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Two-dimensional (2D) metal-organic frameworks (MOFs) have been

extensively investigated as oxygen evolution reaction (OER) materials

because of their numerous advantages such as large specific surface areas,

ultrathin thicknesses, well-defined active metal centers, and adjustable pore

structures. Five Co-metal-organic frameworks, namely, [Co(L) (4.4′-bbidpe)
H2O]n [YMUN 1 (YMUN for Youjiang Medical University for Nationalities)],

{[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-bbibp)]·DMAC}n (YMUN 2), [Co(L) (3,5-

bip)]n (YMUN 3), [Co(L) (1,4-bimb)]n (YMUN 4), and [Co(L) (4.4′-bidpe)H2O]n
(YMUN 5), were designed and fabricated from flexible dicarboxylic acid 1,3-

bis(4′-carboxylphenoxy)benzene (H2L) and rigid/flexible imidazole ligands.

Their frameworks consist of two-dimensional lamellar networks with a

number of differences in their details. Their frameworks are discussed and

compared, and their oxygen evolution reaction electrochemical activities and

photocatalysis dye degradation properties are investigated.
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Introduction

The development of green, clean, sustainable, and renewable energy storage and

conversion technologies could effectively reduce the consumption of traditional fossil

energies, mitigating deteriorating global environmental issues and achieving carbon-

neutrality (Dinh et al., 2018; Roy et al., 2018; Li et al., 2019; Tian et al., 2019; Liang et al.,

2020; Pan et al., 2021; Xue et al., 2021; Chang et al., 2022). Because of their high

efficiencies, reliabilities, and environmental friendliness, water splitting, fuel cells, and

metal-air batteries are the most promising of these technologies (Qin et al., 2020; Li C.
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et al., 2021; Du et al., 2021; Hu et al., 2021; Lu et al., 2021; Song

et al., 2021; Zou et al., 2021). An electrochemical oxidation

reaction, namely, the oxygen evolution reaction (OER), is the

basic and crucial half-reaction that occurs in the overall processes

of the abovementioned technologies (Li J. et al., 2021). It is well

known that the high reaction energy barrier of this half-reaction

is the main obstacle to practical applications of these

technologies. Recently, noble metal-based materials (RuO2 and

IrO2 for the OER) have been used and are considered state-of-

the-art electrocatalysts. However, their low abundances in

nature, high costs, and bonding instabilities hinder their

practical applications (Li and Guo, 2019; Tripathy et al., 2019;

Nemiwal et al., 2021; Yang et al., 2021). Therefore, the

development of low-cost and high-efficiency OER

electrocatalysts has become a major challenge for researchers

in recent years.

Recently, non-noble metal (Fe, Co, Ni, Mn, and Cu)materials

have garnered considerable interest as alternative electrocatalysts

to noble metal-based materials due to their abundant reserves,

low costs, and high catalytic activities (Wei et al., 2019; Wu et al.,

2019; Sanad et al., 2021; Wu et al., 2021; Zhang et al., 2021).

MOFs, as classical porous materials, are widely applied in

heterogeneous catalysis, photocatalysis, gas separation, and

sensing (Shi et al., 2019; Liu et al., 2020; Wang et al., 2020; Lu

et al., 2022). Non-noble MOFs are an emerging class of OER

electrocatalysts, and have shown great potential due to their large

specific surface areas, abundant and tunable pore structures,

structural diversities, high design flexibilities, and high

porosities. The rational design and fabrication of MOF

electrocatalysts with abundant and exposed active sites,

enriched and accessible surface areas, and diversiform

constructs allowing enhanced properties such as the electrical

conductivity, electrochemical activity, and stability requires more

attention if they are to be utilized in practical applications. The

unique structures, diversiform porosities, and enriched specific

surface areas of MOFs are conducive to their improved catalytic

performances. Moreover, the active sites, pore structures, sizes,

and morphologies of MOF materials can be accurately tuned

throughout their entire structure. The development of advanced

OER electrocatalysts is of great significance for the improvement

of metal-air batteries, fuel cells, and water splitting technologies

(Xie et al., 2019; Liang J. et al., 2021; Chen Y. et al., 2021; Liang Z.

et al., 2021; Lourenco et al., 2021). Hierarchical 2D MOFs are

excellent candidate electrocatalyst materials for improved OER

performance. Compared with pure carbon-based OER catalysts,

the simple synthetic methodologies, one-step reaction, and

moderate reaction conditions for 2D MOFs make them easily

obtainable, reducing both the synthetic complexity and the high-

temperature processing progress. In addition, the uniform

distribution of dense metal nodes generates a large number of

accessible active sites on 2D MOFs, which is undoubtedly

beneficial for improving their catalyst activities. The tunable

compositions and controllable topologies of 2D MOFs,

particularly with regard to mixed organic linkers and

polymetallic nodes, are beneficial for regulating their

electronic structure and the adsorption kinetics of active sites,

thus improving their intrinsic activities. Therefore, the

development of 2D MOF electrocatalyst materials is essential

for fundamental research on the OER.

