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Introduction: Evodiae Fructus (EF) is the dried, near ripe fruit of Euodia

rutaecarpa (Juss.) Benth in Rutaceae. Numerous studies have demonstrated

its anti-liver cancer properties. However, the molecular mechanism of Evodiae

fructus against liver cancer and its structure-activity connection still require

clarification.

Methods: We utilized network pharmacology and a QSAR (2- and 3-

dimensional) model to study the anti-liver cancer effect of Evodiae fructus.

First, by using network pharmacology to screen the active substances and

targets of Evodiae fructus, we investigated the signaling pathways involved in

the anti-liver cancer actions of Evodiae fructus. The 2D-QSAR pharmacophore

model was then used to predict the pIC50 values of compounds. The hiphop

method was used to create an ideal 3D-QSAR pharmacophore model for the

prediction of Evodiae fructus compounds. Finally, molecular docking was used

to validate the rationality of the pharmacophore, and molecular dynamics was

used to disclose the stability of the compounds by assessing the trajectories in

10 ns using RMSD, RMSF, Rg, and hydrogen bonding metrics.

Results: In total, 27 compounds were acquired from the TCMSP and TCM-ID

databases, and 45 intersection targets were compiled using Venn diagrams.

Network integration analysis was used in this study to identify SRC as a primary

target. Key pathways were discovered by KEGG pathway analysis, including PD-

L1 expression and PD-1 checkpoint pathway, EGFR tyrosine kinase inhibitor

resistance, and ErbB signaling pathway. Using a 2D-QSAR pharmacophore

model and the MLR approach to predict chemical activity, ten highly active

compounds were found. Two hydrophobic features and one hydrogen bond

acceptor feature in the 3D-QSAR pharmacophore model were validated by
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training set chemicals. The results of molecular docking revealed that 10 active

compounds had better docking scores with SRC and were linked to residues via

hydrogen and hydrophobic bonds. Molecular dynamics was used to show the

structural stability of obacunone, beta-sitosterol, and sitosterol.

Conclusion:Pharmacophore 01 has high selectivity and the ability to distinguish

active and inactive compounds, which is the optimal model for this study.

Obacunone has the optimal binding ability with SRC. The pharmacophore

model proposed in this study provides theoretical support for further

screening effective anti-cancer Chinese herbal compounds and optimizing

the compound structure.

KEYWORDS

Euodiae fructus, liver cancer, network pharmacology, molecular docking, QSAR
model, molecular dynamics simulation

1 Introduction

Liver cancer, including intrahepatic cholangiocarcinoma

(ICCA) and hepatocellular carcinoma (HCC), is the second-

largest cause of cancer-related mortality worldwide and a

significant public health issue (Kassebaum et al., 2014). Its

incidence rate and mortality have increased annually, and

over the past 20 years, it has become the cancer factor in the

United States that has caused the biggest increase in mortality

(Sia et al., 2017). In 2017, More than half of all liver cancer cases

worldwide—5,70,000 new cases—occurred in China. The

mortality rate was 26.26/1,00,000, and men had a greater

mortality rate than women (37.55/1,00,000 vs. 14.45/1,00,000)

(He et al., 2021). Cao et al. (2021) conducted a secondary analysis

of cancer statistics from around the world. In 2020, cancer cases

in China accounted for 24% of newly confirmed cases worldwide

and 30% of cancer deaths worldwide. The death rate from liver

cancer rose to second in China in 2020.

Currently, the clinical treatment of liver cancer includes

surgery and drug chemotherapy. On the one hand, liver

cancer has an extremely dismal prognosis; only 5%–15% of

patients are candidates for surgical resection. Therefore, it is

only appropriate for early-stage patients with some liver

regeneration potential (Anwanwan et al., 2020). On the other

hand, the most widely prescribed medication for individuals with

advanced stages is the kinase inhibitor sorafenib. However, less

than one-third of patients will be able to fully benefit from the

course of their treatment. Sorafenib resistance is visible after use,

and problems including toxicity and ineffectiveness can also

result from prolonged exposure to chemotherapy medicines

(El-Serag et al., 2008). Given the poor prognosis of liver

cancer, scientists and physicians have been looking for new

treatment options to improve patient survival.

Natural products provide distinct advantages in cancer

treatment. Natural plant extracts and natural chemicals, as well

as traditional Chinese medicines, have gained a lot of attention in

recent years for their high-efficiency and low-toxicity anti-cancer

characteristics (Cho et al., 2015). Evodiae Fructus (EF), a

traditional medicinal plant, is the dried and nearly ripe fruit of

the Rutaceae Euodia rutaecarpa (Juss.) Benth. EF contains

alkaloids, terpenes, flavonoids, phenolic acids, steroids, and

phenylpropanoids (Li and Wang, 2020). Modern

pharmacological researches have demonstrated its biological

properties, including cardioprotective, antibacterial, anti-

inflammatory, and anti-tumor effects (Yoon et al., 2013; Zhao

et al., 2019; Shan et al., 2020). According to several research,

evodiamine, and rutaecarpine in EF had hepatoprotective

properties (Yoon et al., 2013). Meanwhile, evodiamine may

induce apoptosis in liver cancer cells via the WWOX-

dependent pathway, as well as the Akt pathway and others, and

then exert antitumor effects (Hu et al., 2017; Yang et al., 2017).

Furthermore, EF extracts can prevent the development of a variety

of cancers, including colon cancer, cervical cancer, and others

(Dong et al., 2010; Park et al., 2017). However, the molecular

mechanism of EF against liver cancer is currently understudied.

