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As a potent zinc chelator, hydroxamic acid has been applied in the design of

inhibitors of zinc metalloenzyme, such as histone deacetylases (HDACs). A

series of hydroxamic acids with HDAC inhibitory activities were subjected to the

QSRR (Quantitative Structure–Retention Relationships) study. Experimental

data in combination with calculated molecular descriptors were used for the

development of the QSRR model. Specially, we employed PCA (principal

component analysis) to accomplish dimension reduction of descriptors and

utilized the principal components of compounds (16 training compounds,

4 validation compounds and 7 test compounds) to execute GA (genetic

algorithm)-BP (error backpropagation) algorithm. We performed double

cross-validation approach for obtaining a more convincing model.

Moreover, we introduced molecular interaction-based features (molecular

docking scores) as a new type of molecular descriptor to represent the

interactions between analytes and the mobile phase. Our results indicated

that the incorporation of molecular interaction-based features significantly

improved the accuracy of the QSRR model, (R2 value is 0.842, RMSEP value

is 0.440, andMAE value is 0.573). Our study not only developedQSRRmodel for

the prediction of the retention time of hydroxamic acid in HPLC but also proved

the feasibility of using molecular interaction-based features as molecular

descriptors.

KEYWORDS

structure retention relationships, hydroxamic acids, HPLC, molecular docking, PCA,
GA-BP, double cross-validation

OPEN ACCESS

EDITED BY

Kshatresh Dutta Dubey,
Shiv Nadar University, India

REVIEWED BY

Marcus Scotti,
Federal University of Paraíba, Brazil
Maryam Salahinejad,
Nuclear Science and Technology
Research Institute (NSTRI), Iran

*CORRESPONDENCE

Xinying Yang,
xinyingyang@sdu.edu.cn
Xuben Hou,
hxb@sdu.edu.cn
Hao Fang,
haofangcn@sdu.edu.cn

SPECIALTY SECTION

This article was submitted to Theoretical
and Computational Chemistry,
a section of the journal
Frontiers in Chemistry

RECEIVED 30 September 2022
ACCEPTED 09 November 2022
PUBLISHED 22 November 2022

CITATION

Nie Y, Li J, Yang X, Hou X and Fang H
(2022), Development of QSRR model
for hydroxamic acids using PCA-GA-BP
algorithm incorporated with molecular
interaction-based features.
Front. Chem. 10:1056701.
doi: 10.3389/fchem.2022.1056701

COPYRIGHT

©2022 Nie, Li, Yang, Hou and Fang. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 22 November 2022
DOI 10.3389/fchem.2022.1056701

https://www.frontiersin.org/articles/10.3389/fchem.2022.1056701/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1056701/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1056701/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1056701/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1056701/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.1056701&domain=pdf&date_stamp=2022-11-22
mailto:xinyingyang@sdu.edu.cn
mailto:hxb@sdu.edu.cn
mailto:haofangcn@sdu.edu.cn
https://doi.org/10.3389/fchem.2022.1056701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.1056701


Introduction

Hydroxamic acids have metal chelating properties. Especially,

due to the high chelating power to zinc ions, hydroxamic acids are

widely used as inhibitors of enzymes having a Zn2+ in the active site

(matrix metalloproteinases (MMPs), tumor necrosis factor-alpha

(TNF-α) converting enzyme, and histone deacetylase (HDAC))

(Schaal et al., 2018; Ho et al., 2020; Sanyal et al., 2022).

Moreover, some drugs possessing hydroxamic acid structure,

especially HDAC inhibitors, have been approved for the clinic

(Figure 1) (Ho et al., 2020). However, compounds having

hydroxamic acid structure usually possess poor solubility and

affect their chromatography analyze of them.