2D MOFs present numerous advantages such as sheet-like

structures and edges as well as unsaturated coordinative metal

sites on their surfaces, which reduce their electrical resistance and

increase electron transport, allowing superior OER electrical

activity compared with 3D bulk MOFs. Therefore, in this

work, a series of Co-MOFs, namely, [Co(L) (4.4′-bbidpe)
H2O]n (YMUN 1), {[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-
bbibp)]·DMAC}n (YMUN 2), [Co(L) (3,5-bip)]n (YMUN 3),

[Co(L) (1,4-bimb)]n (YMUN 4), and [Co(L) (4.4′-bidpe)
H2O]n (YMUN 5) were designed and synthesized from

flexible 1,3-bis(4′-carboxylphenoxy)benzene (H2L, Scheme 1)

and various imidazole ligands (Scheme 2) using solvothermal

methods. The Co-MOFs exhibited different 2D lamellar

networks; the frameworks of 1–5 were discussed and

compared. Their OER electrochemical activities and

photocatalysis dye degradation properties were investigated.

Experimental section

Materials and general characteristics

Please refer to the Supplementary Material for information

on the materials used and the general characteristics of

the MOFs.

Synthesis of Co-metal-organic
frameworks

The five MOFs (YMUN 1–5) were obtained in crystalline

form using a solvothermal method. A Teflon-lined stainless-steel

SCHEME 1
The selected O-donor organic ligand in YMUN 1–5 (the gray
ball represents carbon, the white ball hydrogen, and the red ball
oxygen).

Frontiers in Chemistry frontiersin.org02

Fan et al. 10.3389/fchem.2022.1044313

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1044313


autoclave (23 ml) was used to synthesize YMUN 1. The reagents

were mixed under stirring for 0.5 h, transferred to the autoclave,

and heated to 130 C for 72 h (heating rate: 1 min/°C from 30 to

130 C), followed by cooling to ambient temperature (rate: 5 min/
°C). Violet, blocky crystals were obtained. The syntheses of

2–5 were similar to that of one and all obtained products

were identical in color.

[Co(L) (4.4′-bbidpe)H2O]n (YMUN 1).

H2L (0.035 g, 0.1 mmol), 4,4′-bbidpe (0.080 g, 0.2 mmol),

Co(NO3)2·6H2O (0.058 g, 0.20 mmol), DI water, and N,N-

dimethylacetamide (DMAC) were used as reagents. Elemental

analysis (%): calculated for C46H32CoN4O8: C, 66.75; H, 3.90; N,

6.77. Found: C, 66.25; H, 3.40; N, 6.07. Yield: 45 mg, 0.054 mmol,

and 54% based on H2L. IR (KBr, cm−1): 3,631 (m), 3,436 (w),

1920 (w), 1,595 (s), 1,544 (m), 1,507 (s), 1,479 (s), 1,462 (m),

1,419 (s), 1,396 (s), 1,323 (w), 1,301 (m), 1,269 (s), 1,229 (s), 1,161

(s), 1,122 (m), 1,096 (w), 1,011 (w), 990 (m), 969 (m), 909 (w),

870 (m), 832 (m), 781 (m), 742 (m), 696 (w), 651 (w), 617 (w),

576 (w), 532 (w), 464 (w), and 430 (w).

{[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-bbibp)]·DMAC}n
(YMUN 2).

H2L (0.035 g, 0.1 mmol), 4,4′-bbibp (0.079 g, 0.2 mmol),

Co(NO3)2·6H2O (0.058 g, 0.20 mmol), DI water, and N,N-

-dimethylacetamide (DMAC) were used as reagents. Elemental

analysis (%): calculated for C142H101Co3N13O20: C, 68.60; H,

4.10; N, 7.32. Found: C, 67.85; H, 3.90; N, 6.70. Yield: 49 mg,

0.02 mmol, and 59% based on H2L. IR (KBr, cm−1): 3,417 (w),

1,626 (m), 1,591 (w), 1,566 (w), 1,508 (s), 1,479 (m), 1,458 (m),

1,405 (s), 1,297 (w), 1,264 (m), 1,223 (s), 1,165 (m), 1,144 (w),

1,229 (s), 1,119 (w), 1,012 (w), 966 (w), 858 (w), 830 (w), 818 (w),

784 (w), 735 (w), 710 (w), 646 (w), 616 (w), 584 (w), 531 (w), and

461 (w).