By combining bioinformatics and network analysis, network

pharmacology is particularly well suited for the analysis of

complex pharmacological mechanisms of multi-compound

(Xia and Tang, 2021). The quantitative structure activity

relationship (QSAR) method is widely used to investigate the

relationship between the physicochemical properties of

chemicals and their biological activities in order to obtain a

mathematical statistical model for predicting the activity of target

chemicals, with differences in structural properties leading to

different bioactivities of compounds as the basic principle

(Verma et al., 2010). Recently, it has been fashionable to

employ QSAR pharmacophore models to investigate the

structure-activity connections of TCM and natural

compounds in order to uncover their biological activities

(Elekofehinti et al., 2021; Li et al., 2022). It is well known that

small molecule drugs frequently bind to macromolecular

receptors to perform specific biological functions. Molecular

docking methods have been widely used in modern drug

design to investigate the conformation of ligands within the
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binding sites of macromolecular target proteins and to predict

their binding mode and binding capacity (Ferreira et al., 2015).

Nowadays, the molecular docking method is an important

technique in the field of computer-assisted drug research, and it

has become an increasingly important tool for drug discovery.

Molecular docking creates drugs based on receptor characteristics

and the mode of interaction between receptors and drugs. It can

simulate the interaction of molecules and proteins at the atomic

level to elucidate the binding sites and binding characteristics of

small molecules on target proteins, as well as the fundamental

biochemical processes. Molecular docking can also predict ligand

and receptor conformation and calculate parameters such as

affinity to evaluate binding. This technique is accurate and low-

cost, and it is currently used primarily for drug design and the

elucidation of biochemical processes (Meng et al., 2011).

In this study, active compounds and key targets of EF were

first screened using the network pharmacology method, followed

by GO and KEGG analysis to investigate the molecular

mechanism. The pIC50 of active compounds in EF were

successfully predicted by the 2D-QSAR pharmacophore

model, and the hiphop method was used to construct the 3D-

QSAR pharmacophore model. Finally, molecular docking was

used to confirm the binding modes of ligands to proteins. In the

graphic abstract, the main concept under study is displayed.

2 Materials and methods

2.1 Network pharmacology

2.1.1 Chemical compounds and targets
acquisition

We use the Traditional Chinese Medicine Systems

Pharmacology Database and Analysis Platform (TCMSP,

GRAPHICAL ABSTRACT
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http://tcmspw.com/tcmsp.php) and the Traditional Chinese

Medicine Information Database (TCM-ID, http://bidd.group/

TCMID/index.html) to obtain the chemical compounds in EF.

The OB value (Oral bioavailability) and DL value (Drug-likeness)

used as a reference for filter chemicals are 30% and .18%,

respectively. Their structures were retrieved in SDF format

from the PubChem database. Then we utilized the

SwissTargetPrediction (http://www.swisstargetprediction.ch/)

to find compound targets, entered “liver cancer” at GeneCards

(https://www.genecards.org/) to find genes associated with liver

cancer (score > 30), and then we analyzed the intersection targets

with the aid of the venny2.1.0 platform to find the appropriate

targets of EF against liver cancer.

2.1.2 GO/KEGG analysis
DAVID Bioinformatics Resources (https://david.ncifcrf.gov/

home.jsp) is a well-known bioinformatics resource system for

functional annotation and enrichment analysis of gene lists

(Sherman et al., 2022). We submitted the intersection targets

of EF treatment for liver cancer to the DAVID database, chose

Homo sapiens as the species, and obtained items from Gene

Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG). It is used to annotate biological functions

and analyze signal pathways of key targets.

2.1.3 C-T-P and PPI network construction
The “Compounds-Targets-Pathways” (C-T-P) network is

frequently used to analyze the interactions between

compounds, targets, and pathways (Chen et al., 2021).

Furthermore, the analysis of Protein-protein Interaction (PPI)

networks can contribute to a better understanding of disease

molecular mechanisms by systematically analyzing and

discovering important targets (O’Reilly et al., 2019). The PPI

network was obtained using the STRING database (https://

string-db.org/). The C-T-P network was built using the

Cytoscape 3.9.1 software, and we ranked compounds by

degree value to determine their significance. The key targets

in the PPI network were examined using Cytoscape 3.9.1’s

cytohubba plugin analysis.

2.2 Construction of the QSAR model

We obtained 45 SRC inhibitors based on the literature and

the Selleck website (https://www.selleck.cn/) (Martin et al., 2006;

Bain et al., 2007; Schenone et al., 2007; Hiscox and Nicholson,

2008; Fathi et al., 2019; Ma et al., 2020). The 3D structural

formulas were downloaded from PubChem, and energy was

minimized through batch processing using Discovery Studio

Software (Discovery Studio 2019; BIOVIA; San Diego,

United States). Using the “Creat Training and Test Data”

function module, all SRC inhibitor compounds were randomly

divided into a training set (35 compounds) and a test set (ten

compounds) (Supplementary Figures S7, S8) The resulting

activity values of the training and test set compounds ranged

across four orders of magnitude, ensuring the model’s accuracy.

Quantitative structure-activity relationships (QSAR) are a

powerful computational method for analyzing data based on

chemical structure. The QSAR pharmacophore model was

created by establishing a statistical mathematical link between

calculated chemical descriptors of molecular structure and

experimentally measured values of these molecules’ biological

activity, which can be used to predict biological activity with a

variety of target chemical products (Muratov et al., 2020).

