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As a powerful and effective analytical tool, surface-enhanced Raman scattering

(SERS) has attracted considerable research interest in the fields of wearable

flexible sensing and non-invasive point-of-care testing (POCT) medical

diagnosis. In this mini-review, we briefly summarize the design strategy, the

development progress of wearable SERS sensors and its applications in this field.

We present SERS substrate analysis of material design requirements for

wearable sensors and highlight the benefits of novel plasmonic particle-in-

cavity (PIC)-based nanostructures for flexible SERS sensors, as well as the

unique interfacial adhesion effect and excellent mechanical properties of

natural silk fibroin (SF) derived from natural cocoons, indicating promising

futures for applications in the field of flexible electronic, optical, and

electrical sensors. Additionally, SERS wearable sensors have shown great

potential in the fields of different disease markers as well as in the diagnosis

testing for COVID-19. Finally, the current challenges in this field are pointed out,

as well as the promising prospects of combining SERS wearable sensors with

other portable health monitoring systems for POCT medical diagnosis in the

future.
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Introduction

Wearable sensor technology is an essential link in the future of customized medicine,

which is crucial for early disease diagnosis, cancer biomarker identification, biological

monitoring, and treatment (Cheng, et al., 2021a; Liu, et al., 2021). Such sensors must

overcome the mismatch between traditional rigid silicon-based sensors and soft, flexible

organisms to fit perfectly at biological interfaces, such as the epidermis, eyes, and teeth, to

assess human health conditions (Gao, et al., 2016; Peng, et al., 2020; Yang, et al., 2020).
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Current wearable sensors cannot accurately detect low

concentrations of analytes, lack multimodal sensing, and

typically can only detect one analyte at a time. Therefore,

developing flexible wearable sensors with ultra-sensitive and

multifunctional detection abilities is still a challenge.

Surface-enhanced Raman scattering (SERS) has attracted

considerable interest from researchers in the fields of wearable

flexible sensing and point-of-care testing (POCT) for non-

invasive medical diagnosis. The SERS system consists of a

probe and substrate. The probe, as the enhanced molecule, is

also the analytical object of Raman spectroscopy. The substrate is

the material used for enhancement, which can be either a

roughened metal electrode or a metallic nanomaterial. SERS

technology enables Raman signal enhancement of probe

molecules by adsorbing the probe to the substrate surface

(Fleischmann, et al., 1974; Albrecht and Creighton 1977;

Jeanmaire, et al., 1977; Ding, et al., 2020). The fundamental

prerequisite for improving SERS technology from qualitative to

quantitative analysis depends on the homogeneity, sensitivity,

stability, and university of SERS substrates (Liang, et al., 2015; Li,

et al., 2018; Liang, et al., 2021; Lyu, et al., 2023). The three-

dimensional (3D) periodic SERS array structure is able to balance

homogeneity and enhancement, providing a large number of

nanogaps in SERS substrate for inducing the increase of local

photonic state density as well as creating more spatial hot spots

for SERS activity enhancement (Jung, et al., 2014; Liu, et al., 2014;

Zhang, et al., 2014; Koh, et al., 2021). Most importantly, the

periodic array system provides high signal reproducibility and

reliability, ensuring the uniformity of SERS substrates on the

whole surface, which is also an important means to solve the

application limitations of SERS substrates (Liang, et al., 2017;

Liang, et al., 2022; Zhang, et al., 2022). A well-established SERS

substrate with biocompatibility, high sensitivity, and stable

monitoring capability is essential for rapid, safe, and practical

in situ POCT wearable sensing analysis (Yang, et al., 2018).

Since the concept of SERS firstly proposed in 1977 (Albrecht

and Creighton 1977; Jeanmaire, et al., 1977), SERS has

experienced significant growth in both basic and applied

research. Great progress has been made in POCT non-

invasive medical diagnostics based on different materials or

structures of SERS sensors. For example, paper-based SERS

plasmonic sensors can sensitively detect and quantify uric acid

in sweat at concentrations as low as 1 µM for the diagnosis of

cardiovascular disease, kidney disease, and type Ⅱ diabetes

(Mogera, et al., 2022); Sensors using binary nanosphere arrays

(SiO2@Au@AuNPs, SAAs) as SERS substrates can detect

bilirubin in tears to diagnose jaundice (Zhao, et al., 2022).