Chromatography is a method by which we can obtain a lot of

precise, comparable, and repeatable retention data for structure-

diverse compounds. At the same experimental conditions, we can

get the almost same results on analytes’ retention data. In a

chromatographic system, the molecular structure of a compound

determines its properties, and further, affect relative affinity for

the mobile and stationary phases and, therefore, its retention

characteristics (Roman, 2007; Ganesh et al., 2022). The

quantitative structure-retention relationships (QSRR) have

been used as a model approach to establish methods of

property prediction (Roman, 2007). So the construction of the

QSRR model is helpful for the chromatography of hydroxamic

acids. Reliable structural descriptors are necessary for QSRR

models. Here, we choose the results of the scoring functions

based on experience as the new structural descriptors to

regression analysis for the first time. Scoring functions are

usually used to evaluate the rationality of the receptor-ligand

binding mode obtained theoretically. They also can be applied to

estimate the binding affinity between the receptor and ligands for

molecular docking and virtual screening.

Each analyte has its retention behavior in a chromatographic

system. To great extent, the analyte’s retention behavior depends on

the stationary phase of the chromatographic column and its

structure. Some studies have reported the models to characterize

the conformation of ODS (Octadecylsilyl) material (Figure 2A) and

the interaction with solvent molecules (Ledesma andWornat, 2000;

Brambilla et al., 2007).Meanwhile, docking procedure has been used

to select the best pose for each ligand to build QSPR model and

docking descriptors are calculated based on the major interactions

between ligand and cyclodextrin (Mirrahimi et al., 2016). So we

hypothesize the material of stationary phase (ODS) and the analytes

in the mobile phase as ‘receptors’ and ‘ligands’ respectively to

simulate the combination between protein and ligands. Then we

can get some scores that can characterize the molecular interaction-

based feature and be used as descriptors through various scoring

functions. We attempted to adopt the molecular modeling and

docking method and consider the docking scores (molecular

interaction-based features) as descriptors to characterize the

interaction between the stationary phase and analytes for

estimating a more reliable QSRR model.

Multiple variables can provide abundant information for the

research technically. But in many cases, there may be correlations

between variables, which increases the complexity of problem

analysis. PCA (principal component analysis) is one of the most

widely used data dimension reduction algorithms. It can eliminate

noise and some unimportant information and change the variables

into a few independent integrated variables which can stand for the

most kinds of information existing in each original variable (Prasad

et al., 2022). A certain range of information loss can save us a lot of

time and cost. BP (error backpropagation) neural network is a neural

network algorithm used in QSPR (quantitative structure-property

relationships) research, QSAR (quantitative structure-activity

relationships) research, and other models’ establishment widely

and can handle complex data effectively (Luo et al., 2015;

Bahmani et al., 2021; Yang et al., 2021; Xie and Xue, 2022).

Therefore, we applied it in the establishment of the QSRR

model. Meanwhile, the GA (genetic algorithm) is capable of

optimizing the initial weight and threshold, thereby improving

the robustness of the BP neural network (Zhang et al., 2019;

Fang et al., 2022). And because of the wide application of

hydroxamic acids in the area of HDAC inhibitors, we apply the

PCA-GA-BP (Pan et al., 2007; Zhang et al., 2019; Li et al., 2020; Fang

et al., 2022) neural network to establish the QSRR model to predict

the retention time of hydroxamic acid-based HDAC inhibitors, for

making it convenient to do HPLC and test whether molecular

interaction-based features can be applied as new structure

descriptors. Meanwhile, to ensure reliability and precision, we

utilized double cross-validation, which contains internal (inner)

and external (outer) cross-validation loops, to establish models

(Roy and Arnbure, 2016).

FIGURE 1
Chemical structures of hydroxamic acid-based drugs have
been approved for the clinic or in clinical trails.
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Experimental

Chemicals and materials

If not specified, all chemicals were of analytical grade. The

methanol was purchased from Fisher Chemical (HPLC Grade),

while the formic acid was obtained from Kermel. The ultra-pure

water was obtained from Heal Force SPW ultra-pure water

system. All the twenty-seven analytes, including the marketed

drugs or the compounds reported by our group’s former work

(Wang et al., 2014; Fu et al., 2015; Liu et al., 2016), were the

compounds possessing hydroxamic acid structure and were

synthesized and confirmed by ourselves.