2.2.1 Construction of the 2D-QSAR
pharmacophore

In this study, 2D-QSARmodels were built by calculating the

molecular properties of the training and test sets using

Discovery Studio software. The forward selection by partial

least squares (PLS) method and the stepwise multiple linear

regression (MLR) method validated by the external test set

prediction method were used to build the 2D-QSAR model

(Hajalsiddig et al., 2020). Furthermore, the genetic function

approximation method (GFA) is an intelligent regression

algorithm that simulates biological evolution and natural

selection in nature. Because GFA provided a better fit to the

training set, it was also commonly used for QSAR modeling

(Wang et al., 2012). The pIC50 value is typically used to describe

the biological activity of a substance, The “calculate molecular

properties”module was used to calculate a number of molecular

descriptors included AlogP, molecular weight, the total number

of bonds, the minimum energy of conformation (kcal/mol),

volume, surface area, and other properties (Dwivedi et al., 2011;

Imran et al., 2015). Some statistical parameters, such as the

coefficient of determination (r2), adjusted r2 (r2 adj), and

prediction (PRESS) r2 (r2 pred), determine the accuracy of

our constructed model.

2.2.2 Construction of the 3D-QSAR
pharmacophore

Similarly, we built 3D-QSAR models with Discovery Studio

software, typically using the HipHop method. The hiphop

method uses the three-dimensional structures of a series of

known target inhibitors/activators to describe the common

features of biological activities, develop pharmacophore

models, and finally generate the best quantitative

pharmacophore model for 3D querying (Wang et al., 2008).

First, we screened 10 compounds with higher EF activities and

imported their structures’ SDF format (3D) into Discovery

Studio software. The principal value and maximumomitfeat

value of each compound are then defined. Compounds were

designated as active when their IC50 was less than 1μM, the

Principal value was set to 2, and the Maxomitfeat value was set

to 0. When their IC50 was greater than 1 μM, both the Principal

and Maxomitfeat values were set to 1 (Rampogu et al., 2018).
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Feature mapping is used to identify compound feature elements

and investigate molecules that contain those main feature

elements. Furthermore, we performed pharmacophore

feature element selection to select those included in the

HypoGen module, which generally included five types of

feature elements: hydrophobic, hydrogen bond donor

(Donor), hydrogen bond acceptor (Acceptor), positively

charged ion center (Ionizable Positive), and aromatic ring

center (Ring Aromatic). Next, the Maximum Conformation

was set to 255 and the Energy Threshold to 10 (Jiang et al.,

2016). Finally, the compounds from the test set were used to

validate the pharmacophore model.

The 3D structure of a set of ligands was used to calculate the

potential energy in the discovery Studio software’s 3D-QSAR

method, and the potential energy was then used as a descriptor

to build the model. Such a model correlates the molecular field

and activity and links the three-dimensional structure and

biological activity (Ahmed et al., 2017). The equation is as

follows:

Activity Predicted( ) � ∑
NEP

i�1 CEP i( )VEP i( )
+∑

NVDW

i�1 CVDW i( )VVDW i( )

where, NEP represents the number of descriptors of electrostatic

potential (EP), CEP(i) is the model coefficient of EP descriptor,

and VEP(i) is the electrostatic potential value on the grid points.

Furthermore, NVDW is the number of descriptors of Van Der

Waals (VDW) interactions, CVDW(i) is the model coefficient of

VDW descriptor I, and VVDW is the VDW interaction potential

energy on the grid points. In summary, the predicted activity of a

compound is the linear sum of the model coefficients multiplied

by their corresponding grid values.

2.3 Molecular docking

Molecular docking is currently a key method in drug design

since it enables research of ligand binding modalities, stable

ligand receptor complex intermolecular interactions, and

binding energy predictions (Huang and Zou, 2010). The top

ten active compounds in the pharmacophore model were chosen

as ligand molecules, and the key target SRC was chosen as the

target protein for AutoDock molecular docking tests. We

obtained SRC crystal structure 1BYG from the PDB database.

To improve reliability, we chose reference drugs such as

Ponatinib and Dasatinib, which are SRC inhibitors that are

already in clinical use (Ceppi et al., 2012; Roskoski, 2015).

Furthermore, STAUROSPORINE (STU), the original SRC

ligand, is used as a control (1BYG).

The SRC protein structure (1BYG) was obtained from the

Protein Data Bank (https://www.rcsb.org/). First, the proteins

were processed with PyMOL software, which removed water

molecules and extracted ligands while recording the docking site

coordinates (Getbox plugin) of the chosen ligands. The small

molecules were then preprocessed with AutoDockTools1.5.6,

and the proteins were hydrogenated and charged. After that,

one profile (including protein and ligand structure files as well as

docking site information) was created for AutoDock Vina

docking. Finally, information about the docking results was

obtained from the PLIP website (https://plip-tool.biotec.tu-

dresden.de/plip-web/plip/index), and the docking results were

visualized using PyMOL software.

2.4 Molecular dynamics simulation

GROMACS is used for molecular dynamics (MD)

simulations of protein-ligand complexes. This experiment

included compounds with high docking scores that formed

complexes with proteins such as 1BYG-Obacunone, 1BYG-

Beta-sitosterol, and 1BYG-Sitosterol. Meanwhile, 1BYG-

Ponatinib was used as a control. We used the Acpype portal

and the AMBER force field to generate topology files for the

ligands, with SPC as the water model. The relevant scripts were

run to add water models, ions, and balance charges. The systems

were stabilized by running energy minimization (100 ps) with the

steepest descent algorithm. After that, we used the

Verlet algorithm for NVT equilibration for 100 ps (2fs steps)

and the Berenson algorithm for NPT equilibration for 100 ps (2fs

steps) (Adelusi et al., 2021). To ensure that atoms did not jump

out of the PBC, the “trjconv” module was used for system

processing (periodic boundary conditions). The stability was

assessed using root mean square deviation (RMSD), root

mean square fluctuation (RMSF), radius of gyration (Rg), and

hydrogen bond analysis.

