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The semiconductors, such as TiO2, CdS, ZnO, BiVO4, graphene, produce good

applications in photocatalytic water splitting for hydrogen production, and

great progress have been made in the synthesis and modification of the

materials. As a two-dimensional layered structure material, graphitic carbon

nitride (g-C3N4), with the unique properties of high thermostability and

chemical inertness, excellent semiconductive ability, affords good potential

in photocatalytic hydrogen evolution. However, the related low efficiency of

g-C3N4 with fast recombination rate of photogenerated charge carriers, limited

visible-light absorption, and low surface area of prepared bulk g-C3N4, has

called out the challenge issues to synthesize and modify novel g-C3N4-block

photocatalyst. In this review, we have summarized several strategies to improve

the photocatalytic performance of pristine g-C3N4 such as pH, morphology

control, doping with metal or non-metal elements, metal deposition,

constructing a heterojunction or homojunction, dye-sensitization, and so

forth. The performances for photocatalytic hydrogen evolution and possible

development of g-C3N4 materials are shared with the researchers interested in

the relevant fields hereinto.
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1 Introduction

With the development and progress of human society, environmental pollution and

energy shortage have become twomajor problems that plague human beings. Hydrogen is

considered as one of the best candidates for storing solar energy meeting the growing

clean energy demand (Chen et al., 2016; Shen et al., 2016; Wang et al., 2016; Wu et al.,

2017; Wang et al., 2018; Liu et al., 2019). Since Fujishima and Honda discovered the

hydrogen evolution reaction activates by TiO2 under irradiation in 1972, photocatalytic

water splitting is one of the promising means for hydrogen production (Fujishima and

Honda., 1972). Without relying on fossil reserves, the photocatalytic hydrogen evolution

from water with highly efficient utilization of solar irradiation is a desirable exploration

for the solution of the energy issues (Maeda et al., 2006; Qi et al., 2022). Although great
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process in photocatalysts of water splitting have been made for

H2 evolution under visible light, there are still challenging and

concerns with semiconductors to promise hydrogen energy

development methods (Zhong et al., 2015; Wang et al., 2016;

Zhang et al., 2018; Qi et al., 2020).

Graphitic carbon nitride (g-C3N4) is considered as an ideal

2Dmaterial with the conjugated skeleton for photocatalytic water

splitting with the activity of photoelectronic chemistry and high

stability in the photochemical reaction (Ong et al., 2016).

Compounds in rich carbon and nitrogen elements such as

melamine, urea, cyanamide, dicyandiamide, cyanuric acid, etc.

are usually subjected as the precursors. Graphitic carbon nitride

materials were synthesized by methods including electro-

chemical deposition, thermal shrinkage polymerization, solid

phase synthesis, gas phase synthesis, solvothermal synthesis

and electrochemical deposition (Thomas et al., 2008). Under

light irradiation, electron-hole pairs were generated on the

surface of g-C3N4 photocatalyst to provide the reaction sites.

The water molecules adsorbed on the surface of g-C3N4 undergo

the photocatalytic reduction for H2 evolution and oxidation for

O2 release, respectively, with the efficacious charge carriers by the

reactions (1–3):

Oxidation:

H2O + 2h+ → 2H+ + 1/2O2 (1)

Reduction:

2H+ + 2e → H2 (2)

Overall reaction:

H2O → H2 + 1/2O2 (3)

The first case of g-C3N4 as a polymeric photocatalyst for

water splitting to produce H2 under visible-light irradiation was

reported by Wang et al. (Wang et al., 2009) Figure 1

schematically described the photogeneration of H2 and O2 in

water splitting reaction with the pristine g-C3N4. The obtained

bulk form of g-C3N4 exhibited some drawbacks including limited

visible light utilization efficiency, fast recombination rate of

photogenerated electron-hole pairs, and low specific surface

areas (<10 m2g−1), which still limited the photocatalytic

performance of on its practical applications (Reza et al., 2015;

Fu et al., 2018), and modification of g-C3N4 has been recognized

to be the effective way to improve the photocatalytic performance

of pristine g-C3N4.