The wearable SERS sensor developed by using the

omnidirectional plasmonic nanogap arrays (OPNA) can

quantitatively detect dopamine (DA) in sweat for monitoring

neurological disorders or emotional activity (Zhu, et al., 2022).

In view of the above research background and significance,

this mini-review mainly outlines the design principles of the new

flexible SERS sensor substrate, the latest research progress, and its

application research in non-invasive POCT medical diagnosis,

and looks forward to the great application prospects of SERS

wearable sensors in the fields of different disease markers such as

cancer markers, coronavirus disease 2019 (COVID-19)

detection, etc. Its association with other health monitoring

wearable medical portable devices will further promote the

rapid development and application of personalized medicine,

which has important research significance and application value

for the diverse sensing needs of remote personal health

monitoring system.

Wearable surface-enhanced Raman
scattering sensors：Design and
development

SERS is achieved by adsorbing probe molecules on the substrate

surface (Zhang, et al., 2021). At present, the common enhancement

techniques include chemical mechanisms derived from charge

transfer resonance and electromagnetic mechanisms, as well as

the combination of both mechanisms (Lee, et al., 2021). For the

SERS mechanism, the localized surface plasmon resonance (LSPR)

effect is the most significant one, as shown in Figure 1A. The LSPR

effect takes place when the frequency of incident light coincides with

the inherent oscillation frequency of the electrons in the plasmonic

nanostructure. The LSPR effect is an electron density wave that

propagates along the metal surface due to the interaction between

free electrons on the surface of the noble metal nanostructures. As

seen in Figure 1B, when the light interacts with the nanoparticle, the

incident photons are scattered in different directions, which

enhances the light field, electric field, and magnetic field, and

increases scattering cross-sections of the sample to make Raman

scattering possible (Li, et al., 2018; Lin, et al., 2018; Xie, et al., 2022).

The LSPR performance of Raman enhanced nanoparticles directly

affected the sensitivity, repeatability and stability of SERS, which

determined the usefulness and reliability of SERS technology. The

LSPR performance of nanoparticles is closely related to its size,

morphology, distance and hot spot. For nanoparticles with different

morphologies, their LSPR performance is different, resulting in the

difference of SERS performance. For nanoparticles with the same

morphology, the LSPR intensity is uniform at each site except for

spherical, and the LSPR intensity at different sites of other

morphologies such as nanorod, nanocube, nanoflower and

nanosheet are different. When the incident light is excited from

different angles, the same material will exhibit different properties,

which will affect the repeatability of SERS signal.

Flexible SERS substrates can be attached to any surface due to

their high flexibility, which circumvents the drawbacks of rigid

SERS substrates in detection scenarios. As seen in Figure 1C, the

following requirements must be met for in situ detection with

flexible SERS substrates: 1) facile substrate deformation; 2)