3 Results and discussion

3.1 Network pharmacology analysis

3.1.1 Chemical compounds and targets
acquisition

With OB 30% and DL .18 as thresholds, 27 compounds from

EF (Supplementary Table S1) were screened from the TCMSP

and TCM-ID databases. SwissTargetPrediction identified a total

of 611 compound targets. Genecards identified 333 liver cancer

targets, and Venn analysis revealed 45 intersecting targets that

could be used by EF to play pharmacological roles in the anti-

liver cancer process (Supplementary Figure S1; Supplementary

Table S2).

3.1.2 GO/KEGG analysis results
We screened the top ten items in the GO and KEGG

enrichment analyses in ascending order of p-value (Figure 1).

The results of the Go analysis indicate that the biological
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processes (BP) mainly involve the development of multicellular

organisms, ellular response to reactive oxygen species, protein

autophosphorylation, peptidyl-tyrosine phosphorylation,

positive regulation of kinase activity, protein phosphorylation,

and transmembrane receptor protein tyrosine kinase signaling

pathway. Cell Components (CC) include the receptor complex,

the macromolecular complex, the plasma membrane, the

nucleoplasm, the cytosol, the nucleus, the membrane raft, the

cytoplasm, and so on. Protein tyrosine kinase activity,

transmembrane receptor protein tyrosine kinase activity, ATP

binding, protein kinase activity, kinase activity, identical protein

binding, enzyme binding, protein binding, and so on are

examples of Molecular Functions (MF) (Supplementary

Table S3).

A total of 138 pathways with significant meaning (P0.05)

were enriched by KEGG analysis. The top ten key pathways

include EGFR tyrosine kinase inhibitor resistance, ErbB signaling

pathway, PD-L1 expression and PD-1 checkpoint pathway in

cancer, Focal adhesion, Prolactin signaling pathway, PI3K-Akt

signaling pathway, TNF signaling pathway, Rap1 signaling

pathway, Lipid and atherosclerosis, and others. The EGFR and

ErbB signaling pathways are the highest ranked in KEGG and are

upstream in other pathways. EGFR and ErbB are members of a

family of cell membrane protein receptors that can receive

stimuli and send signals downstream, triggering a series of

regulatory processes for both life activities and diseases. EGFR

inhibition has been shown in studies to inhibit HCC cell survival,

migration, and invasion (Chen et al., 2019; Jin et al., 2021). The

ErBB-PI3K-AKT pathway can promote the growth and spread of

hepatocellular carcinoma (Ni et al., 2020). Overexpression of

focal adhesion kinase (FAK) occurs frequently in human HCC

tissues, and simultaneous overexpression of FAK increases AR

expression, which leads to HCC formation in mice (Shang et al.,

2019). Certainly, there is also evidence that the Prolactin

signaling pathway, the PI3K-Akt signaling pathway, the TNF

signaling pathway, and other pathways play important roles in

the process of liver cancer (Dumaual et al., 2012; Meng et al.,

2021; Miethe et al., 2021).

3.1.3 Network analysis
We can further investigate the relationship between EF

compounds, targets, and pathways by building the C-T-P

network with Cytoscape 3.9.1. The C-T-P network, as shown

in Figure 2A, demonstrates interactions between compounds-

targets-pathways. This network contains 314 edges that represent

interactions between nodes. The network also included 88 nodes:

27 shared by red square nodes representing compounds,

51 shared by blue diamond nodes representing targets, and

10 shared by green triangle nodes representing signaling

pathways. The higher the degree value of the node, the more

critical this node is. This network reflects the characteristics of

multi-compound and multi-target interactions in TCM.

Furthermore, it demonstrated that these chemicals have a

better potential for bioactivity against liver cancer. In the

C-T-P network, higher degree values for compounds such as

gravacridoneshlirine, gossypetin, quercetin, isorhamnetin,

FIGURE 1
GO and KEGG analysis. (A) Top ten item of GO enrichment analysis of biological processes (BP), cell components (CC), andmolecular functions
(MF). (B) Bubble diagram of KEGG analysis.

Frontiers in Chemistry frontiersin.org06

Chen and Han 10.3389/fchem.2022.1060500

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1060500


obacunone, and 6-OH-luteolin. It suggest a greater likelihood

that they may have potential liver cancer-preventing actions

(Figure 2B). Meanwhile, we screened critical targets based on

their degree values (Supplementary Table S4). The results

showed that SRC, which was thought to be the crucial target

in this investigation, had the greatest degree value.

FIGURE 2
Network construction. (A) C-T-P network. (B) Degree value distribution histogram of EF compounds in C-T-P network.
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Moreover, we identified important target proteins in the

PPI network using the Cytoscape cytohubba plugin. There are

eleven computational methods available to Cytohubba, which

can examine the key nodes in bioinformatic networks. At the

moment, MCC is regarded as being the best method (Chin

et al., 2014). In addition, The PPI network showed high degree

FIGURE 3
Key targets analysis. (A) PPI network. (B) Top six key targets derived from cytoHubba’s MCC algorithm. (C) Scores for the top six key targets.

TABLE 1 Based on the 2D-QSAR test set compound experimental and predicted activity pIC50 (μM).