[Co(L) (3,5-bip)]n (YMUN 3).

H2L (0.035 g, 0.1 mmol), 3,5-bip (0.046 g, 0.2 mmol),

Co(NO3)2·6H2O (0.058 g, 0.20 mmol), DI water, and N,N-

dimethylformamide (DMF) were used as reagents. Elemental

analysis (%): calculated for C31H23CoN5O7: C, 58.50; H, 3.64; N,

11.00. Found: C, 58.10; H, 3.10; N, 10.20. Yield: 41 mg,

0.065 mmol, and 65% based on H2L. IR (KBr, cm−1): 3,436

(m), 3,143 (w), 1,599 (s), 1,561 (m), 1,507 (s), 1,479 (m),

1,416 (w), 1,378 (s), 1,312 (w), 1,266 (m), 1,226 (s), 1,165

(m), 1,123 (w), 1,068 (w), 1,012 (w), 969 (w), 862 (w), 832

(w), 784 (m), 744 (w), 696 (w), 651 (w), 497 (w), and 467 (w).

[Co(L) (1,4-bimb)]n (YMUN 4).

H2L (0.035 g, 0.1 mmol), 1,4-bimb (0.048 g, 0.2 mmol),

Co(NO3)2·6H2O (0.058 g, 0.20 mmol), DI water, and N,N-

dimethylacetamide (DMAC) were used as reagents. Elemental

analysis (%): calculated for C34H26CoN4O6: C, 63.26; H, 4.06; N,

8.68. Found: C, 62.80; H, 3.90; N, 8.10. Yield: 46 mg, 0.072 mmol,

and 72% based onH2L. IR (KBr, cm−1): 3,135 (m), 1,591 (s), 1,562

(w), 1,520 (m), 1,499 (w), 1,478 (s), 1,442 (m), 1,411 (s), 1,388 (s),

1,263 (m), 1,218 (s), 1,158 (m), 1,110 (s), 1,091 (m), 1,013 (w),

963 (s), 946 (m), 856 (m), 827 (w), 795 (w), 783 (w), 771 (w), 751

(m), 687 (w), 655 (m), 620 (w), 594 (w), 493 (w), and 474 (w).

[Co(L) (4.4′-bidpe)H2O]n (YMUN 5).

H2L (0.035 g, 0.1 mmol), 4,4′-bidpe (0.060 g, 0.2 mmol),

Co(NO3)2·6H2O (0.058 g, 0.20 mmol), DI water, and N,N-

dimethylacetamide (DMAC) were used as reagents. Elemental

analysis (%): calculated for C38H28CoN4O8: C, 62.73; H, 3.88; N,

7.70. Found: C, 62.10; H, 3.20; N, 6.90. Yield: 44 mg, 0.061 mmol,

SCHEME 2
(A–E) The selected N-donor organic ligands in YMUN 1–5 (the gray ball represents carbon, the white ball hydrogen, the red ball oxygen, and the
blue ball nitrogen).
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and 61% based on H2L. IR (KBr, cm−1): 3,446 (m), 3,386 (w),

1,594 (s), 1,514 (s), 1,480 (s), 1,397 (s), 1,304 (w), 1,235 (s), 1,214

(s), 1,160 (m), 1,120 (m), 1,063 (m), 1,011 (w), 966 (s), 855 (m),

830 (m), 800 (m), 780 (m), 740 (m), 705 (w), 654 (m), 616 (w),

552 (w), 526 (w), and 492 (w).

The crystallographic data and structure refinement for

YMUN 1–5 are summarized in Table 1. Supplementary Table

S1 lists the related bond lengths and angles in 1–5. The CCDC

numbers for 1–5 are 2195002, 2195003, 2194999, 2195001, and

2195000, respectively.

Results and discussion

Structure analysis

[Co(L) (4.4′-bbidpe)H2O]n (YMUN 1).