excellent light transmission; 3) ultra-thin substrate material
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FIGURE 1
Wearable SERS sensor design and development. (A) Schematic diagram of the principle of SERS detection analyte. (B) localized surface plasmon
resonance (LSPR) effects based on noblemetal nanoparticles with differentmorphologies. Copyright© TsinghuaUniversity Press and Springer-Verlag
GmbH Germany, part of Springer Nature 2021. (C) The crucial features of substrate-based SERS for in situ detection. (i-ii) Flexible materials and
excitation laser lasers. (iii) SERS substrates. Copyright© 2017, American Chemical Society. (iv) Raman signals from polymethyl methacrylate.
Copyright© 2014, American Chemical Society. (D) Typical types of flexible substrates and preparation methods in flexible SERS substrates: (A).
Silkworm cocoon optical photo; (B). Preparation of flexible substrates by stencil method; (C). Preparation of flexible substrates by thermosetting
spinning; (D). Preparation of flexible substrates by heat/UV-assisted polymerization; (E). Preparation of flexible substrates by a photolithography
stencil method. Reprinted (adapted) with permission from. Copyright© 2021 American Chemical Society. (E) AAO/MoS2/Ag 3D PIC structure SERS
substrate working principle and detection size. Reprinted (adapted) with permission from. Copyright© 2022 American Chemical Society. (F)
Characteristics of the MSFA material. Reprinted (adapted) with permission from. Copyright© 2020 American Chemical Society. (G) An integrated silk
membrane with special wettability shows excellent self-cleaning, transparency, and flexible sensing properties under harsh conditions. Reprinted
(adapted) with permission from. Copyright© 2020 American Chemical Society.
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and 4) low substrate interference with Raman signals (Xu, et al.,

2019). Practical flexible SERS substrates just need to have high

deformation and low interference Raman signal qualities to meet

most of the detection requirements because most flexible

substrates are unable to combine ultra-thin and light-

transmitting properties.

Typical flexible SERS substrates include both noble metal and

substrate components. The desired flexible substrate usually has

one or more of the following characteristics: scalability, adhesion,

biocompatibility, and stability (Koh, et al., 2021). The most

widely used flexible substrate materials are polymer substrates.

Polydimethylsiloxane (PDMS) has stable chemistry properties,

good tensile and flexural elasticity (100–1100%), good thermal

stability, transparency, and biocompatibility (Wang, et al., 2018).

Fiber paper and silk fibroin (SF) (Sajal Kumar 2012) are also

considered promising flexible substrates because of their high

biocompatibility and biodegradability. Zhang’s group (Wang,

et al., 2014) used the microstructure of the surface of silk

fibroin to construct pattern-based flexible PDMS film

substrates as shown in Figure 1D (Song, et al., 2021). The

flexible substrates were prepared by using thermal curing and

spin molding methods, while the hydrogels were polymerized

under light or heat conditions with the aid of templates to

produce flexible ultrathin substrates (Parolo and Merkoçi

2013). Considerable emphasis has been given to silk proteins,

which are secure, non-toxic, immune-suppressive, and a

naturally appealing biocompatible material, in adaptable

electrical systems (Hu, et al., 2021). SF membranes show

promise in flexible electronic, optical and electrical sensors

due to their excellent mechanical properties. Li et al. prepared

superhydrophobic, transparent and flexible smart filing protein

membranes by spraying long silver nanowires (AgNWs)

dispersed in polydimethylsiloxane (PDMS) followed by

vacuum drying. The resulting SF/AgNWs membranes are

super-repulsive to liquids with low surface tension and water.

Due to the excellent mechanical properties of SF, it has tensile,

bending, and high transparency stability. It can also be used for

human motion detection under wet conditions as shown in

Figure 1G (Li, et al., 2020). The transparent, flexible SERS

substrate was developed by Liu et al. (2019) and generated by

using a blotting method for electron substitution on a fibrin

membrane. The nanocatheter, fabricated on a flexible filament-

like fibrin network, overcomes the bending, cutting, remodeling,

spatial processing and manipulation characteristics of traditional

rigid materials. Multifunctional hybrid metal film material that

can be used for bending optics, wearable medical diagnostic

electronics, and recyclable catalysts. Besides, SF is made up of

hydrophilic and hydrophobic amino acid sequences that give it

good interfacial adhesion and excellent hygroscopic properties,

producing a moisture-driven effect when it encounters water

molecules (Huang and Chiu 2021; Manikandan, et al., 2021). A

microstructured fibroin adhesive that can be used in wearable

electronic devices was developed by Liu et al. (2020) Due to the

unique interfacial adhesion effect, the prepared materials also

have a high adhesive force in addition to their highly

biocompatible and reusable properties, making them effective

under wet conditions. And avoid the sharp pain feeling during

the removal process, it can be used in skin-sensitive people and

athletes as shown in Figure 1F.

