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RIO kinase 2 has emerged as a critical kinase for ribosome maturation, and

recently it has also been found to play a fundamental role in cancer, being

involved in the occurrence and progression of glioblastoma, liver cancer,

prostate cancer, non-small cell lung cancer, and acute myeloid leukemia.

However, our knowledge in this regard is fragmented and limited and it is

difficult to determine the exact role of RIO kinase 2 in tumors. Here, we

conducted an integrated pan-cancer analysis comprising 33 cancer-types to

determine the function of RIO kinase 2 in malignancies. The results show that

RIO kinase 2 is highly expressed in all types of cancer and is significantly

associated with tumor survival, metastasis, and immune cell infiltration.

Moreover, RIO kinase 2 alteration via DNA methylation, and protein

phosphorylation are involved in tumorigenesis. In summary, RIO kinase two

serves as a promising target for the identification of cancer and increases our

understanding of tumorigenesis and cancer progression and enhancing the

ultimate goal of improved treatment for these diseases.
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Introduction

RIO kinases (RIOK) belong to an evolutionarily conserved family of atypical

kinases found in eukaryotes and archaea. There are three members of the RIO kinase

family (RIOK1, RIOK2, and RIOK3), all of which are characterized by the inclusion

of a unique RIO kinase domain (Yuan et al., 2014). The RIO domain is structurally

homologous to the eukaryotic serine-threonine protein kinase domain, but it lacks

classical activation and substrate-binding loops (Yuan et al., 2014). Kinase activity

in humans is controlled by several mechanisms, including gene expression,
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alteration, epigenetic modification, and post-translational

modification. RIOK has been demonstrated to exist in and

be related to the maturation of pre-40S ribosomes (Leonard

et al., 1998), a process in which the structure and function of

RIOK2 have received a great deal of attention. Here,

RIOK2 functions as a trans-acting factor that shepherds

the last steps of maturation of the 40S ribosome subunit

(Ameismeier et al., 2020). However, a dysregulation of kinase

activity programs can cause a broad range of human diseases.

Recently, RIOK2 dysregulation has been implicated in the

progression of various human cancers, including that of non-

small cell lung cancer (Liu et al., 2016; Liu et al., 2018),

glioblastoma (Read et al., 2013; Song et al., 2020),

hepatocellular carcinoma cells (Delman et al., 2019), acute

myeloid leukemia (Messling et al., 2021) and prostate cancer8.

Despite its involvement with the onset and evolution of tumor

processes, RIOK2 remains poorly understood in this context.

Evidence has accumulated that RIOK2 is connected with

diverse cellular processes in cancer development and

progression, such as cellular proliferation, migration,

invasion, and apoptosis (Liu et al., 2016; Liu et al., 2018;

Delman et al., 2019; Mohamed et al., 2018; Read et al., 2013;

Song et al., 2020) For example, RIOK2 promotes glioma cell

migration and invasion through epithelial–mesenchymal

transition (Ameismeier et al., 2020). The association of

RIOK2 with bystin-like protein and mechanistic target of

rapamycin kinase promotes tumor cell growth and survival

through activation of AKT signaling in gliomas (Gao et al.,

2021). ERGi-USU, a high affinity RIOK2 inhibitor, binds

RIOK2 directly and induces a ribosomal stress signature,

resulting in growth inhibition of ERG-positive VCaP tumor

xenografts (Mohamed et al., 2018). In addition, RIOK2 is

associated with CD4+ T cell activation (Subbannayya et al.,

2020), suggesting that it may play a fundamental role in the

regulation of the immune system. However, only a few

malignancies have been linked to RIOK2 expression.

Therefore, further studies on RIOK2 and its roles in the

occurrence, development, and immune microenvironment

of tumors are essential to identify therapeutic cancer targets.

To identify the involvement of RIOK2 in cancer

systematically, we integrated multi-omics data of

33 cancer types to conduct the first comprehensive

association analyses of RIOK2. We identified that

RIOK2 was highly expressed in pan-cancer and was

significantly correlated with tumor cell proliferation,

migration, invasion, and immune cell infiltration, all of

which can prove fatal to patients. We also found that

alteration of RIOK2 via DNA methylation and

phosphorylation were related to tumorigenesis. By

describing the function of RIOK2 in pan-cancer, we

demonstrate that RIOK2 represents a valuable target for

treating malignant tumors.