HPLC analysis

All the compounds were tested on Agilent 1,100 system (Agilent

Technologies, USA), equipped with a quaternary pump, manual

injector (20 μL sample loop), and VWD detector. The column used

in this study was Phenomenex Luna 5u C18 (150*4.6 mm 5micron).

The mobile phase consisted of 45% aqueous phase (contains 0.1%

formic acid) and 55% methanol (contains 0.1% formic acid). The

flow rate was 1 ml/min and the UV detection was performed at

254 nm. The retention time of each analyte was shown in

Supplementary Table S1.

QSRR model generation

Calculation of the molecular descriptors
The steps of descriptor generation were as follows. First, we

sketched molecular structures with ChemDraw 14.0. Then the

molecules were minimized using Tripos Field (White, 1977; Motoc

et al., 1986; Waltho et al., 1988; Clark et al., 1989; Purohit et al., 2020)

in Sybyl-X 2.0 (SYBYL, 2012; Liang et al., 2021). The lowest energy

structures were further optimized by undergoing (Turner et al., 2017)

(PM7) (Stewart, 2013; Turner et al., 2017) in Molecular Orbital

PACkage (MOPAC 2016) method. Then we used Schrödinger

software to carry out the optimization function applying the Becke

3-parameter (exchange) with correlation by Lee Yang and Parr

(B3LYP) (Becke, 1988; Lee et al., 1988; Becke, 1993; Stephens

et al., 1994; Adekoya et al., 2022; Sakr et al., 2022) functional and

the 6-31G (**) (Frisch et al., 1984; Adekoya et al., 2022; Sakr et al.,

2022) basis set, density functional theory (DFT) (Calais, 1993; Koch

and Holthausen, 2001; Adekoya et al., 2022; Sakr et al., 2022), and the

standard Poisson-Boltzmann continuum solvation function (PBF)

(Gilson et al., 1985; Sharp andHonig, 1990; Tomasi andPersico, 1994;

Wang et al., 2017) for further geometry optimization.

The Molecular Descriptors function of Schrödinger software

was applied to descriptors calculation. The molecular descriptors,

Schrödinger software can calculate, contain three main categories:

Topological Descriptors, QikProp Properties, and Semiempirical

Properties. The Handbook of Molecular Descriptors (Roberto

Todeschini and Consonni, 2000) details the calculation

procedure. 273 molecular descriptors were obtained, and for the

sake of minimizing subsequent problems of chance correlation,

descriptors which were constant or near-constant values, less than

0.0001 concerning standard deviation, strongly correlated

(descriptors with a correlation coefficient >0.90), and not

available for all compounds were excluded. After the pre-

reduction step, 197 molecular descriptors were obtained.

Molecular docking
The ODS model was manually established using Sybyl-X 2.0. All

the analytes were docked against the ODS model using Surflex-Dock

module (Jain, 2007; Singh et al., 2019). The representative docking

result is shown in Figure 2B. For each analyte, the docked

conformation with the highest was selected and 8 different types

of docking scores as new descriptors, including Total_Score, Crash,

FIGURE 2
(A) The liquid-like configuration of ODS. (B) Representative docking result of one of the analytes in the ODS (C18) model.
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Polar, D_SCORE, PMF_SCORE, G_SCORE, CHEMSCORE,

GLOBAL_SCORE (Kuntz et al., 1982; Eldridge et al., 1997; Jones

et al., 1997; Muegge and Martin, 1999). The docking scores of each

analyte were summarized in Supplementary Table S2 in Supporting

Information.