Training no. Experiment pIC50 Predicted GFA Residuala Predicted MLR Residualb Predicted PLS Residualc

1 1.046 −.676 1.722 .603 .443 3.213 2.167

2 2.699 2.858 .159 1.958 .741 2.661 .038

3 −1.758 −1.285 .474 −1.329 .429 −.898 .861

4 2.301 1.271 1.030 2.049 .252 2.399 .098

5 1.695 .968 .727 1.498 .197 1.082 .613

6 3.000 2.858 .142 3.255 .255 2.187 .813

7 −.146 .662 .808 −.427 .281 .488 .634

8 2.046 1.783 .263 2.543 .497 2.148 .102

9 3.301 4.176 .875 3.365 .064 2.226 1.075

10 .208 .968 .760 .695 .488 .899 .691

r2 .9117 .988 .800

r2 (adj) .8928 .981 .787

r2 (pred) .8564 .975

aGFA-Experiment pIC50.
bMLR-Experiment pIC50.
cPLS-Experiment pIC50.
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values for CCND1, ERBB2, MTOR, SRC, ESR1, and STAT3

(Figures 3A, B). Histograms depict the score values of these

targets (Figure 3C; Supplementary Table S5). We discovered

that SRC not only plays an important role in the C-T-P

network, but also ranks high in the PPI network. SRC has a

high score in comparison to the other core proteins in the PPI

network, and there are close interactions. Using KEGG

analysis, we discovered that SRC is involved in a number of

significant signaling pathways. EGFR/ErbB-2 can activate

downstream SRC proteins, and SRC can then encourage

liver cancer cell growth and metastasis through focal

adhesion and the PI3K-Akt signaling pathway (Ren and

Schaefer, 2002; You et al., 2018; Mo et al., 2020; Luo et al.,

2021). Meanwhile, a large body of literature has reported on

the role of SRC in liver cancer and has shown that SRC could

be a therapeutic target in liver cancer (Tong et al., 2015; Zhao

et al., 2020; Yang et al., 2021). Additionally, Liao et al. (2014)

demonstrated through experiments that EF extract might

reduce SRC expression to reduce hepatotoxicity. Therefore,

we believe SRC was the most important key target in this

study.

3.2 2D-QSAR model analysis

3.2.1 Construction of 2D-QSAR pharmacophore
model

To build the 2D-QASR model, we used the GFA, MLR, and PLS

linear fitting algorithms in the Discovery Studio software. The linear

regression equations (Supplementary Figures S3–S5) revealed that the

correlation regression coefficients r2 of the three algorithms (GFA,

MLR, and PLS) were .912, .988, and .800, respectively, demonstrating

their good predictive ability and prediction accuracy for

pharmacophore models, particularly MLR. Then, using these three

techniques, we created 2D-QSAR models to forecast the biological

activities (pIC50) of the compounds in the test set. The results showed

that (Table 1) the predicted pIC50 values of the compounds based on

GFA and PLS algorithms showed relatively large deviations from the

experimental pIC50 values, indicating lower accuracy.

3.2.2 Prediction of EF activity from 2D-QSAR
models

The activity of the EF compounds screened was predicted by our

2D-QSAR model using the MLR method (Table 2). The top highly

TABLE 2 The activity pIC50 (μM) of PD Based on the 2D-QSAR model.

Pubchem CID Compound Predicted (MLR) pIC50

5319810 1-methyl-2-[(Z)-undec-6-enyl]-4-quinolone −1.059

13967189 1-methyl-2-nonyl-4-quinolone −.674

5319811 1-methyl-2-undecyl-4-quinolone −.880

162926950 24-methyl-31-norlanost-9(11)-enol 1.733

5281642 6-OH-Luteolin −1.040

12457 Berberine .318

222284 beta-Sitosterol 1.374

624052 Ethanone .318

5317303 Evocarpine −1.266

189454 Evodiamide .023

442088 Evodiamine −.056

58757248 Fordimine .725

5317827 Goshuyuamide_I .142

5317828 GoshuyuamideII −.265

5280647 gossypetin −1.035

163102888 Gravacridoneshlirine .151

56967381 hydroxyevodiamine .005

5281654 Isorhamnetin −.944

5319506 N-(2-Methylaminobenzoyl)tryptamine −.393

119041 Obacunone 1.491

Frontiers in Chemistry frontiersin.org09

Chen and Han 10.3389/fchem.2022.1060500

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1060500


FIGURE 4
Structural of top 10 highly active compounds in EF.

TABLE 3 Common characteristic parameters of active compounds displayed by pharmacophore models.

Pharmacophore Feature Rank Direct hit Partial hit Max hit

01 HHA 57.220 1111111111 0000000000 3

02 HHA 57.042 1111111111 0000000000 3

03 HHA 55.151 1111111111 0000000000 3

04 HHA 52.597 1111111111 0000000000 3

05 HHA 49.170 1111111111 0000000000 3

06 HHA 48.528 1111111111 0000000000 3

07 HHA 42.982 1111111111 0000000000 3

08 HHA 41.428 1111111111 0000000000 3

09 HHA 32.624 1111111111 0000000000 3
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active compounds were 24-methyl-31-norlanost-9(11)-enol,

Obacunone, Beta-Sitosterol, Berberine, Sitosterol, Rutalinidine,

Fordimine, Ethanone, Gravacridoneshlirine, and Goshuyuamide I,

with pIC50 values of 1.733, 1.491, 1.374, 1.374, .725, .470, .318

(Figure 4). Several studies have confirmed the therapeutic effects of

some of these compounds in the treatment of liver cancer. Obacunone

in mandarin (Citrus reticulata Blanco) has been shown in studies to

inhibit a variety of human cancer cell lines, including leukemia (HL-

60), ovarian cancer (SKOV-3), cervical cancer (Hela), gastric cancer

(NCI-SNU-1), liver cancer (HepG2), and breast cancer (MCF-7).