2 Modification of graphitic carbon
nitride materials

Recently, the application of g-C3N4 with improved

photocatalytic performance by developed several strategies,

involving adjusting pH value, morphology control, doping by

heteroatoms or metals, participation of co-catalyst, dye-

sensitization, and construction of heterojunction. The

hydrogen evolution performance of the modified g-C3N4-

based materials are summarized in Table 1 to provide the

development of the co-catalysts in the photolysis system.

2.1 pH

The pH value of solution was an important factor affecting

the activity of g-C3N4, that is, Zeta potential values suggested

the surface charge of g-C3N4 could be changes at different

pH value for the diversity of functional groups on the surface

(Wang et al., 2016). Wu et al. demonstrated that the alkaline

environment was beneficial to the photocatalytic hydrogen

evolution efficiency of g-C3N4 material as shown in Figure 2A

(Wu et al., 2014). The experimental results show that pH and

methanol have certain effects on the photocurrent

amplification on g-C3N4 films. In the presence of methanol,

the photoelectronic efficiency was improved to provide an

increased photocurrent from 0.6 to 1.2 μA cm−2, which was

further enhanced to offer a 4.2 μA cm−2 current upon adding

base to bring the pH to 12.8. The results implied the transfer of

photogenerated holes into solution was enhanced by the

addition of methanol and alkali, which could root in the

additive-induced decrease of the energy gap of the flat band

and band-edge of g-C3N4 as description in Figure 2B, that is,

methanol oxidation occurred in alkaline solution, but

restrained in acidic condition with the amine-terminated

g-C3N4 surface.

2.2 Morphology control

The activity of g-C3N4 for H2 production via water

splitting under visible-light irradiation could be determined

by morphology of the material surface (Niu et al., 2012; Zhang

et al., 2012; Han et al., 2015). The targets of controllable

morphologies in preparation of well-defined g-C3N4

nanostructures to get larger specific surface area and more

FIGURE 1
Schematic of generation of H2 and O2 from water with the
catalysis of pristine g-C3N4 under light irradiation.
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abundant reactive sites, reduced the recombination rate of

photogenerated charge carriers. There were different

nanostructures of g-C3N4 have been described in pioneering

reports involving zero-dimensional (Wang et al., 2014) (0D),

one-dimensional (Bai et al., 2013; Zhang et al., 2013; Wang

et al., 2015; Mo et al., 2018; Bashir et al., 2019; Zhang et al.,

2020) (1D), two-dimensional (Li et al., 2015; Zhao et al., 2018;

Qi et al., 2019; Shi et al., 2022) (2D), three-dimensional (Li

et al., 2016; Di et al., 2018; Chen et al., 2019) (3D) as shown in

Figure 3, which built an ideal platform for collectively

advanced photoredox processes for the enormous

advantages in terms of physical and chemical

characterization in following details.

The photocatalytic performance of 0D nanostructured

materials are dependence on the natures including quantum

size effect, small size effect, surface effect, macroscopic

quantum effect and so on. Prof. Yu and co-workers

prepared graphitic carbon nitride quantum dot structures

directly from g-C3N4 with a thermochemical etching

process, which produced unique upconversion properties

and higher hydrogen production efficiency than original

g-C3N4 in 2.87 times (Wang et al., 2014).

There was more explosion of active sites on the surface of

1D g-C3N4, which was reported as nanotubes (Mo et al., 2018;

Guo et al., 2021), nanowires (Zhang et al., 2013; Wang et al.,

TABLE 1 Hydrogen evolution performance of the modified g-C3N4-based materials.

Methods Co-catalysts Hydrogen evolution rate
(μmol h−1g−1)

Ref.

0D Quantum dots 2,199.2 Wang et al. (2014)

1D Nanotubes 11,850 Mo et al. (2018)

2D Nanosheets 3,140 Zhao et al. (2018)

3D Nanovesicles 10,300 Sun et al. (2022a)

Non-metal doping P dopant 1,596 Ran et al. (2015)

Metal doping Co dopant 560 Chen et al. (2017)

Metal deposition Pt co-catalyst 947.64 Zhu et al. (2019)

Dye sensitization Protoporphyrin 1,153.8 Liu et al. (2020)

Heterogeneous CeO2 1,240.9 Zhao et al. (2021)

Homojunction High-crystalline g-C3N4 5,534 Sun et al. (2022b)

FIGURE 2
(A) the relationship of pH values to the efficiencies of H2

evolution with g-C3N4 photolysis; (B) energy diagrams of g-C3N4

in solution at pH 5.7 and 12.8.

