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Nickel-cobalt sulfide (NiCo2S4) is a prominent member of bimetallic transition

metal sulfides. It is being widely used for a variety of applications such as

electrode material, photocatalysis, and energy storage devices (like pseudo

capacitors, supercapacitors, solar cells, and fuel cells) due to its better

electronic conductivity, manageable morphology, and high capacitance. This

work presents the one-step solventless synthesis of NiCo2S4 sheet-like

nanostructures and then explores their metallic nature. Scanning electron

microscopy (SEM) and transmission electron microscopic (TEM) analysis

show the sheet-like grown morphology. Few nanorods are also seen. Except

for a recent study (Xia et al. 2015) that shows metallic behavior, most of the

reports show that NiCo2S4 is a semiconductor with claimed bandgap between

1.21 and 2.4 eV. In this study, we observe from UV-Vis and diffuse reflectance

spectroscopy (DRS) that NiCo2S4 has a specific band gap value between

2.02 and 2.17 eV. However, IV characteristics in the temperature range of

300–400 K show that NiCo2S4 is a metal with a positive temperature

coefficient of resistance consistent with a recent report. Furthermore, we

see the ohmic conduction mechanism. The Arrhenius plot is drawn, and the

activation energy is calculated to be 3.45 meV. The metallic nature is attributed

to the coupling of two metal species (nickel and cobalt), which accounts for its

superior conductivity and performance in a variety of essential applications.
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Introduction

NiCo2S4 has sparked a lot of attention in recent years, and it is being studied as a

potential material for a variety of applications because of its fascinating characteristics. It

is one of the important members of the bimetallic transition metal sulfides. Transition

metal compounds have been known for unique properties, like inexpensive, pt.-like

catalytic performance, large conductive, etc. (Guan et al., 2017; Chia et al., 2015; Tong
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et al., 2018). Among the bimetallic compounds, the NiCo2S4 has a

smaller optical energy bandgap and much better electronic

conductivity than nickel cobalt oxides and hydroxides

counterparts (Chen et al. 2013; Zhang et al., 2014). The

NiCo2S4 recently achieved remarkable performance in energy

storage devices like electrode material in supercapacitors (Zhu

et al. 2015; Gao and Huang, 2017; Zheng et al., 2018), catalysis

(Zhang et al., 2014; Wu et al., 2018; Wang et al., 2019), and dye-

sensitized solar cell (Lin and Chou, 2013; Yang et al., 2014). Most

studies on NiCo2S4, like other chalcogenides, establish that it is

semiconducting, with a claimed bandgap between 1.2 and 2.4 eV

(Chen et al. 2013; Du et al., 2014; Sarawutanukul et al., 2020).

However, a very recent study (Xia et al., 2015) has proven that

this material is behaving like a metal, based on optical and

electrical results. They have reported that at room

temperature the resistivity of NiCo2S4 nanostructures is

around 103 μΩ cm, which then decreases with the decrease in

temperature. It denotes a positive temperature coefficient of

resistance, indicating the conducting nature of the NiCo2S4
nanostructures. Moreover, it is important to mention the

effects of cations distributions in the bimetallic sulfides

because the variation in cations influences the electroactive

nature of the material for energy generation. Although, the

substitution of cobalt with nickel and vice versa does not

change the crystal structure of the compound (Chen et al.,

2013), but cobalt-rich presence as compared to nickel adds

more holes (p-type) i.e., makes less conductive material and

when there is more presence of nickel, the material gets more

electrons (n-type) hence causes more conduction (Gervas et al.,

2018). The replacement of Ni2+ ions with Co2+ ions in ferrite

materials though increases the magnetic parameters such as

coercivity (Patil et al., 2022). UV-Vis spectra reported by Hu

et al. (2012) showed nearly a straight line which revealed that

there is no absorption during the measurement hence no optical

bandgap. So, the behavior of this material remains debatable.

Being motivated by these analyses we also aimed to know the

behavior.