Obacunone had an IC50 of 65.13 ± 5.39 μm against HepG2 cells in an

MTT assay (Tian et al., 2001). Mary (Ditty and Ezhilarasan, 2021)

found that β-Sitosterol can increase cellular ROS levels, causing cell

membrane damage and mitochondrial toxicity, as well as promoting

HepG2 cell apoptosis. Berberine is an alkaloid that has been shown to

inhibit the growth of various cancers. Ren et al. (2022) discovered that

berberine inhibited hepatocarcinogenesis in mice by antagonizing the

ATX-LPA-LPAR2-P38-leptin axis. Liu and Bai (2020) discovered that

Sitosterol has effect on liver cancerwith the help of analysis of network

pharmacology. Ultimately, we screened out the top 10 compounds

based on pIC50, which may have better anti-liver cancer activity.

3.3 3D-QSAR model analysis

3.3.1 Construction of the 3D-QSARmodel by the
HipHop method

We investigated the common chemical properties of the

compounds and built a 3D-QSAR model by superimposing

the three-dimensional molecular structure. The HipHop

method of the Discovery Studio software was used to

generate nine 3D-QSAR pharmacophore models. Table 3

displays the pharmacophore model’s matching parameters

with the ten active compounds. According to the results, the

01 pharmacophore model had the highest rank score value

of 57.220. The “HHA” shown in its “Feature” item indicates

that it has two hydrophobic features and one hydrogen bond

acceptor feature. The pharmacophore features in this model

were directly matched to ten small molecules, and the

Partial Hit revealed no partial matches to the

pharmacophore for the ten small molecules. Furthermore,

Max Hit indicated that three pharmacodynamic features

could all be matched. The spatial distribution of

Pharmacophore 01 is depicted in Figure 5.

(Supplementary Figure S6 showed the spatial distribution

of pharmacophore 02–09). As a result, we chose

Pharmacophore 01 for further analysis and validation as

the best constructed in this study.

FIGURE 5
The three-dimensional structure of “24-methyl-31-
norlanost-9(11)-enol” was used as an example to display
“pharmacophore 01” (blue indicates hydrophobic features, green
indicates hydrogen bond accepter features).

FIGURE 6
3D-QSAR models with energy grid points as descriptors. (A)
Small molecule matching to electrostatic field coefficient
isoelectric maps in the model; (B) Small molecule matching to
stereo field coefficients isoplot in model.
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3.3.2 Construction of the 3D-QSARmodel based
on steric and electrostatic fields of small
molecules

We built 3D-QSAR models based on the steric and

electrostatic fields of the small molecules to investigate the

non-covalent interactions in the structure of EF active

compounds. Our 3D-QSAR model incorporates and

visualizes the common important structural characteristics

of a series of active compounds. The contour plots of the

electrostatic field coefficients of the small molecules that

match the 3D-QSAR models are shown in Figure 6A. In

this system, the more negatively charged the substituents in

the red region and the more positively charged the

substituents in the blue region, the higher the activity of

the compound. The contour plots of the steric field

coefficients of small molecules that match the 3D-QSAR

model are shown in Figure 6B. In this system, the yellow

region indicates that increasing the volume of substituents is

detrimental to compound activity, whereas the blue region

indicates that increasing the volume of substituents is

beneficial to compound activity. The results showed that

the electrostatic effects of the substituents, as well as the

spatial distribution of the functional groups of the active

compounds, affected their biological activities and may have

contributed to the binding of key target proteins for liver

cancer. Based on the force field information, this part of the

study can help us screen and optimize the active compounds

in EF.

3.3.3 Verification of 3D-QSAR pharmacophore
model

We chose the top 20 training set compounds based on

activity to verify that pharmacophores can correctly

distinguish between active and inactive molecules. Figure 7

depicts a matching heatmap of the pharmacophore with the

training set compounds, where the ordinate represents the

FIGURE 7
Heat map of the training set compounds predicted by the nine pharmacophore models.
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20 training ensemble scores ranked in order of activity, the

abscissa represents the pharmacophore 01–09, and the

Fitvalue ranges from low to high, as indicated by the

gradual purple to red color change. The darker the red

color of each rectangular block in the figure, the greater the

Fitvalue, thus the greater the corresponding compound

activity. In theory, the active compounds in the training set

should be red and orange, while the inactive compounds

should be blue and purple, indicating that this

pharmacophore can distinguish between active and inactive

compounds. We discovered that the Fitvalue of the more

active compound in pharmacophore 01 was higher than

that of the less active compound, and that its fitvalue had a

certain trend, indicating that pharmacophore 01 had ability to

discriminate between active and inactive compounds.

Pharmacophore 01 had the highest rank value.

Additionally, we used receiver operating characteristic

(ROC) curve analysis to validate the pharmacophore (Al-

Sha’er et al., 2022; Taha et al., 2014). ROC plots are a

quantitative measure of whether a test can distinguish

between two populations (typically active/inactive

TABLE 4 Matching results of nine pharmacophore models for compounds of the training set.