FIGURE 3
Schematic illustration of 0D, 1D, 2D and 3D g-C3N4.
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2015), nanorods (Bai et al., 2013; Bashir et al., 2019) and so on,

and efficient transfer of photogenerated electrons could be

realized along one-dimensional paths with enhancement of

visible light absorption and fast short-distance electron

transport. Mo et al. developed g-C3N4 nanotubes with large

number of nitrogen defects by a green-, acid- and base-free

synthesis method, and the hydrogen production of

118.5 μmol h−1 was far superior to pristine g-C3N4 (Mo

et al., 2018).

Compared with 1D structures, 2D photocatalysts have

greater potential because of their larger specific surface area

and thinner thickness, exposing more active sites and

shortening the transport path of photogenerated carriers. Prof.

Zhu’s group successfully fabricated g-C3N4 nanosheets with a

single atomic layer structure of only 0.4 nm thickness, with a

simple chemical exfoliation method. The single-atom-layer

nanosheets offered better separation and transfer rates of

photogenerated carriers, and exhibited higher performance

than bulk g-C3N4 in photocatalytic splitting of water for

hydrogen production and photocurrent generation. Chen’s

group proposed that the precursors assembled into nanorods

at low power level, while grew into nanoplates at high power

level, which implied that the morphology of g-C3N4 was

dependance upon on a kinetically driven process (Li et al.,

2015). Zhao et al. treated supramolecular precursors under the

action of glycerol and ethanol to obtain porous few-layer g-C3N4

(Zhao et al., 2018). The hydrogen evolution rate of thin-layer

g-C3N4 was evaluated to be 159.8 μmol h−1, as the results of its

large specific surface area, more active sites, and the abundant

nitrogen vacancies in the framework, to accelerate the transfer of

photogenerated electrons.

Compared with 2D g-C3N4 nanosheets, the porous 3D

g-C3N4 material can provide a larger specific surface area. It

also maximizes the use of incident photons through multiple

reflections within the interconnected open frame (Di et al.,

2018). In addition, the porous 3D g-C3N4 material acted as a

support to prevent the agglomeration of ultrathin nanosheets

and provided a pathway for electron transfer, thereby greatly

enhancing the photocatalytic activity (Li et al., 2016). Zhang

et al. utilized a simple bottom-up supramolecular self-

assembly route to assemble a porous 3D g-C3N4 with high

crystallinity and applied it to photocatalytic water splitting

(Chen et al., 2019). In 2022, Guo et al. reported a facile

template-free self-assembly method to synthesize three-

dimensional porous g-C3N4 nanovesicles for achieving

efficient and durable photocatalytic generation of H2, and

the large-size vesicles exhibited the high H2 production rate

of 10.3 mmol h−1 g−1 (Sun et al., 2022). And 3D onion-ring-like

g-C3N4 was made from silica microsphere as a hard-template,

which affored excellent properties such as large specific

surface area, strong optical absorption, high dispersion, for

the efficient water splitting with 5-fold higher than that of

pristine g-C3N4 (Cui et al., 2018; Shi et al., 2022).

2.3 Doping

Graphitic carbon nitride, as a conjugated polymeric material

with a band gap of about 2.7 eV, has a relatively narrow response

to visible-light. Numerous research results suggested that the

optical properties and some other physical properties of g-C3N4

could be well regulated by doping foreign elements (Chen et al.,

2017; Zeng et al., 2018; Fang et al., 2019; Sun H.,R. et al., 2022a).

Therefore, the photocatalytic activity of pure g-C3N4 could be

improved by hybridization with a small amounts of non-metals

or metals into the framework.