Previously, NiCo2S4 nanostructures have been synthesized

using a variety of well-known methods such as hydrothermal

(Chen et al., 2013; Yu and Lin, 2016; Wei et al., 2017),

solvothermal (Xin et al., 2020), electrodeposition (Chen et al.,

2014; Cui et al., 2022), co-precipitation (Wang et al., 2016; Nan

et al., 2018), etc. There is always a challenge to synthesize

bimetallic compounds with desired morphology under

relatively simpler conditions. Solventless thermolysis of

elemental xanthates complexes are processed recently to

prepare NiCo2S4 nanostructures (Khan et al., 2018; Shombe

et al., 2021; Shombe et al., 2022). In this research work, we

have successfully synthesized NiCo2S4 nanostructures using

quite a simple, one-step, and inexpensive solvent-free (solid-

state reaction route). We have studied the crystalline structure,

built-in morphology, and a detailed understanding of its optical

and electrical properties to determine the origin of this material

and its extraordinary performance for various applications.

Experimental details

For the synthesis of NiCo2S4, nickel acetate tetrahydrate

(C4H6NiO4). 4H2O, cobalt acetate tetrahydrate (C4H6CoO4).

4H2O, and thiourea SC(NH2)2 were purchased from Sigma

Aldrich and were of analytical grade, so used without any

further purification. The stoichiometric amounts of these

three precursors were mixed and ground in a pestle and

mortar for 40 min to get a homogeneous mixture. In

addition, we used a few drops of ethanol throughout the

grinding process to improve the powder’s mixing. After that,

the uniform mixture was put into the crucible for heat

treatment. In a sequence, we have taken three random

temperatures of 200°C, 300°C, and 400°C for the same

reaction time (7 h). The possible chemical reactions during

NiCo2S4 formation are suggested as follows.

Firstly, thiourea decomposes at a temperature of about 150°C

(Ahmad et al., 2013a; Ahmad et al., 2013b; Ahmad et al., 2013c),

as shown in the equation below.

SC(NH2)2 ������������������������→~ 150+C
NH2CN +H2S. (1)

Then H2S reacts with nickel acetate tetrahydrate and cobalt

acetate tetrahydrate forming NiCo2S4 with a few gases that are

evaporated as byproducts during the reaction.

2[(C4H6CoO4).4H2O] + (C4H6NiO4).4H2O

+ 4H2 S → NiCo2S4 + 25H2 + 12CO2. (2)

The steps involved in the material’s formation such as

nucleation, growth, and oriented attachment are shown in

Figure 1.

The powder sample prepared at 400°C was compacted

into a 13 mm pellet using a hydraulic press machine at

1,200 Psi pressure for 10 min to study its electrical

properties. The pellet was then sintered in an oven a 150°C

for 2 h to make the material more compact. After that, we used

the silver paste on both sides of the pellet to make an electrical

contact.

The crystallographic structure of NiCo2S4 was studied by the

x-rays diffraction (XRD) technique. The other structural

parameter like crystallite size, lattice constants, texture

coefficient, etc. were calculated from XRD data. The built-up

surface morphology of the NiCo2S4 compound was analyzed

using SEM and TEM respectively. The optical characteristics

were investigated through UV-Vis. spectroscopy and DRS

spectroscopy. The electrical properties of the prepared

nanostructures at different temperatures were carried out

through IV spectroscopy using the two-probe method.
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Results and discussions

Different attempts have been made to obtain their optimal

crystalline nanostructures at varied reaction temperatures.

Figure 2 shows the XRD spectrum of NiCo2S4
nanostructures prepared at 200°C, 300°C, and 400°C

respectively. The XRD spectrum obtained at 200°C does not

match fully with the standard pattern of NiCo2S4, indicating

that its phase is incompletely formed. Only a few peaks were

matched with JCPDS card number 00-043-1477. Many extra

peaks were found in the spectrumwhich shows the possibility of

the presence of some precursor elements due to incomplete

reaction. To obtain the pure crystalline phase of NiCo2S4, we

further treated the ground sample at 300 °C. However, we found

some extra dominant peaks in the spectrum, so still, we believe

that the pure phase of NiCo2S4 at 300°C was not obtained.