Compound no. 01 02 03 04 05 06 07 08 09

1 2.886 2.649 2.604 2.805 2.585 2.934 2.965 2.682 2.289

2 2.677 2.754 2.638 2.838 2.718 2.757 2.858 2.874 2.559

3 2.834 2.924 2.912 2.583 2.818 2.777 2.931 2.851 2.261

4 2.767 2.782 2.846 2.640 2.764 2.911 2.933 2.866 2.450

5 2.681 2.598 2.535 2.956 2.399 2.325 2.905 2.708 2.462

6 2.681 2.598 2.535 2.956 2.399 2.325 2.905 2.708 2.219

7 2.756 2.983 2.717 2.787 2.719 2.850 2.903 2.773 2.453

8 2.526 2.457 2.543 1.880 2.183 2.498 2.933 2.767 2.632

9 2.284 2.126 2.194 2.321 2.326 2.706 2.810 2.037 1.817

10 2.482 2.788 2.544 2.594 2.499 2.818 2.889 2.881 2.242

11 2.502 2.711 2.530 .836 2.035 2.271 2.949 2.790 1.660

12 2.444 2.568 2.582 2.942 1.874 2.529 2.328 2.435 1.996

13 2.034 2.593 2.919 2.919 2.755 2.824 2.827 2.938 2.192

14 1.000 1.000 .455 1.978 1.629 1.539 2.625 2.345 1.933

15 2.552 2.391 2.364 2.557 2.303 2.822 2.899 2.845 2.671

16 2.601 2.387 2.797 2.504 2.610 2.761 2.923 2.781 2.644

17 2.404 2.766 1.959 1.600 2.662 .935 2.684 2.358 .839

18 .000 .000 .485 2.307 1.239 1.046 1.929 1.008 2.048

19 1.806 1.810 1.338 1.971 1.254 2.380 1.868 1.605 2.003

20 1.533 .903 1.395 1.541 1.100 1.271 1.932 1.552 1.333

TABLE 5 The affinity of compounds with SRC(1BYG) (kcal.mol−1).

Active compound Protein(PDBID) Affinity

24-methyl-31-norlanost-9(11)-enol SRC(1BYG) −8.6

Obacunone SRC(1BYG) −9.4

beta-Sitosterol SRC(1BYG) −9.0

Sitosterol SRC(1BYG) −9.3

Fordimine SRC(1BYG) −7.8

Rutalinidine SRC(1BYG) −8.3

Berberine SRC(1BYG) −9.1

Ethanone SRC(1BYG) −6.6

Gravacridoneshlirine SRC(1BYG) −8.9

Goshuyuamide_I SRC(1BYG) −8.7

Ponatinib SRC(1BYG) −9.8

Dasatinib SRC(1BYG) −8.7

STU SRC(1BYG) −10.9
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compounds). It can be compared to other data sets. The area

under the curve was used to evaluate test accuracy in ROC

analysis (AUC). A test set of active and inactive compounds

was used in our 3D-QSAR model to validate the

pharmacophore model’s selectivity. On the one hand,

sensitivity is defined as the model’s ability to identify

positives, namely the extent to which an active molecule is

distinguished from the inactive, or the proportion of the

predicted active that is actually active:

Sensitivity � TP / TP + FN( )

Specificity, on the other hand, is the ability of the model to

determine negatives, or its discriminatory power for inactive

compounds:

Specif ic TN / TN + FP( )

ROC analysis results show that (Supplementary Figure S9;

Supplementary Table S6), the ROC score of the

pharmacophore 01 model is .768, and the sensitivity and

specificity scores are both high. We believe pharmacophore

01 is the most effective pharmacophore hypothesis for

distinguishing between active and inactive compounds.

Therefore, we considered pharmacophore 01 was the best

3D-QSAR pharmacophore model. This means that

pharmacophore model 01 may have anti-cancer effects on

EF. The Fitvalue of the other pharmacophore models is shown

in Table 4.

3.4 Molecular docking verification

This section of the study used molecular docking to validate the

rationality of EF’s 3D-QSAR pharmacophore model built from ten

highly active compounds. The optimal conformation was chosen for

each compound, and the RMSD of the conformations was less than

2. As shown in Table 5, the docking scores of the ten active

compounds with SRC were all less than -7 kcal.mol−1, with the

exception of Ethanone. This implies that they play an important role

in EF’s anti-cancer process. Supplementary Figure S9 depicts their

docking conditions. These compounds all bind to the amino acid

residues of SRC via hydrophobic effects and hydrogen bonding

interactions and have a similar docking mode. More specifically,

Obacunone had the highest docking score with SRC, its

antihepatoma activity in vitro has previously been reported, and

its three-dimensional molecular docking state is shown in Figure 8.

Obacunone primarily binds to SRC via hydrophobic and hydrogen

bonding interactions. Obacunone could form hydrophobic

interactions with amino acid residues PHE-206, VAL-209, THR-

266, and PHE-333, with hydrophobic bond distances of 3.44, 2.61,

3.54, and 3.55 Å, respectively. Meanwhile, obacunone could form

hydrogen bonding interactions with GLU-205 and PHE-206 at

distances of 2.84 and 3.31 Å, respectively. Obacunone also has

one salt bridge interaction with LYS-222. In addition, in order to

improve the reliability of molecular docking, some reference drugs

were used for docking, such as Ponatinib, Dasatinib, STU (Table 5).

Their docking scores were −9.8, −8.7, and −10.9 kcal.mol−1,

FIGURE 8
Molecular docking results of Obacunone with SRC (1BYG). Gray dashed lines represent hydrophobic interactions, blue lines represent hydrogen
bonding interactions, and yellow dashed lines represent salt bridges.
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respectively. Some of the screened compounds have affinity values

similar to the reference drugs, such as Obacunone, Beta-Sitosterol,

Sitosterol, and Berberine. In general, these reference drugs interact

with SRC via hydrophobic and hydrogen bond interactions.