Advances in nanofabrication technology allow particle-in-

cavity (PIC) structures to generate extremely high field

enhancements. To achieve high SERS sensitivity and

uniformity, Wang et al. created a wearable SERS ultra-thin

and flexible multi-functional sensor (SF-AAO-Au) based on a

micro-nano array of cavity particle structure of silk fibroin,

anodic aluminum oxide (AAO) and gold nanoparticles. The

high SERS sensitivity and uniformity are due to the efficient

enhancement ability of porous 3D PIC structure and highly

ordered periodic array (Liu, et al., 2022; Wang, et al., 2022).

As illustrated in Figure 1E, Li et al. (2022) designed a quasi-

periodic PIC Raman substrate structure based on silver

nanoparticles and anodic alumina templates to achieve

sensitive detection at the single-molecule level and further

improved the detection accuracy by introducing molybdenum

disulfide as an internal standard. With the advantages of local hot

spots, spatial hot spots and high adsorption properties of PIC

structure intrinsic, the AAO/MoS2/Ag 3D structure achieved

sensitive detection of multi-size pollutants including heavy metal

ions, small molecule pollutants, and nano plastics in the water.

Applications in point-of-care testing
non-invasive medical diagnosis

The growing interest in the field of flexible SERS sensing

research over the past few years has also driven the expansion of

SERS technology from a laboratory research tool to a practical

application. Emerging flexible SERS substrates are attracting

unprecedented attention to meet the need for in situ and real-

time monitoring for POCT diagnostics. Its applications mainly

focus on preparing and applying transparent and flexible SERS

active films (Xie, et al., 2022). Hong’s group (Xu, et al., 2019)

highlighted three recent types of flexible SERS platforms

including tunable SERS, swab sampling SERS, and in situ

SERS. Sun’s group (Zhang, et al., 2021) focused on

summarizing the development of flexible SERS substrates for

non-destructive food detection. Liu et al. (2021) introduced three

types of flexible SERS platforms and their practical applications

including paper-based SERS substrates, polymer-based SERS

substrates, and inorganic material-based SERS substrates.

Flexible SERS sensors have been used to diagnose and screen for

various diseases such as cancer, diabetes and glaucoma by detecting

disease-related biomarkers. Liu et al. (Cheng, et al., 2021b)

introduced flexible plasma metasurface with SERS activity as a

basic sensing component for wearable sensors (Figure 2A). Since

sweat samples containing different drugs exhibit completely
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different SERS spectra, the sensor can fingerprint the targets

extracted from sweat, monitor changes in trace amounts of

drugs in the body through sweat, and obtain an individual drug

metabolism profile.Wang et al. (2022) designed a bifunctional ultra-

thin flexible PIC array structure-based SF-AAO-Au wearable SERS

sensor with good skin adhesion, excellent mechanical flexibility, and

SERS activity is not limited by any natural skin deformation

(Figure 2B). The developed SF-AAO-Au SERS sensor shows

FIGURE 2
SERS non-invasive medical diagnosis. (A) Schematic diagram of the working principle and design of the plasma metamaterial integrated
wearable SERS sensing device, consisting of two main components (sweat extraction component and SERS sensing component) with the
appearance of a yin and yang symbol. Copyright© 2021, American Association for the Advancement of Science. (B) Ultra-thin flexible SF-AAO-Au
substrate pesticide detection lab gloves and sweat glucose dual functionwearable SERS sensor. Copyright© 2022, Elsevier. (C)Concept diagram
of wearable skin surface SERS. Copyright© 2022, Wiley. (D) Schematic diagram of a bifunctional contact lens sensor consisting of an anti-catenary
structure for IOP monitoring and a peptide-functionalized AuNBs SERS substrate for MMP-9 detection. Copyright© 2022, Wiley. (E) Overview of
SERS-based strategy for identifying covid-positive individuals using respiratory volatile organic compounds (BVOCs): (A). Breath testing using a
handheld surface-enhanced Raman scattering-based breath detector for 10s blowing; (B). Chemical interaction with BVOCs using MBA, MPY, and
ATP as molecular receptors to bring gaseous analytes close to the plasma surface; (C). Receive test results within 5 min. Copyright© 2022 American
Chemical Society.
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excellent glucose recognition in the concentration range of

100–106 nM with LOD down to 168 nM enabling non-

destructive, painless and rapid qualitative detection of ultra-trace

low concentrations of sweat glucose on real human skin surfaces.