When we increased the reaction temperature to 400°C we get

the pure crystalline phase of NiCo2S4. The observed pattern is in

good agreement with the standard JCPDS card number 00-043-

1477 of NiCo2S4. No extra peak was noticed in the XRD pattern,

which confirmed the purity and crystallinity of the sample. The

XRD analysis confirms the cubic crystal structure of NiCo2S4.

Using the lattice planes and d-spacing values the lattice

constants were calculated. The average lattice constants are

found to be a = b = c = 9.43 Å. Our calculated values are very

much closer to the standard JCPDs card and with literature

results that indicate the purity of our sample. The crystallite size

is calculated through Scherrer’s relation. The average crystallite

size of NiCo2S4 at T = 400°C is about 27 nm. We can also

observe that the diffraction peaks got sharper and more

dominant as the temperature was raised from 200°C to

400°C, indicating the improved crystallinity of the prepared

material.

To check the preferable crystal growth direction, we

calculated the texture coefficient of the prepared sample using

the formula given below (Kumar et al., 2015).

Tc � (Ihkl/Ir(hkl))
1
nΣn(Ihkl/Ir(hkl))

(3)

where Ihkl is the intensity of the plane in the XRD spectrum of the

sample, Ir(hkl) is the intensity of the corresponding plane in the

reference pattern, and “n” is the number of peaks selected for the

study. Moreover, an increase in texture coefficient from 1 is said

to indicate a higher degree of preferred orientation along a given

plane. The texture study shows that the NiCo2S4 nanostructures

are highly textured along the (533) plane.

FIGURE 1
Schematic representation of steps involved e.g., nucleation, growth, and oriented attachment.

FIGURE 2
XRD spectrum of NiCo2S4 synthesized at different reaction
temperatures.
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Morphological analysis

Figure 3A shows the EDX spectrum of synthesized NiCo2S4
nanostructured. The presence of Co, Ni, and S elements and

no other extra impurity peak in the graph confirms the purity

of the prepared material. The detailed compositional analysis

from a selected area is also shown. According to the EDX

spectrum and table, the values are 26.4, 40.68, and 32.9 for S,

Co, and Ni respectively. Therefore, the formula can be written

as Ni0.12Co0.46S0.12. Figure 3B of the SEM image indicates that

the agglomerates were assembled from randomly oriented

bundles of nanoparticles adopting poly-disperse nanosheet-

like morphology. Heating the acetate precursor resulted in the

formation of agglomerated nanosheets of NiCo2S4. At a higher

resolution in Figure 3C the agglomerates of nanostructures are

more visible. Besides this agglomeration, we also see an

interesting feature. Some nanorods of diameter ~92 nm

emerged as shown in the figure. This transition in the

morphology may be caused due to high reaction

temperature during sample preparation which breaks apart

the agglomerates of nanoparticles and transforms them into

nanorods.

To see the more in-depth morphology of the prepared

sample, TEM (Figures 4A–C) was used. We can observe poly-

sized sheet-like structures in TEM images more precisely

shown in red boxes. Like in SEM analysis, we also spot some

nanorods stripped into the agglomerates of nanosheets as

shown in Figures 4A,B. We can see some grains/crystallites

and grain boundaries in Figure 4C as well. Figure 4D shows

the selected area electron diffraction (SAED) pattern of

NiCo2S4. The diffraction rings associated with the

polycrystalline nature of the prepared material are seen in

the pattern. By using the Image-J software, we have

successfully calculated the corresponding d–spacing of the

rings are 5.68, 3.29, 2.69, 2.06, 1.55 Å corresponding to

lattice planes (111), (220), (222). (422), and (531)

respectively. These calculations were very close to those

values calculated from XRD analysis and JCPDS card

values. Again, from the SAED pattern, the lattice

parameters are calculated as a = b = c = 9.47 Å. These

calculated cell parameters are in good agreement with the

literature results (Mane et al., 2021).