Dimension reduction and the construction of
the QSRR model

Because the descriptors were too much to get a good QSRR

model rapidly, we performed the PCA on two matrixes, one

consists of the descriptors without molecular interaction-based

features and the other is made up of the descriptors with

molecular interaction-based features, in Matlab (Matlab, 2013)

to achieve the dimension reduction of independent variables

(molecular descriptors). Before that, all the descriptors had to be

standardized. The principal components which can reflect 95% of

the original data were chosen for the building of the QSRRmodel.

The matrixes we obtained through PCA were independent

variables and we added the retention time of each compound as

the dependent variable to form two new matrixes. The retention

time of each compound was added into the matrixes consisted of

principal components to form two new matrixes. Each matrix was

separated into two groups randomly, of which one was the training

group consisted of twenty samples and the other one was the testing

group consisted of seven samples. Each line was a sample and every

column except the last one was the independent variable and the last

column was the dependent variable.

GA-BP was performed on these two matrixes respectively. The

matrix was divided into training group (20 compounds) which was

used in the inner loop for the model training and selection, and test

group (7 compounds) utilized to validate the precision of model

externally. In the inner loop, we utilized 5-fold cross validation which

means that we separate the training group into five portions and take

four portions for training and one for validation for five times. Then

we compared the mean absolute error (MAE) value of these five

model in the internal validation and selected the one whose MAE

value is lowest to process external prediction (Roy and Arnbure,

2016). Levenberg-Marquart optimization algorithm (Raja et al., 2021)

was chosen for training step in Matlab R2020a. The number of the

hidden layers and hidden neurons of each layer is significant for the

BPmodel. The addition of hidden layers can reduce the error but also

can make the network complicate and increase the training time and

the tendency of over-fit. A single sufficiently largely hidden layer is

adequate for the approximation of most simple functions (Reed and

Marks, 1999). So one hidden layer is enough and we can increase the

number of hidden neurons to improve the precision. The number of

hidden neurons was determined with the experimental function (1).

h � �����
m + n

√ + α (h<N − 1, m<N − 1) (1)
h = the number of hidden neurons, m = the number of input

nodes, n = the output nodes, α = adjustment constant between

1 and 10, and N = the number of training samples.

To validate the accuracy of GA-BP models built for this

study, the R2, the root-mean-square error prediction (RMSEP)

and MAE were measured for an independent set of analytes that

were completely separate from the training set used in creating a

QSRR model. R2 and RMSEP were defined as the function 2)

(Alexander et al., 2015) and 3) (Žuvela et al., 2015) respectively.

R2 � 1 −∑(yi(obsd) − yi(pred))2/∑(yi(obsd) − �y)2 (2)

RMSEP �

������������������������∑n
i�1
(yi(obsd) − yi(pred)

yi(obsd) )2

/n
2

√√
(3)

MAE � ∑n
i�1
∣∣∣∣yi(pred) − yi(obsd)∣∣∣∣

n
(4)

yi (obsd) = observed retention time, �y = the mean of observed

retention time, yi (pred) = predicted retention time, n = the

number of analytes.

Applicability domain
The purpose of establishing the QSRR model is to predict the

retention value of new chemical entries falling within the

applicability domain (AD) of the developed model. The reliability

of any QSRR model relies on the confident predictions of these new

compounds based on the AD of the model, and therein lies the

importance of the AD study. Therefore, we harnessed an approach

which has been reported to test the compounds we used whether

were suitable. If the means of the Si (the corresponding standardized

value for principal component i of one compound) values of a

compound for all components in a model plus 1.28 times

corresponding standard deviation (call it Snew) is lower than 3,

then there is 90% probability that the Si values of that compound are

lower than 3. Thus, when Snew value of a compound is lower than 3,

then the compound can be considered to be not an X-outlier (if in

the training group) or within theAD (if in the test group). (Roy et al.,

2015).

Results and discussion

Generation of principal components

After the dimension reduction by the PCA, some components

were obtained. The principal components were ranked according to

the contribution rate and we selected the first few components whose

cumulative contribution rate can reach 95% to form new matrixes.