2.3.1 Non-Metal doping
Hybridization of non-metallic dopants such as B, S, O, P and

I to realize the ingenious design of the electronic structure, was

considered as an important method for the improvement of

g-C3N4 performance (Qi et al., 2021). Non-metal doping refers to

doping of some non-metal elements into the structural

framework, which not only modified the electronic and

textural properties of g-C3N4 photocatalyst, but also improved

the separation efficiency of photogenerated charge carriers and

finally boosted the photocatalytic activity. Fang and coworkers

(Fang et al., 2019) reported P-doped g-C3N4 for photocatalytic

water splitting, and 4-(diphenylphosphino)benzoic acid (4-

DPPBA) was employed as the precursor of phosphorous. The

combination of P-doping and thermal exfoliation was applied for

the preparation of porous g-C3N4 with P hybridization, which

afford excellent photocatalysis for hydrogen evolution high to

1,596 μmol h−1 g−1 under irradiation of visible light (Ran et al.,

2015). As demonstrated by DFT and experimental studies, the

empty intermediate bandgap state enhanced the photo sensitivity

with P hybridization, and the mass transfer process and light

trapping were improved on the macroporous structure. The

intrinsic energy gap of g-C3N4 was decrease from 2.98 to

2.66 eV in the attendance of P dopant. On the other hand,

Lin and co-workers discovered the B,F-doped g-C3N4 porous

nanosheets were achieved by the self-polymerization of urea in

the presence of ionic liquid [Bmim][BF4], which yielded

photocatalytic hydrogen in 3.9 times higher than pristine

g-C3N4 (Lin and Wang., 2014) (Zhang et al., 2014).

successfully obtained iodine-doped carbon nitride (CN-I) with

calcining dicyandiamide to significantly improve the hydrogen

production performance (Zhang et al., 2014). The photocatalytic

activity of iodine-doped g-C3N4 was occurred at the wavelength

of 600 nm, while pristine g-C3N4 provided inactive catalysis at

500 nm. Guo et al. (Guo et al., 2016) prepared a phosphorus-

doped hexagonal hollow tubular structure g-C3N4 by

hydrothermal method and the special structure greatly

increased the specific surface area of the catalyst, thereby

increasing the number of active sites for hydrogen production.

Carbon doping is also an important part of non-metal dopants.

In 2021, Liu et al. reported the synthesis of C-doped g-C3N4 by

one-step copolymerization using melamine and chitosan as the
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rawmaterials (Liu et al., 2021). The N atom in g-C3N4matrix was

replaced by C to form the delocalized big Π bonds. The prepared

C-doped g-C3N4 exhibited an excellent photocatalytic H2

evolution activity of 1,224 mmol h−1 g−1, which was 4.5 times

than the free g-C3N4.

2.3.2 Metal doping
In addition to the doping of non-metallic elements, the

g-C3N4 framework was also doped with metallic elements to

modify the electronic energy band structure, thereby improving

the visible-light absorption, and enhancing the migration and

separation of photogenerated carriers in the g-C3N4

photocatalyst (Chen et al., 2016). reported the Co-doped

g-C3N4 synthesized by one-step thermal polymerization of

cobalt phthalocyanine (CoPc) and melamine as the precursors

(Chen et al., 2017). Yue et al. used a simple chemical method to

dope metallic Zn into g-C3N4 (Yue et al., 2011). When the

content of Zn was 10%, the visible-light-generated hydrogen

production activity was 10 times higher than the pure g-C3N4.

The proposed mechanism implied that doping of Zn increased

the light absorption, improved the separation efficiency of

electron-hole pairs, and enabled more electrons for water

splitting. However, it is still a challenge to obtain

nanoparticles with uniform size, regular shape, and high

stability with common precursors such as polymers, carbon

supports, ionic liquids, surfactants and microemulsions. In the

recent report of our group, the coordination complex of cucurbit

[6]uril and Co2+ was developed as the precursor, to produce

cobalt nanoparticles with themolysis, for photocatalytic

electrolysis of water by deposition on the surface of the

g-C3N4 film. (Dai et al., 2022). The formed semiconductor-

metal interface provided more reaction sites and electron

transport channels for effective charge carriers to capture

photons and excite electrons, thereby, promoting the

photoelectrocatalytic reaction process. The discovery provided

a new strategy for exploring macrocyclic/g-C3N4 materials with

excellent photocatalytic activities.

2.4 Metal deposition (co-catalyst)

Various studies suggested that metal deposition on pure

g-C3N4 was also one of the promising methods to enhance the

photocatalytic activity. In theory, when metal nanoparticles

are in contact with g-C3N4, a Schottky junction is formed at

the interface of metal and g-C3N4 semiconductor due to the

different work function, which changes the electron

distribution on the semiconductor surface (Naseri et al.,

2017; Caux et al., 2019; Qi et al., 2020; Zhao et al., 2021).