One exhibits the P21/n space group of the monoclinic system,

determined by crystal data analysis. The asymmetric unit

comprises one Co atom, one coordinated water molecule,

1 L2− ligand, and one 4,4′-bbidpe ligand (Figure 1A). The H2L

carboxylate ligand presents a µ2-η1:η1:η1:η0 (L2−, Scheme 3B)

coordinated mode while that of the imidazole ligand (4.4′-
bbidpe) is µ2-η1:η1 (Scheme 3F). The Co atom is six-fold

coordinated by four oxygen atoms from one water molecule

and from the two–COO− groups in 2 L2− ligands, and by two

nitrogen atoms from two isolated 4,4′-bbidpe imidazole ligands,

giving a distorted octahedron (CoO4N2) coordination geometry.

The neighboring L2− and 4,4′-bbidpe ligands connect, forming a

2D lamellar structure (Figure 1B). Three neighbor 2D lamellar

structures interact with one another, forming a 2D three-fold

interpenetrating stratified network, based on the spacious nature

of a single 2D lamellar structure (Figure 1C). Finally, these

neighboring interpenetrating 2D stratified networks are

balanced to form a 3D framework through weak π···π
interactions (Figure 1D).

{[Co2(L)2 (4.4′-bbibp)2]·[Co3(L) (4.4′-bbibp)]·DMAC}n
(YMUN 2).

The crystal data reveal that two exhibits the P21/n space

group of the monoclinic system. Its asymmetric unit consists of

three Co atoms, 3 L2− ligands, three 4,4′-bbibp ligands, and one

DMAC molecule (Figure 2A). As shown in Scheme 3, the

coordinated mode of the H2L carboxylate ligand is µ2-η1:η0:η1:
η0 (L2−, Scheme 3A) while that of the imidazole ligand (4.4′-

TABLE 1 Summary of crystal data and structure refinement parameters for YMUN 1–5a.

Empirical formula C46H32CoN4O8 C142H101Co3N13O20 C31H21CoN5O6·H2O C34H26CoN4O6 C38H28CoN4O8

CCDC. NO. 2195002 2195003 2194999 2195001 2195000

Formula weight 827.68 2,486.14 636.47 645.52 727.57

Crystal system Monoclinic Monoclinic Triclinic Monoclinic Monoclinic

Space group P21/n P21/n Pī P21/n P21/n

a (Å) 16.9254 (4) 15.8024 (3) 8.9666 (3) 7.3088 (9) 15.4621 (12)

b (Å) 12.2504 (4) 42.0723 (11) 11.8244 (3) 24.077 (4) 11.9109 (9)

c (Å) 19.3853 (5) 19.6622 (4) 15.0313 (4) 16.768 (2) 17.5891 (16)

α (°) 90 90 68.051 (1) 90 90

β (°) 110.471 (1) 107.605 (1) 86.439 (1) 92.819 (4) 102.271 (3)

γ (°) 90 90 71.615 (1) 90 90

V (Å3) 3,765.57 (18) 12,460.0 (5) 1,399.91 (7) 2,947.1 (7) 3,165.3 (4)

Z 4 4 2 4 4

Dcalcd (Mg·m−3) 1.460 1.325 1.510 1.455 1.513

µ (mm−1) 0.52 0.47 0.67 0.64 0.61

Reflections collected 5,491 14,952 4,703 3,556 4,174

Data/parameters 7,677/539 25,445/1,609 5,693/400 5,872/406 6,451/461

F (000) 1708 5,140 654 1,332 1,500

T (K) 170 170 170 170 150

Rint 0.057 0.079 0.035 0.101 0.063

Final R indices [I >
2sigma(I)]

R1 = 0.046 wR2 = 0.106 R1 = 0.0560 wR2 = 0.1409 R1 = 0.0355 wR2 = 0.0821 R1 = 0.0728wR2 = 0.1640 R1 = 0.0614 wR2 = 0.186

R indices (all data) R1 = 0.0792 wR2 =
0.0891<

R1 = 0.1180 wR2 = 0.1119 R1 = 0.0509 wR2 = 0.0695 R1 = 0.1366wR2 = 0.1391 R1 = 0.1088 wR2 =
0.1864<