The matrix generated from the matrix without molecular interaction-

based features was namedmatrix 1, the other one calledmatrix 2. The

contribution rates of these principal components of two matrixes are

shown in Table 1 and Table 2 (The principle components of each

analyte of twomatrixes were shown in Supplementary Tables S3, S4).

According to the results of PCAperformed on differentmatrixes,

when the molecular interaction-based features are added as new

descriptors, one more component was gained and the contribution
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rates of principal components are different. Since the PCA can reduce

the correlation of variables and change the closely related variables

into as few new variables as possible, these new variables are not

related in pairs. It suggests the molecular interaction-based features,

to a certain extent, are independent of other descriptors.

Determination of the number of hidden
neurons

With the selection range of the number of hidden neurons

existing, we used each number to test on each matrix

20 frequencies respectively to find the optimum number of

hidden neurons. The Regression R values measure the

correlation between outputs and targets, meaning predicted

retention time and observed retention time here. An R-value

of 1 means a close relationship and 0 means a random

relationship. We took whether the Regression R-value reaches

0.95 as a simple judgment criterion of the training model and

counted the number of frequencies that R-value reaches

0.95 when the different number of hidden neurons was

chosen to run. The results are shown in Table 3 and Table 4.

According to the results above, the frequencies that R-value

reaches 0.95 of the All Set have been improved apparently when

we added the molecular interaction-based features as molecular

descriptors, which suggested they are beneficial for the accuracy

of QSRR models. Meanwhile, the frequencies that R values of

four sets reach 0.95 at the same time are improved as well.

Through the running with different numbers of hidden neurons

TABLE 2 Principal Components and their contribution rates (PCA was
performed on the matrix consisting of descriptors with molecular
interaction-based features).

Principal components Contribution rates%

PC′ 1 45.58673414

PC′ 2 21.67436145

PC′ 3 8.723766792

PC′ 4 6.572024529

PC′ 5 4.802069629

PC′ 6 3.051923618

PC′ 7 2.139011586

PC′ 8 1.670127367

PC′ 9 1.249293494

Total 95.4693126

TABLE 3 The frequencies that R-value reaches 0.95 (performing on the
training group of matrix 1).

h The frequencies that R-value
reaches 0.95

nr

T1 V T2 A

4 5 5 6 0 0

5 5 5 3 2 0

6 12 4 3 0 0

7 3 6 6 0 0

8 8 10 5 0 0

9 3 6 1 0 0

10 8 6 5 0 0

11 6 10 4 1 1

12 6 7 6 0 0

13 11 8 2 1 0

h is the number of hidden neurons. T1 is T1 Set. V is the V Set. T2 is the T2 Set. A is the

All Set. nr. is the frequencies that R values reach 0.95 at the same time. (The names of

four sets were given by algorithm contained in MATLAB automatically).

TABLE 4 The frequencies that R-value reaches 0.95 (performing on
the training group of matrix 2).

h The frequencies that R-value
reaches 0.95

nr

T1 V T2 A

4 3 7 4 1 0

5 2 7 6 1 1

6 12 7 4 2 1

7 6 10 6 1 0

8 5 8 2 1 1

9 8 10 7 0 0

10 7 6 1 1 0

11 7 6 3 2 1

12 11 11 5 1 1

13 7 3 8 1 0

h is the number of hidden neurons. T1 is T1 Set. V is the V Set. T2 is the T2 Test Set. A is

the All Set. nr. is the frequencies that R values reach 0.95 at the same time. (The names of

four sets were given by algorithm contained in MATLAB automatically).

TABLE 1 Principal Components and their contribution rates (PCA was
performed on the matrix consisting of descriptors without
molecular interaction-based features).