The main function of metal is to accept the photogenerated

electrons from the CB of g-C3N4 during the photocatalytic H2

production process. Various metals such as Pt (Ou et al., 2017;

Zhu et al., 2019), Au (Samanta et al., 2014; Caux et al., 2019),

Pd (Xiao et al., 2019), Ag (Nagajyothi et al., 2017; Deeksha

et al., 2021) and Ni (Indra et al., 2016; Kong et al., 2016) were

employed as co-catalyst for the efficient sensitization for

photocatalysis with the surface plasmon resonance (SPR)

effect, which improved the light absorption capacity of the

catalyst. With an in situ photoreduction, Pt/g-C3N4 was

subjected to be a visible light photocatalyst by Wang’s

group, and the results indicated that the photocatalytic

hydrogen evolution capability was gradually enhanced as

the size decrease of the Pt co-catalyst (Zhu et al., 2019).

The participation of Pt provided more active sites on the

surface for reduction, which was favorable for accepting

electrons from CB of g-C3N4, due to the formation of

Schottky junctions at the interface of Pt and g-C3N4. The

PL spectra and UV-vis/DRS spectra of g-C3N4 and Ptx-CN

with different Pt content, demonstrated that Pt loading greatly

improved charge separation and transfer in g-C3N4

photocatalysts, thereby reduced charge recombination, and

enhanced photocatalytic activity, as well as provided the

maximum utilization efficiency photocatalytic performance

for H2 production. The Pt0.1-CN (with 0.1wt% Pt loading

amount) sample displayed the highest photocatalytic activity

with H2 evolution of 473.82 μmol mg−1 under visible-light

irradiation.

Furthermore, Bi et al. reported a Ni cocatalyst for the

enhancement of photocatalytic performance of g-C3N4 (Bi

et al., 2015). A higher separation efficiency of photogenerated

charge carriers was obtained as a result of a deeper band bending

of g-C3N4 contacting with Ni, which contributed to enhanced

photocatalytic H2 production performance. In addition, the

heterojunction formed between the Ni nanoparticles and

g-C3N4 acted as an electron collector, and impeded the

recombination rate of photogenerated electron and holes as

illumination in Figure 4. Ni/g-C3N4 catalyst exhibited high

photocatalytic H2 evolution rate (8.314 μmol h−1) compared

FIGURE 4
Schematic graph shows (A) the energy level diagram of
g-C3N4 and Ni; (B) the interfacial electron transfer between
g-C3N4 and Ni under irradiation.
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with pristine g-C3N4, in which rapid recombination between

conduction band (CB) and valence band (VB) holes and the

quick reversible reaction occurred.

2.5 Dye sensitization

To overcome the g-C3N4 absorption edge of a band gap of

2.7 eV, organic dyes were employed as a driver to improve the

visible-light photoactivity (Bard and Fax., 1995; Kudo and

Miseki., 2009; Kim et al., 2015), which were considered to

dramatically extend the visible-light region of the band-gap of

semiconductor (Zhuang et al., 2019). However, the researches

about H2 production based on dye-sensitized carbon nitride

were still insufficient, only few organic dyes such as metal-

porphyrins (Yu et al., 2014; Chen et al., 2015; Zhang et al.,

2015; Zhuang et al., 2019; Liu et al., 2020), poly (3-

hexylthiophene) (Zhang et al., 2015), eosin Y (EY) (Min

and Liu., 2012; Wang et al., 2018; Qi et al., 2019; Xu et al.,

2019; Nagaraja et al., 2020; Zhao et al., 2021) and erythrosin B

(ErB) (Wang et al., 2013; Zhang et al., 2017; Zhang et al., 2017)

have been successfully applied to enhance the photocatalytic

activity with improvement of the utilization efficiency of

visible-light. In the process of H2 generation, the organic

dyes were damaged in oxidation reactions, and its

stabilization could be realized with a porous support, which

accelerates the transfer of electrons from the excited dye

molecule to the active site in definition of a cocatalyst, in

general use of noble metals (especially Pt). The hybridization

of Ag with g-C3N4 was applied for hydrogen evolution, and the

photocatalysis was improved with the dye-sensitization under

visible-light irradiation (Schwinghanmmer et al., 2013). Min

et al. reported that g-C3N4 with modification of Eosin Y

performed the light-drove H2 generation at about 600 nm,

while the reaction occurred at less than 460 nm on the pristine

g-C3N4 surface (Min and Liu., 2012).