Optical measurements

The optical analysis was studied using UV-Vis and DRS to

investigate the bandgap of prepared NiCo2S4. Figure 5A shows

the absorption spectrum with the inset of the Tauc plot. The

absorption spectrum was recorded using the Shimadzu 1280 UV-

Vis spectrophotometer. The absorption spectrum was recorded

in the range of 200–800 nm at room temperature. We prepared a

FIGURE 3
(A) EDX spectrum of NiCo2S4 (B,C) SEM images of NiCo2S4 at two different Resolutions.
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dilute suspension of a powder sample in deionized water to check

the absorbance peak. The absorption peak arises near 345 nm.

The band gap of the prepared nanomaterial was calculated using

the Tauc equation (Granqvist, 1995; Gnanasekar et al., 2022; Raj

et al., 2022; Rajeswari et al., 2022; Rokade et al., 2022).

(αhv) � A(hv − Eg) n. (4)

For the direct bandgap calculation of our specimen, a graph is

plotted between (αhv)2 and photon energy ″hv″ according to

Beer-Lambert’s law (Wagh et al., 2022). The extrapolation of a

linear region to the energy axis gives us a bandgap value. The

calculated bandgap of NiCo2S4 is found to be 2.03 eV as shown in

the figure. This band gap value is very much close to the already

reported bandgap value of this material (Sarawutanukul et al.,

2020).

Further, the optical bandgap of NiCo2S4 was also

investigated through DRS. Figure 5B shows the variation

of percentage reflectance against the wavelength of the

incident source measured in the range of 300–900 nm.

While the inset of Figure 5B shows the transformed

Kubelka Munk plot obtained from the reflectance data. In

DRS, the absorption coefficient ″α″ is replaced by Kubelka

Munk or the re-emission function which is proportional to

the absorption coefficient (K) and scattering coefficient (S).

k

S
� (1 − R∞)

2R∞
≡ F(R∞) (5)

Where “R” is the measured reflected light. NiCo2S4 bandgap can

be calculated by the transformed form of Eq. 4 in which ″α″ is

replaced by ″F(R∞)″ Kubelka Munk function (Kumar et al.,

2013; Sundararajan et al., 2022a; Sundararajan et al., 2022b;

Sathish Kumar et al., 2022).

(F(R∞)hv)n � A(hv − Eg) (6)

The “Eg” value of NiCo2S4 calculated from DRS spectroscopy

is 2.17 eV as shown in the inset of Figure 5B. Again this value is

very close to the bandgap value obtained from UV-Vis

spectroscopy and previous literature (Zhao et al., 2020).

We also investigated the DRS spectra in more detail through

the unique inverse logarithmic derivative (ILD) method (Pawlak

and Al-Ani, 2019; Khan et al., 2021). By taking the natural

logarithm on both sides of the Tauc Eq. 4:

ln(ahv) � n ln(A) + n ln(hv − Eg). (7)

Here “A” is eliminated because it does not depend on the

photon energy “h]” and is also less significant practically than the
“n” and “Eg” factors. By differentiating Eq. 7 as a function of

photon energy:

FIGURE 4
(A–C) TEM images of NiCo2S4 with different magnifications (D) SAED pattern of NiCo2S4.
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d ln(αh])
d(h]) � n

h] − Eg
. (8)

By inverting Eq. 8

d(hv)
d ln(αh]) �

hv − Eg

n
. (9)

Finally, by converting Eq. 9 into a numerical derivative:

Δ(hv)
Δ ln(αh]) �

h] − Eg

n
. (10)

Then the graph of ″Δ(hv)/Δ ln(αh])″ as a function of

incident photon energy is plotted which gives us the value

of “Eg” by extrapolating the linear region into the energy

axis. The bandgap of NiCo2S4 calculated from the “ILD”

method is found to be 2.02 eV. Figure 5C shows the energy

band gap graph of NiCo2S4 using the ILD method. From three

different methods, the band gap value of NiCo2S4 is quite like

one another and confirms the bandgap results.

As from both optical spectroscopies, NiCo2S4 has a specific

optical bandgap like other semiconducting materials, therefore

more detailed investigation of its metallic nature was done

through temperature-dependent IV characteristics.

