemented in the Cpptraj program (https://amberhub.chpc.

utah.edu/lie/) (Åqvist et al., 2002; Brandsdal et al., 2003; Roe and

Cheatham, 2013). At 20 ns and 30 ns of MD trajectory, the

complex showed an Eelec value of approximately −100 kcal mol−1;
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however, with temperature increase, the energies tend to move

toward values near zero. In contrast, the Evdw increases with

increasing temperature , thus indicating the presence of

repulsion forces caused by the instability of the complex.

Recently, a study demonstrated that the binding affinity in

host–guest systems including β-cyclodextrin may be estimated

with a root mean square error <1.5 kcal mol−1 from the

experimental results using the LIE method (Montalvo-

Acosta et al., 2018), which is closely related to the error

of <1 kcal mol−1 found in the experimental values obtained

in the prediction of the relative binding affinity for a vast range

of protein–ligand systems (Gapsys et al., 2020).

Additionally, the binding free energy was calculated using the

MM/GBSA method for different temperatures, considering the

total complexation time (Figure 8). The LIE and MM/GBSA are

FIGURE 5
Inclusion complex formed between the eugenol (green) and the β-cyclodextrin (cyan). (A) 3D structure of BCD with eugenol forming the
complex. (B) Exerting hydrogen bonds with the main electronegative group structure of EG. (C) EG (in green) inside the BCD cavity. (D) Eugenol with
VDW surface, demonstrating binding in the BCD cavity.

FIGURE 6
RMSD plots of the eugenol–β-cyclodextrin complex were
evaluated at different temperatures. Complex analyzed over 50 ns
of MD simulation at 27°C, 38°C, 48°C, and 58°C.

Frontiers in Chemistry frontiersin.org08

Freitas et al. 10.3389/fchem.2022.1061624

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1061624


both end-point methods widely applied to investigate the binding

free energy of biomolecular complexes (Cardoso et al., 2021;

Costa et al., 2021; da Costa et al., 2019b; de Oliveira et al.,

2020; Fonseca et al., 2020), and their results tend to show a

trend similar to the energy values obtained from the

experimental methods (Hansson et al., 1998; Aqvist and

Marelius, 2001; Zhu et al., 2017; Rifai et al., 2020). The

energy at room temperature (27°C) showed a highly stable

complex, with eugenol demonstrating a high binding affinity

with the β-cyclodextrin. However, with the increase of the

temperature, the complex stability is affected and we have a

decrease in the free energy of the analyzed systems, thus

reducing the affinity of eugenol and causing its departure

from the complex. This result indicates that the eugenol–β-
cyclodextrin complex is stable at moderate temperatures and

guarantees the permanence of the molecule inside the β-
cyclodextrin with stronger binding.

Conclusion

Here, we obtained eugenol–β-cyclodextrin inclusion

complexes through co-precipitation and solvent evaporation.

Then, the inclusion complex was characterized using the

X-Ray diffraction and Fourier transform infrared

spectroscopy, confirming the formation of the host–guest

inclusion complex. Additionally, our computational analyses

demonstrated that the eugenol–β-cyclodextrin complex

remains stable between temperatures 27°C and 48°C. In

contrast, high temperatures impair the formation of the

eugenol–β-cyclodextrin complex, reducing its interactions and

leading to its premature departure from the complex which is

consistent with controlled release of the repellent.
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