The wearable SERS sensor of Keisuke Goda et al. (Liu, et al., 2022)

tested human sweat biomarkers: urea and ascorbic acid, which is

capable of detecting and identifying low concentrations of different

analytes on almost any arbitrary surface (Figure 2C), essential for a

timely, accurate and comprehensive understanding of the wearer’s

complex physiological and pathological condition. Wang et al. (Ye,

et al., 2022) combined peptide-modified gold nanobowls (AuNBs)

with SERS substrates to introduce a dual-functional smart contact

lens sensor that enables continuous monitoring of intraocular

pressure by observing structural color changes and quantitative

SERS analysis of MMP-9 for the purpose of glaucoma diagnosis,

effectively avoiding potential damage to the eye from electronic

components (Figure 2D). Ling et al. (Leong, et al., 2022) designed a

respiratory assay based on three separate sets of SERS probe

molecules: 4-mercaptobenzoate (MBA), 4-mercaptopyridine

(MPY), and 4-aminothiophenol (ATP), for rapid and non-

invasive screening of COVID-19 individuals. Which can identify

COVID-19-infected individuals within 5 min and achieve 96.2%

sensitivity, and 99.9% specificity in 501 participants, advancing the

next generation of non-invasive human respiratory diagnostic kits

(Figure 2E).

Conclusion and perspective

The mini-review mainly introduces the design and

development of wearable SERS sensors and their

application in POCT non-invasive diagnosis. In the design

of wearable SERS sensors, the materials should guarantee

stability, adhesion, scalability, sensitively, and

biocompatibility based on excellent SERS performance. The

work summarized several widely used flexible substrate

materials and highlights the benefits of new plasma flexible

SERS sensors based on PIC structures, as well as the unique

interfacial adhesion effect and excellent mechanical

properties of SF derived from natural cocoons, indicating

promising futures for applications in the fields of flexible

electronic, optical, and electrical sensors. Additionally, the

application of flexible SERS substrates in POCT diagnostics is

focused on the preparation and application of transparent,

flexible SERS active films and their use in the diagnosis and

screening of various diseases such as cancer, diabetes, and

glaucoma. SERS wearable sensors have great potential for use

in the field of different disease markers, as well as their

application in the detection of COVID-19, which is widely

dispersed throughout the world now. The rapid development

and application in the area of customized medicine will be

further promoted by the combination of SERS wearable

sensors with other portable health monitoring systems. In

the real-time monitoring of health-related target biomarkers

sensitive analysis in the multiple sweat/tear/urine systems,

challenge still exists in the aspects of improving anti-

interference or selectivity of target biomarkers in complex

human body fluids environment such as sweat, tears, urine or

other liquids which including electrolytes (Na+, K+), glucose,

lactic acid, protein, and other components. On the one hand,

SERS technology can be combined with microfluidic system.

Through the intelligent design of microfluidic system,

different analytes can be oriented to different functional

areas to achieve simultaneous separation and efficient

analysis of multi-components. On the other hand, the

SERS substrates can also be designed as effective

separation filter membrane to separate body fluid

molecules with different molecular sizes to achieve more

selective and highly sensitive marker identification. Despite

the current challenges in the design and application of

multiple materials and the interference of impurities in

complex samples, SERS is expected to make significant

achievements in the field of POCT non-invasive diagnosis

with the in-depth research and optimization of flexible

materials by researchers.
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