Principal components Contribution rates%

PC 1 47.26435108

PC 2 21.77876205

PC 3 8.443341288

PC 4 6.057161663

PC 5 4.912323874

PC 6 3.076686032

PC 7 2.121700455

PC 8 1.393171762

Total 95.0474982
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on different matrixes, we decided to choose 11 hidden neurons

to perform the GA-BP algorithm. Because the R values of

Training Set, Validation Set, Test Set, and All Set (for the

avoidance of the conflict of names, we renamed them T1 set,

V set and T2 set), which were assigned randomly by the

Levenberg-Marquart optimization algorithm, can reach

0.95 at the same time when we took eleven hidden neurons

to perform the algorithm on the training group of matrix 1 and

2 (After the PCA, the matrix generated from the matrix without

molecular interaction-based features named matrix 1, the other

one called matrix 2).

The establishment of the QSRR model

We took 11 hidden neurons and a double cross-validation

approach to run GA-BP on the training groups of matrixes 1 and

2, and due to the random generation of weights initialization

threshold, we take the same validation set to modelling 10 times

respectively, then calculated the average of each training group

(Table 5). Comparing the data shown in Table 5, we found that

the MAE values of training groups whose principal components

related to docking scores are mostly better than those without

docking scores.

According to the averages of MAE values, we chose the third

portion as the validation set in the inner loop of matrices 1 and 2.

Then we used a test group to perform external prediction. The

results are shown in Figure 3 which were the linear relationships

of the predicted retention time obtained by using training models

together with measured retention time and Table 6. The R2 values

of both test groups are greater than 0.6, suggesting the models are

not rejected irrespective of the absolute error (Alexander et al.,

2015). But when we put molecular interaction-based features into

running, the RMSEP value had no apparent improvement, which

has areas for further optimism. However, the MAE value

becomes better. It manifested the molecular interaction-based

TABLE 5 Selection of training models.

Matrix kth

fold
MAE of each time Average

of MAE

1 2 3 4 5 6 7 8 9 10

1 k1 2.6385 0.5536 1.5793 2.6044 4.8188 6.0193 2.501 1.9305 3.6009 5.6812 3.19275

k2 3.2298 3.673 4.0849 3.501 4.63 4.0765 4.0895 4.092 3.7948 4.5111 3.96826

k3 2.2915 2.2608 1.7267 2.3488 2.4065 2.2028 3.1336 2.853 2.3739 2.2169 2.38145

k4 3.7133 3.6514 1.6232 5.1061 1.8693 5.9359 4.5440 4.6063 2.0027 3.9845 3.703671

k5 2.9817 4.4447 2.6844 3.2713 2.4513 4.9758 1.4086 3.158 2.4287 2.6385 3.0443

2 k1′ 2.1501 2.6904 2.3996 3.408 4.8782 1.8289 2.0223 3.0861 3.2268 2.6011 2.82915

k2′ 3.8125 3.0321 3.1707 3.9484 1.9685 3.6707 3.8672 2.2259 4.965 2.3368 3.29978

k3′ 2.0024 2.7605 3.0042 3.2663 2.4173 2.8182 1.9522 2.6188 0.8307 1.4076 2.30782

k4′ 1.9059 3.5847 1.8069 3.0382 1.9059 3.8669 0.9266 1.8069 3.0382 3.0382 2.49184

k5′ 4.3536 3.5158 4.0454 1.1736 1.63 4.085 3.2323 5.0584 1.3107 0.822 2.92268

kth fold means which one of the five portions was taken as validation test.

FIGURE 3
Comparison of test results of two matrixes. [(A) was the test group of matrix 1, and (B) was the test group of matrix 2].
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features as an independent category of descriptors that were

helpful to the establishment of the QSRR model to predict the

retention time of hydroxamic acid.

Applicability domain

We performed the reported program to calculate the Snew

values of our compounds. The result was shown in Figure 4.

The Snew values of all the compounds we used are lower than

3, which means they are suitable for the model and not

X-outlier (if in the training group) or within the AD (if in

the test group).

Detection of systematic error in
predictions

For the determination of the quality of QSRR-derived

predictions, we calculated the following five values: ratio of

the number of positive and negative errors (NPE/NNE),

absolute (ABS) of average error (AE) with mean absolute

error (MAE), mean positive error (MPE) with mean negative

error (MNE). The data was shown in Table 7.