Gof 1.06 1.01 1.08 1.06

aR1 = ΣǁFo| − |Fcǁ/Σ|Fo|, wR2 = [Σw (Fo2− Fc2)2]/[Σw (Fo2)2]1/2.
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bbibp) is µ2-η1:η1 (Scheme 3E). The coordination environments

of Co1, Co2, and Co3 are identical; four-fold coordinated by two

oxygen atoms from the two–COO− groups in two HL4− ligands,

and by two nitrogen atoms from two independent 4,4′-bbibp
imidazole ligands. The three Co ions differ in the bond lengths

and angles of Co–O/N and the bonding angle of O/N-donor

FIGURE 1
(A) Coordination unit of the Co ion in YMUN 1 ((hydrogen atoms are omitted for clarity), symmetry codes: (i) -x+2, -y, -z+1; (ii) x+1/2, -y+3/2,
z+1/2; (iii) x-1/2, -y+3/2, z-1/2.); (B) view of the single 2D lamellar structure of 1; (C) view of the three-fold interpenetrating 2D stratified network
through the 2D lamellar structure of one along the a axis; and (D) view of the 3D framework through the 2D stratified network with weak interactions
occurring along the b axis.

SCHEME 3
(A–H) The various coordination modes of O/N-donor ligands in YMUN 1–5 (the gray ball represents carbon, the red ball oxygen, the blue ball
nitrogen, the violet ball cobalt, and hydrogen atoms are omitted for clarity).
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ligands. Based on these discrepancies, the neighboring L2− and

4,4′-bbidpe ligands connect through Co ion metal centers,

forming two different kinds of 2D lamellar structures. The

compositional ratio of the two different 2D lamellar structures

in the three-fold interpenetrating 2D stratified network is 1:2

(Figure 2B). Finally, the neighboring interpenetrating 2D

stratified networks are balanced to form a 3D framework

through weak π···π interactions (Figure 2C).

[Co(L) (3,5-bip)]n (YMUN 3).

Three exhibits the Pī space group of the triclinic system,

determined by crystal data analysis. The asymmetric unit

comprises one Co atom, one 3,5-bip ligand, and 1 L2−

ligand (Figure 3A). As shown in Scheme 3, the H2L

carboxylate ligand presents a µ2-η1:η0:η1:η0 (L2−, Scheme

3A) coordinated mode while that of the imidazole ligand

(3,5-bip) is µ2-η1:η1 (Scheme 3H). The Co atom is four-fold

coordinated by two oxygen atoms from 2 L2− ligands, and by

two nitrogen atoms from two isolated 3,5-bip imidazole

ligands, giving a distorted tetrahedron (CoO2N2)

coordination geometry. The H2L carboxylate ligands

connect through the Co ions, forming one toroidal

structure; these toroidal structures then connect with the

3,5-bip imidazole ligands to form a 1D container-like

structure (Figure 3B). As shown in Figure 3C, the 1D

container-like structures then interlock with one another to

form interpenetrating 2D polymer networks. Finally, the

interpenetrating 2D polymer networks are balanced to form

a 3D framework through weak π···π interactions (Figure 3D).

[Co(L) (1,4-bimb)]n (YMUN 4).

Four exhibits the P21/n space group of the monoclinic

system, determined by crystal data analysis. The asymmetric

unit comprises one Co atom, 1 L2− ligand, and one 1,4-bimb

ligand (Figure 4A). As shown in Scheme 3, the H2L carboxylate

ligand presents a µ2-η1:η0:η1:η0 (L2−, Scheme 3C) coordinated

mode while that of the imidazole ligand (1,4-bimb) is µ2-η1:η1
(Scheme 3D). As shown in Figure 4, the final framework of four is

similar to that of 2.

[Co(L) (4.4′-bidpe)H2O]n (YMUN 5).

Fiveexhibits the P21/n space group of the monoclinic system,

determined by crystal data analysis. As shown in Figure 5, the

coordination mode, formation process, and final structure of five

are similar to those of 1.

Structural discussion and comparison

In this work, a flexible H2L ligand, acting as a main ligand,

was used to synthesize five types of metal organic framework

FIGURE 2
(A) Coordination environment of the Co ion in YMUN 2 ((hydrogen atoms are omitted for clarity), symmetry codes: (i) -x+5/2, y+1/2, -z+5/2; (ii)
-x+3/2, y+1/2, -z+3/2; (iii) -x+1, -y+2, -z+1; (iv) x-1/2, -y+3/2, z-1/2; (v) -x+5/2, y-1/2, -z+5/2; (vi) -x+3/2, y-1/2, -z+3/2; (vii) x+1/2, -y+3/2, z+1/2.);
(B) view of the three-fold interpenetrating 2D stratified network through the different 2D lamellar structures of 2; (C) view of the 3D framework
through the 2D stratified network with weak interactions occurring along the b axis.
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materials containing cobalt ions and different imidazole ligands.