2.6 Heterogeneous structure

The photocatalytic efficiency and application of pristine

g-C3N4 were limited for high recombination rate of

photogenerated charge carriers and narrow range of visible

light response in a solar spectrum. Recently, g-C3N4-based

heterojunctions were developed by enhancement of carrier

separation efficiency and demonstrated excellent

photocatalytic performance. Semiconductors were induced to

form heterojunctions with g-C3N4 including carbon materials

(graphene (Xiang et al., 2011), carbon nanotubes (Ge and Han.,

2012), fullerenes (Chai et al., 2014)), metal oxides (TiO2(Chen

and Liu, 2016), SnO2(Zada et al., 2019), ZnO(Sun et al., 2012),

NiFe2O4(Liu et al., 2022), Fe2O3(Theerthagiri et al., 2014)), metal

sulfides (CdS(Chen et al., 2016), ZnS(Shi et al., 2014), MoS2(Li

et al., 2014)), bismuth-based compounds (BiPO4(Zou et al.,

2015), BiVO4(Li et al., 2014), Bi2WO6(Li et al., 2018)), silver-

based compounds (Ag2O(Liang et al., 2019), Ag3PO4(Liu et al.,

2016), Ag3VO4(Zhu et al., 2015)), multi-element rare Earth

oxides (Zn2GeO4(Sun et al., 2014), SrTiO3(Xu et al., 2011)),

etc. The principle was executed in design of the heterojunction,

that is, the recombination of g-C3N4 and the band-matched

semiconductor promoted the transfer of charge carriers and

suppressed the recombination of charges.

Based on different photogenerated carrier transfer

mechanisms, the heterojunctions were formed when g-C3N4

coupled with other materials (Reza et al., 2015; Patnaik et al.,

2016; Fu et al., 2018). In the heterojunction structures, Type-Ⅰ
constructure refers to that the position of CB of semiconductor-1

is higher than that of semiconductor-2, while the VB position of

semiconductor-1 is lower than that of semiconductor-2, as

shown in Figure 5A. Under the excitation of visible light,

electrons and holes of the Type-Ⅰ heterojunction photocatalyst

are more inclined to migrate to the semiconductor-2 with a

smaller band gap and undergo a redox reaction, and the

separation efficiency of carriers is not significantly improved,

resulting in the low rate of photocatalytic redox reaction. In the

Type-Ⅱ structure, the positions of both CB and VB of

semiconductor-2 are lower than those of semiconductor-1,

and therefore the photogenerated electrons and holes transferr

into different sides of the heterostructure, as shown in Figure 5B.

The carrier transport mode of the Type-Ⅱ heterojunction greatly

improve the photocatalytic activity of the composite

photocatalyst. In 2021, Roy’s team reported the TiO2/ultrathin

g-C3N4 (U-g-CN) heterostructure photocatalyst using a unique

in situ thermal exfoliation process, and the presence of U-g-CN

produced a redshift (~0.13eV) in the absorption edge of

heterostructures compared to that of bare TiO2, which

extended the light absorption capability. Combined with the

morphological characteristics of g-C3N4, Chen et al. prepared a

novel 3D hierarchical hollow tubular g-C3N4/ZnIn2S4
nanosheets as the type-Ⅱ heterojunction photocatalyst (Chen

et al., 2022). The optimum photocatalyst offered the H2 evolution

rate up to 20,738 μmol h−1 g−1. In the case of the Type-Ⅲ
heterojunction (Figure 5C), there are no any energy band

intersection of semiconductor-1 and semiconductor-2,

resulting in the inability of transport of photogenerated

carriers between the semiconductors to greatly improve the

photocatalytic efficiency.