Recording to the reported criterions: 1) NPE/NNE >5 or

NNE/NPE >5; 2) ABS(MPE/MNE) > 2 or ABS(MNE/MPE) > 2;

3) MAE - ABS(AE) < 0.5×MAE; 4) R2 (ith vs. (i-1)th residuals) >
0.5 for residuals sorted on Ypred; 5) R

2(Y vs. residuals) > 0.5 [57],

even if our models are not satisfy, in the future work, we need

more analytes to improve, due to not satisfying the standard of

number (at least 10).

PLS using docking scores

To investigate the relationship between molecular

interaction-based features and retention time of compounds,

we used molecular docking scores alone to run the PLS

TABLE 6 Prediction of the retention time of compounds in the testing set.

Analytes Predicted retention time/min
(model 1)

Predicted retention time
2/min (model 2)

Observed retention time/min

7.200123 9.573565 10.04

7.421031 8.218716 10.1

2.909212 5.000308 2.38

5.623486 2.573642 2.86

4.237541 3.273094 2.7

4.096308 3.965852 3.54

3.606235 3.847673 3.22

FIGURE 4
Applicability domain.
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algorism inMatlab. Fifteen analytes were used as a training group

to generate the coefficients of each type of docking score and the

constant term. The simulation training and predicting of the test

group were following (Figure 5). We found that a remarkable

error existed between the predicted retention time and observed

retention time. Our results suggested the regression using

molecular interaction-based features alone to construct the

QSRR model is unfeasible.

Analyze of the relevance between
molecular interaction-based features and
retention time

We took the molecular docking results of two analytes (analyte

6 and 23 are shown in Supplementary Table S1 and Figure 6), whose

retention time is notably different (14.86 min vs 2.38 min), to

investigate the relevance. The docking results are shown in Figures

6A,B. Obviously, analyte 6 could occupy larger area of ODS surface

than analyte 23. As expected, the docking scores of analyte 6 are larger

than that of analyte 23 (Figure 6C). Therefore, if the analytes could

TABLE 7 Detection of systematic error in predictions.

QSRR
model

NPE NNE MPE MNE MAE AE NPE/NNE
or NNE/NPE

ABS(MPE/
MNE)

MAE-
ABS(AE)

R2

(ith vs.
(i-1)th

residuals)

R2

(Y pred
vs.
residuals)

model 1 3 4 0.75 -0.92 1.53 0.04 0.75/1.33 0.81912 1.501264 0.0582 0.2099

model 2 3 4 1.06 -0.89 0.57 0.23 0.75/1.33 1.209227 0.342687 0.0302 0.4208

FIGURE 6
(A) The docking result of analyte 6. (B) The docking result of analyte 23. (C) Comparison of molecular docking scores (molecular interaction-
based features) of analyte 6 and 23.

FIGURE 5
(A) The predicted retention time obtained by PLS method vs.
observed retention time; (B) The prediction error of PLS for each
analyte of the test group.
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occupy more area of the material, it could generate more interaction

force between these two things and have better docking result (larger

minus) and large retention values. So, these molecular interaction-

based features could be helpful to the prediction of analytes and

improve the precision of QSRR models.

Conclusion

The PCA-GA-BP method was employed to establish QSRR

models for hydroxamic acids and the double cross-validation

approach using internal 5-fold cross validation guaranteed the

reliability of training model and exploited finite training

compounds sufficiently. The interaction between analytes and

solid-phase materials was measured using molecular docking

scores, which were introduced as new features in the QSRR

model. These features could manifest the strength of interaction

between analytes and solid-phase material (At least in the

docking of drug molecules and proteins). As a new type of

molecular descriptors, molecular interaction-based features

(docking scores) could contribute to the dimension reduction,

selection of hidden neurons, model selection and prediction of

retention time. Our QSRR model could be used to predict the

retention time of hydroxamic acids.
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