As shown in Scheme 3, three coordination modes existed for the

flexible H2L ligand in YMUN 1–5, owing to the different

auxiliary ligands (flexible 4,4′-bbidpe, rigid 4,4′-bbibp, rigid

3,5-bip, flexible 1,4-bimb, and flexible 4,4′-bidpe) and reaction

solvents used. The interpenetrated frameworks were formed

based on the flexibility and various configurations of the main

H2L ligand. The O/N-donor ligands connected with one another

to form 2D layered structures in 1, 2, 4, and 5, and a 1D chain in

three due to the length and flexibility of the auxiliary ligands.

Finally, the formation of three-fold interpenetrating 2D stratified

networks is different for 1, 2, 4, and five compared with 3. The six

imidazole auxiliary ligands all exhibit syn conformations

(Schemes 3D–H). The frameworks were obtained using two

different types of solvent reactions (DI water and DMAC

(8 ml, v/v = 1:1), 130 C for 1, 2, 4, and 5, and DI water and

DMF (8 ml, v/v = 1:1), 130 C for 3). Thus, a series of Co MOFs

were successfully designed by utilizing different imidazole

auxiliary ligands and reaction solvents.

Thermal stability and purity

The thermogravimetric stabilities of YMUN 1–5, which are

vital evaluation parameters of their potential performance in

catalytic applications, were determined. The TG curves, as

displayed in Supplementary Figure S1, reveal that the entire

skeleton structures of 1–5 remained intact up to 300 C. The

skeletons of 1–5 collapsed at temperatures of 320 C, 355 C, 322 C,

360 C, and 348 C, respectively. PXRD measurements were

performed to evaluate the phase purities of 1–5. The PXRD

profiles show that the characteristic diffraction peaks obtained

for 1–5 match well with those obtained for simulated single

crystal PXRD patterns (Supplementary Figures S2–S6). The

preeminent thermal stabilities and phase purities of

1–5 indicate that they should perform exceptionally in

practical applications.

Microstructure and porosity analysis

The specific surface area and porosity are prominent

characteristics of 2D MOF electrocatalysis materials. The

morphologies of two and four were studied using SEM

(Supplementary Figure S7). These MOFs display a bulk

structure composed of numerous stacked sheet-like layers,

which favor the transport of electrolytes and gas emissions.

BET gas-sorption measurements demonstrate the porosities of

the 2DMOFs. According to IUPAC classification, the adsorption

performance of two and four corresponds to type-III isotherms.

The BET specific surface areas of two and four are approximately

1.50 m2 g−1 and 1.55 m2 g−1, respectively, and the average pore

FIGURE 3
(A)Coordination unit of the Co ion in YMUN 3 ((hydrogen atoms are omitted for clarity), symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) x, y+1,
z.); (B) view of the single 1D structure of 3; (C) view of the mutually-interpenetrating 2D network through the identical 1D structures of 3; (D) view of
the 3D framework through the 2D stratified network with weak interactions occurring along the a axis.
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FIGURE 4
(A) Coordination unit of the Co ion in YMUN 4 ((hydrogen atoms are omitted for clarity), symmetry codes: (i) -x, y+1/2, -z+3/2; (ii) -x+3, y+1/2,
-z+3/2; (iii) -x, y-1/2, -z+3/2; (iv) -x+3, y-1/2, -z+3/2.); (B) view of the single 2D lamellar structure of 4; (C) view of the three-fold interpenetrating 2D
stratified network through the identical 2D lamellar structures of four along the c axis; (D) view of the 3D framework through the 2D stratified network
with weak interactions occurring along the a axis.

FIGURE 5
(A)Coordination unit of the Co ion in YMUN5 ((hydrogen atoms are omitted for clarity), symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1/2, -y+3/2, z-1/
2; (iii) x+1/2, -y+3/2, z+1/2.); (B) view of the single 2D lamellar structure of 5; (C) view of the three-fold interpenetrating 2D stratified network through
the identical 2D lamellar structures of 5; (D) view of the 3D framework through the 2D stratified network with weak interactions occurring along the b
axis.
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diameters are approximately 18.7 nm and 14.6 nm, respectively,

owing to the presence of flaky cracks in the composites.

(Supplementary Figure S8, Supplementary Table S2). These

results demonstrate that two and four exhibit a mesoporous

structure, providing enough space for internal active sites and

allowing them to be fully exposed.