Electrical measurements

The temperature-dependent electrical response of the

prepared material is studied using the Keithley 2401 source

meter. IV characteristics of NiCo2S4 nanostructures were

measured in the temperature range 300–400 K using two

probe method as shown in Figure 6A. When the temperature

is increased from 300 to 400 K, the current decreases, showing

metallic behavior. The ln-ln plot of IV characteristics is drawn

and shown in the inset of Figure 6A. The slope of about

~1 indicates the ohmic behavior. Figure 6B shows the zoomed

part of IV characteristics. We can see clearly the decrease of

conduction with the increase of temperature. The resistivity

values are calculated from the IV data and are plotted against

the temperature shown in Figure 6C. The increase in resistivity

with temperature i.e., positive temperature coefficient of

resistance indicates the metallic nature of NiCo2S4. This result

FIGURE 5
(A) Shows UV-Vis absorption spectrum and Tauc plot(inset) of NiCo2S4 nanostructures (B) DRS spectrum and Kubelka-Munk plot (C) Inverse
logarithmic derivative of αhv as a function of hv (photon energy).
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of metallic behavior agreed very well with the recently reported

literature (Xia et al., 2015). NiCo2S4 has a resistivity of the order

of milli-ohm, making it a promising material for different energy

storage and conversion applications.

Figure 6D shows the activation energy graph, plotted

using the Arrhenius relation (Batool et al., 2020;

Sankudevan et al., 2022) from well-fitted data in a low-

temperature region. The activation energy is found to be

FIGURE 6
(A) IV response of NiCo2S4 at different temperatures and (inset) is the double logarithm graph of NiCo2S4 showing ohmic behavior. (B) Zoomed
IV characteristics curves of NiCo2S4 (C) Resistivity varition with temperature (D) Arrhenius plot for the calculation of the activation energy.

TABLE 1 Comparison of the present study of NiCo2S4 with previously reported literature.

Synthesis (NiCo2S4) Bandgap Electrical behaviors Morphology References

Hydrothermal synthesis — Metallic behavior below the room
temperature (5–300 K)

Urchin-like morphology Xia et al. (2015)

A facile precursor
transformation method

1.2 eV Semiconducting with direct
transition

Urchin-like nanostructure Chen et al. (2013)

Solventless thermolysis
synthesis

— — Agglomerated nanoparticles Shombe et al. (2021)

Solvothermal process 1.71 eV with a direct bandgap
transition

Prediction of metallic with no
absorption in UV-Vis spectra

Quasi-spherical morphology Du et al. (2014)

Electrodeposition method — — Nanosheets Arrays Chen et al. (2014)

Sulfurization of Ni and Co-
based precursors

1.4 and 2.4 eV with a direct
bandgap transition

— 3D urchin-like NiCo2S4 Sarawutanukul et al.
(2020)

Solvothermal route — — Mesoporous NiCo2S4 nanoparticles Zhu et al. (2015)

Solvent-free solid-state route 2.02–2.17 eV with direct
bandgap transition

Metallic nature above the room
temperature (300–400 K)

Agglomerated sheet-like structures along
with the growth of nanorods

Present work
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3.45 meV. This small value of activation energy is indicating

the high cation activity (nickel and cobalt) of NiCo2S4. A

comparative and detailed analysis of the literature work and

our work is presented in Table 1.

Conclusion

The crystalline cubic phase of NiCo2S4 is successfully

achieved using a quite simple, one-step, and inexpensive

solvent-free synthesis approach. The XRD analysis confirmed

the successful formation of the cubic phase of NiCo2S4.

Morphological analysis through SEM and TEM shows that

agglomerated sheet-like structures with unusual growth of

nanorods as well were built. The bandgap of NiCo2S4 is found

to be 2.02–2.17 eV through the absorption and reflectance

spectrum obtained from UV-Vis and DRS spectroscopy

respectively. However, the electrical measurements at

300–400 K reveal that NiCo2S4 has a positive temperature

coefficient of resistance which confirms the metallic nature of

NiCo2S4. The superior electrical and optical properties, the small

activation energy, low resistivity at room temperature, positive

temperature coefficient of resistance, and better electronic

conductivity make NiCo2S4 a potential option for numerous

applications in diverse domains.
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