Thus, a suitable semiconductor heterojunction is able to both

enhance the ability to capture sunlight and significantly

accelerate the separation and migration of photogenerated

electron-hole pairs as description in Type II structure, but it is

still insufficient in terms of photocatalytic oxidation ability. The

Z-scheme heterojunction (Xu et al., 2022) was explored to

overcome this disadvantage to a certain extent, which was

mainly divided into binary and ternary structures, as shown

in the Figure 6 (Maeda, 2013). The CB and VB potentials of
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semiconductor-2 were more positive than those of

semiconductor-1 in binary Z-scheme (Figure 6A), thereby

enhancing the reduction and oxidation capacity of e− and h+.

Zhao et al. prepared the CeO2/g-C3N4 heterojunction

photocatalysts, through a one-step in situ pyrolysis formation

of 3D hollow CeO2 mesoporous nanospheres and 2D g-C3N4

nanosheets. The hydrogen evolution from water splitting

experiment of the CeO2/g-C3N4-6 gave a maximum yield of

1,240.9 μmol g−1 h−1, which was about 5.2 times higher than that

of CeO2 (Zhao et al., 2021). Figure 6B pictured out a conductor

was employed as a charge bridge between the VB of

semiconductor-1 and the CB of semiconductor-2 in the

ternary Z-scheme heterojunction, which was played by metal

particles, such as Cu, Au, Ag, etc. Hieu et al. synthesized the

TiO2/Ti3C2/g-C3N4 (TTC) photocatalyst from g-C3N4 and Ti3C2

MXene via a calicination technique, and a high H2 production of

2,592 μmol g−1 was achieved (Hieu et al., 2021).

2.7 Homojunction structure

The g-C3N4 homojunctions are also recognized as the

efficient photocatalysts. However, the type II structures and

Z-schemes in the pioneering reports require deep optimization

of the electron transport path in g-C3N4 homojunctions, since

the redox potentials were depressed to inhibit the improvement

of photocatalytic performance. The barrier could be overcome by

the inspiration of S-scheme heterojunction proposed by Yu’s

group (Xu et al., 2020), Guo et al. fabricated the S-scheme

homojunctions with high-crystalline/amorphous g-C3N4

FIGURE 5
Schematic representation band structure of different heterojunctions: (A) Type Ⅰ heterojunction; (B) Type Ⅱ heterojunction; (C) Type Ⅲ
heterojunction. A and D represent electron acceptor and electron donor, respectively.

FIGURE 6
Schematic energy band diagram of two different types of Z-scheme heterojunction: (A) binary Z-scheme heterojunction, (B) ternary Z-scheme
heterojunction. A and D denote electron acceptor and electron donor, respectively.
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(HCCN/ACN) with solvothermal method, which was applied in

photocatalytic H2 production with the evolution rates of

5.534 mmol h−1 g−1 in water and 3.147 mmol h−1 g−1 in

seawater (Sun et al., 2022).

3 Conclusion

The excessive use and combustion of fossil fuels will

inevitably bring some environmental problems. The value of

hydrogen energy has been fully recognized, but its preparation

technology still needs to be further explored. Photocatalytic

technology is expected to realize sustainable energy

production under the premise of making full use of solar

energy, and has great potential in terms of energy and

environment. The main factor limiting the photocatalytic

activity of pristine g-C3N4 is its bulk structure, resulting in its

small specific surface area and few active sites, which prolongs

the transfer path of photogenerated electrons, thus accelerates the

photogenerated charge carriers compound odds. The ability of

photocatalytic hydrogen production performance of g-C3N4

could be improved by adjusting pH of the environment to

induce the change of the surface charge of g-C3N4, controlling

the morphology of g-C3N4 to increase active sites and shorten the

transport path of carriers, and compositing co-catalysts or

narrow-band semiconductors or dyes to enhance light

absorption and reduce the recombination of photogenerated

electrons and holes. So far, the strategies for exploration of

stable hybridization structures to boost the photocatalytic

efficiency could be the main concern in this filed, and more

cases should be discovered to realize the dependence of the

morphologies, structures, and species of dopants on the

activities. This review is aimed at summarization of the recent

progress of preparation and performance of g-C3N4-block

photocatalysts to induce new ideas for the structural design

with further improved efficiency by interdisciplinary

researches across chemistry, physics, and material science.
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