Electrochemical evaluation of YMUN
1–5 for the oxygen evolution reaction

The OER properties of 1–5 were investigated based on the

extensive electrochemical applications of transition metal

cobalt polymer materials (Chen C. et al., 2021; Liang et al.,

2022; Peng et al., 2022). The electrocatalytic performances of

1–5 for the OER were examined in a 1.0 M alkaline KOH

electrolyte at room temperature using a three-electrode

setup. As shown in Figure 6A, the LSV curves of 1–5 show

that they exhibited overpotentials of 373 mV for 1, 349 mV for

2, 374 mV for 3, 297 mV for 4, and 380 mV for 5, at a current

density of 10 mA cm−2 and a scan rate of 5 mV s−1 (Table 2).

The overpotential of four was lower than the other four catalyst

materials. Notably, four also exhibited a lower overpotential of

450 mV at a higher current density of 90 mA cm−2 (Figure 6C).

The OER reaction kinetics were investigated using the

calculated Tafel plots obtained from linear sweep

voltammetry (LSV) data. The Tafel slopes of 1–5 were

169.6 mV dec−1, 147.3 mV dec−1, 166.9 mV dec−1, 82.4 mV

FIGURE 6
(A) LSV curves; (B) Tafel plots; (C) summary of overpotentials (at 10 and 90 mA cm−2); (D) double-layer capacitance (Cdl) plots for YMUN 1–5; (E)
stabilities of two and four for the OER; (F) Nyquist plots for 1–5 in a 1.0 M KOH solution.

TABLE 2 Summarized OER catalytic parameters of different catalysts in a 1.0 M KOH electrolyte.

Catalyst η [mV] Tafel slope [mV·dec−1] Cdl [mF·cm−2] Rct [Ω]

YMUN 1 373 169.6 52 1.10

YMUN 2 349 147.3 50 1.38

YMUN 3 374 166.9 38 1.05

YMUN 4 297 82.4 72 1.21

YMUN 5 380 185.9 105 1.25
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dec−1, 185.9 mV dec−1, respectively; the Tafel slope of four was

lowest, illustrating favorable reaction dynamics which can

significantly increase the OER rate and overpotentials

(Figure 6B).

To further understand the OER catalytic activity of 1–5, their

electrochemically active surface areas (ECSA) were determined.

The ESCAs were calculated from the electrochemical double-

layer capacitances (Cdl) obtained from cyclic voltammetry (CV)

curves at varying scan rates (Supplementary Figures S9–S13).

The following equation was utilized: ESCA = Cdl/Cs, where Cs is

the capacitance per unit area of a smooth surface in an

electrocatalyst material. An average value for Cs (40 μF cm
−2)

was used in this work since Cs is usually determined to be

between 20 and 60 μF cm−2 in a 1.0 M KOH solution (Nai

and Lou, 2019; Peng et al., 2022). As shown in Figure 6D, the

Cdl values of 1–5 were 52 mF cm−2 for 1, 50 mF cm−2 for 2,

38 mF cm−2 for 3, 72 mF cm−2 for 4, and 105 mF cm−2 for 5. The

ECSA value of four was 180 cm−2; higher than those of 1–3. The

ECSA results show that 1–5 contain numerous active sites, which

increase the possibility of contact between reactants and active

components, hence accelerating the OER process (Nai and Lou,

2019).

Robust durability is an essential factor for outstanding

electrochemical activity in practical applications. Two and

four were selected to evaluate the OER long-term stability.

Potential increases of approximately 37.6% for 2 and 11.5%

for four were observed at a stabilized current density after

54,000 s of galvanostatic operation at 10 mA cm−2. To further

determine the prominent OER performances of 1–5,

electrochemical impedance spectroscopy (EIS) was performed

to probe the transfer kinetics of charge carriers. Nyquist plots

(Figure 6F) obtained from EIS measurements at 1.55 V (vs.

RHE), displayed small electrolyte resistance values (Rs = 0.25

Ω, 0.23 Ω, 0.20 Ω, 0.22 Ω, and 0.23Ω) for 1–5. The charge

transfer resistances (Rct) of 1–5 were 1.10 Ω, 1.38 Ω, 1.05 Ω,
1.21Ω, and 1.25 Ω, respectively; well-correlated with the fast

water oxidation kinetics, which were small and similar. Notably,

two semicircles were observed in the Nyquist plots of 1–5,

indicative of two time-constant behaviors (Figure 6F). The

first behavior reflects the charge transfer resistance (Rct) that

appeared in the high-frequency region. The observed low

frequency semicircles correspond to the adsorption of reaction

intermediates on the electrode surface, and represent the

hydroxide transition properties on the surface of open metal

sites (Gao et al., 2017; Jiang et al., 2017). The small values of Rc

and Rct resulted in a lower applied potential and overpotential.