Hydrophobic interactions are formed by amino acid residues

ILE-201, VAL-209, TYR-268, and LEU-321, and hydrogen bonds

are formed by THR-266 and MET-269. Meanwhile, Ponatinib has

some salt bridge interactions (Supplementary Figure S10). Overall,

the screened compounds have similar docking modes to the

reference drugs, and these docking interactions are consistent

with the common features of pharmacophore 01.

3.5 MD simulations

After a 10 ns molecular dynamics simulation, we could further

examine how the screened compounds interacted with the protein

SRC (1BYG). Obacunone, Beta-sitosterol, and sitosterol were

chosen for MD simulation analysis in this work because they

had superior docking scores (less than −9 kcal.mol−1) than other

compounds. Figure 9A shows that throughout the entire

procedure, the RMSD of 1BYG Obacunone, 1BYG Beta

sitosterol, and 1BYG Sitosterol maintained between .1 and .3,

and the fluctuation became stable after 10 ns. It indicates that the

10 ns trajectory conformation of compounds does not reveal

substantial structural differences from ponatinib, implying that

the ligand and complex structures are stable.

The root mean square fluctuation (RMSF) curve was used to

investigate the local changes in protein chain residues. In the

10 ns trajectory files, the fluctuation profiles of the amino acid

residues of the complexes (1BYG-Obacunone, 1BYG-Beta-

sitosterol, and 1BYG-Sitosterol) were visualized in Figure 9B.

RMSF value is lower than 0.4 nm, and a stable fluctuation is

generated at about .15, which provides an appropriate basis for

subsequent research. 1BYG-obacunone fluctuated surprisingly

little in these compounds until about the 300th residue, when it

peaked at .3 nm. 1BYG-Beta-sitosterol and 1BYG-Sitosterol have

peaks at .32 and .4 nm, respectively with substantial variations in

FIGURE 9
The results of Molecular dynamics simulation. (A) RMSD curve of protein-ligand complexes; (B) RMSF curve of protein-ligand complexes; (C)
Radius of gyration of complexes; (D) The number of hydrogen bonds formed between the active compounds and 1BYG; (E) The number of hydrogen
bonds formed between Ponatinib and 1BYG. In (A–C), 1BYG-ponatinib, 1BYG-Obacunone, 1BYG-Beta-sitosterol, and 1BYG-Sitosterol are
represented by black, red, green, and blue curves, respectively.
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position before residue 300. Their fluctuation trajectories

followed the same pattern as 1BYG-Ponatinib.

The radius of gyration (Rg) is a measure of a complex

system’s stability in terms of the structural compactness of the

molecular dynamics trajectory (Shahbaaz et al., 2019). Rg can

also be used to confirm the complex’s stable folding during the

simulation. If Rg values are relatively consistent throughout the

simulation, the protein structure is considered stable (Ghasemi

et al., 2016). A higher Rg value indicates that the protein is more

labile, while a lower value indicates that the protein is more

stable. In Figure 9C, Rg values of 1BYG-Obacunone were lower

and more stable than those of others, this leads in less structural

bias and higher stability in the obacunone complexes during

simulations.

In addition, we analyzed the number of hydrogen bonds for

trajectories lasting 10 ns. Figure 9D shows the hydrogen bonding

interaction of obacunone, beta-sitosterol and sitosterol at a

distance of 3.5 Å (.35 nm). The maximum number of

hydrogen bonds found for obacunone, beta-sitosterol, and

sitosterol were 5, 2, and 3, respectively. Over the course of

10 ns, beta-sitosterol, and sitosterol formed fewer hydrogen

bonds with 1BYG, indicating poor binding stability.

Obacunone formed five hydrogen bonds with 1BYG between

5 and 10 ns, and the number of hydrogen bonds formed was the

greatest throughout the simulation process, ensuring better

stability. Furthermore, obacunone has a similar density of

hydrogen bonding conditions to ponatinib (Figure 9E), which

explains its superior binding activity.

4 Conclusion

In this study, some potential active compounds such as

Obacunone, Beta-sitosterol, Sitosterol, and others were

screened using network pharmacology, and SRC was clearly

identified as the most promising target of EF in the treatment

of liver cancer. The top three signaling pathways are the EGFR

signaling pathway, the ErbB signaling pathway, PD-L1

expression, and the PD-1 checkpoint pathway. In addition,

the 2-dimensional QSAR pharmacophore model identified 24-

methyl-31-norlanost-9(11)-enol, Obacunone, Beta-sitosterol,

Sitosterol, Fordimine, Rutalinidine, Berberine, Ethanone,

Gravacridoneshlirine, and Goshuyuamide I as highly active

compounds. The 3D-QSAR model we created revealed that

Pharmacophore 01 had two hydrophobic features and one

hydrogen bond acceptor feature. Heatmap and ROC analysis

results revealed that pharmacophore 01 possessed high selectivity

as well as the ability to distinguish between active and inactive

compounds. The molecular docking results confirmed the active

compounds’ stable binding to SRC. Furthermore, MD

simulations demonstrated the stability of Obacunone, Beta-

sitosterol, and Sitosterol in dynamic systems and highlighted

Obacunone’s prominent binding capacity. The pharmacophore

model proposed in this study provides theoretical support for

further screening of effective Chinese medicine compounds

against liver cancer and compound structural optimization.

Meanwhile, for the optimal compounds, additional

pharmacodynamic and pharmacological studies will be

conducted to clarify their mechanism of action for the

treatment of liver cancer.
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