Based on the above test analyses, 1–5 exhibited excellent OER

performances; the catalytic activities of two and four were

superior. The accessibility of active sites and the electrode

geometry are often key factors affecting the electrocatalytic

activity. As discussed in the structural analysis section, the

metal centers in two and four are four-fold coordinated with

two vacant coordination sites. The five frameworks are 2D

layered, three-fold interpenetrating networks; however, the

formation mechanisms were different. The mechanism for

framework three is 1D + 1D → 2D with a three-fold

interpenetrating network, whereas 1, 2, 4, and five are 2D +

2D → 2D with three-fold interpenetrating networks. The

potential active sites in the 2D layered networks are more

accessible for reactants. Thus, the advantageous, discretely-

and homogeneously-distributed metal nodes in these MOFs

offer exceptional platforms for efficient OER.

Photocatalytic properties of YMUN 1–5 for
organic dyes

Photocatalysis could be an efficient way to degrade organic

dyes for purifying wastewater. Cobalt organic framework

photocatalysts are widely used to decompose organic dyes in

water purification processes, owing to their highly active metal

center (Fan et al., 2018). Therefore, 1–5 were employed to

decompose the common organic dyes methyl violet (MV) and

methylene blue (MB), under UV irradiation, in order to evaluate

their photocatalytic efficiencies for wastewater purification. The

degradation activities of 1–5 in MB/MV solutions were

monitored over a time period of 0–180 min using

spectroscopy (Supplementary Figures S14–S18). As shown in

Figure 7, the degradation ratios of 1–5 for MB were 72.13%,

77.92%, 69.82%, 68.35%, and 69.23%, respectively. The

degradation ratios of 1–5 for MV were 80.07%, 91.47%,

82.26%, 77.11%, and 81.78%, respectively. The catalytic

activities of 1–5 were higher for MV than MB, and two

exhibited the highest degradation ratio. Therefore, two could

be used as a potential photo-catalyst for the removal of MV dye.

The UV-Vis DRS and optical band gaps were determined to gain

FIGURE 7
Degradation rates of MB/MV dye solutions with YMUN
1–5 under UV irradiation.
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an insight into the semiconductor behaviors of 1–5. As shown in

Supplementary Figures S19–S23, strong and broad-range

ultraviolet light absorption in the 220–340 nm range was

observed for 1–5, attributed to π→π* transitions in the

ligands or ligand-to-metal charge transfer (LMCT) (Othong

et al., 2017). In addition, a relatively weak absorption band

was observed at 440–620 nm for 1–5; the d→d spin-allowed

transition of Co2+ (d7) ions (Liu et al., 2014). Using the Kubelka-

Munk function, the band gap energies (Eg) were estimated to be

3.30 eV, 3.10 eV, 3.60 eV, 3.20 eV, and 3.45 eV for 1–5,

respectively, falling in the UV region (<3.1 eV for the visible

region) (Sarkar et al., 2020). Based on the above structural

analysis, the higher-activity sites of the coordinated unit in

2 may contribute to its distinguished photocatalytic properties.

To quantify the stability of 2 after reaction with the dye, PXRD

was performed (Supplementary Figure S24). The results indicate

that the structure of two remained unchanged after dye

degradation, thus proving it to be a stable photocatalyst.

Conclusion

In summary, we have successfully synthesized five Co-MOFs

exhibiting sheet-like frameworks using a solvothermal method at

mild conditions (130 C). The structures of the Co-MOFs are

discussed and compared, and the results indicate that three types

of networks are formed. Among the five MOFs, four exhibits

superior electrocatalytic activity performance for the OER, with a

low overpotential and a small Tafel slope. The ESCA, the

electrolyte resistance (Rs), and the charge transfer resistance

(Rct) for four are 180 cm−2, 0.22 Ω, and 1.21Ω, respectively.
Moreover, four exhibits long-term durability for at least 54,000 s

at a current density of 10 mA cm−2, highlighting its robust

stability in alkaline conditions. The strategy of constructing

2D layered MOFs with empty active sites is a promising

method for the rational design and synthesis of high-

performance OER electrocatalysts. The photocatalytic

performance of two suggests that it may be a promising

photocatalyst.
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