Materials and methods

Data resources

The genomic, proteomic, and clinicopathological

information of 33 cancer types were extracted from databases

obtained from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov), International Cancer Genome

Consortium, Cancer Cell Line Encyclopedia, and Clinical

Proteomics Tumor Analysis Consortium (CPTAC) (https://

proteomics.cancer.gov/programs/cptac). Corresponding

information of healthy tissue samples were obtained from the

Genotype–Tissue Expression (GTEx) database (https://

gtexportal.org/home). The baseline information for all eligible

datasets is summarized in Supplementary Table S1. In instances

where healthy tissue samples corresponding to certain tumors in

the TCGA database were lacking, we used the UCSC Xena

platform to bridge the gap between TCGA and GTEx data by

recomputing all the raw gene expression data based on a standard

pipeline (Tang et al., 2019; Navarro Gonzalez et al., 2021).

Differential expression analysis

We obtained RIOK2 expression data of 11,826 samples

comprising 33 cancer types from the TCGA database and

matched normal pairs between seven cancer types from the

GTEx database and 24 from the TCGA database; these

31 cancer types were selected for further analysis. The

TIMER2.0 (Li et al., 2020) (http://timer.cistrome.org) Gene

DE module and the Gene Expression Profiling Interactive

Analysis 2 (gepia2. cancer-pku.cn/) differential expression

analysis module was employed to analyze the difference in

RIOK2 expression between the tumor and healthy groups.

(Wilcoxon test: |fold change| > 2, p < 0.05, q < 0.01).

Furthermore, we conducted auxiliary verification using area

under the receiver operating characteristic curve analysis and

other expression profiles from the International Cancer Genome

Consortium database.

Furthermore, to investigate RIOK2 protein levels in pan-

cancers, we obtained the RIOK2 proteomic expression data of

seven cancer types and normal pairs from the CPTAC database.

The University of Alabama at Birmingham CANcer data analysis

portal (UALCAN) (ualcan.path.uab.edu) (Chandrashekar et al.,

2017) was used for differential expression analysis in

RIOK2 between the tumor and healthy groups. (Wilcoxon

test, p < 0.05). In addition, immunohistochemical data

obtained from the Human Protein Atlas (https://proteinatlas.

org) website were used as an indispensable complement to

RIOK2 proteomic expression (Uhlen et al., 2017). The

Benjamini–Hochberg test was used to control for false

discovery rate across multiple tests.
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Cancer progression analysis

To determine the relationship between RIOK2 expression

and cancer progression parameters such as lymph node

metastasis and tumor stages, we applied differential signature

score analysis. Data were generated on the Gene Expression

Profiling Interactive Analysis 2 and UALCAN websites [Pr

(>F) < 0.05] using the mean value of log2 (TPM +1) or TPM

(transcripts per million) at the transcriptional level and Z-value

at the protein level of each gene in tumors and healthy groups.

Lymph node metastasis was divided into four levels: N0 (no

regional lymph node metastasis), N1 (metastases in 1–3 axillary

lymph nodes), N2 (metastases in 4–9 axillary lymph nodes), and

N3 (metastases in ≥10 axillary lymph nodes). There were also

four pathological groups (stage I–IV) according to

tumor–node–metastasis staging. In addition to our analysis at

the tissue level, we used the Wilcox test to compare the

expression of RIOK2 at the cellular level in primary and

metastatic cell lines; data were obtained from the Cancer Cell

Line Encyclopedia database.

Survival prognosis analysis

To study the time-dependent prognostic value of

RIOK2 expression in pan-cancers, we obtained

RIOK2 expression data from 11,882 samples comprising

21 cancer types and normal pairs from the TCGA database.

To assess survival, we used Cox proportional hazards regression

using the survival package for R software. Both the survival and

survminer R packages were utilized to calculate log-rank

p-values, hazard ratios, and 95% confidence intervals. All

possible cutoff values between the lower and upper quartiles

were computed, and the best-performing threshold was used as

the cutoff. Survival outcomes included overall survival and

relapse-free survival, which were visualized using the

Kaplan–Meier Plotter (https://kmplot.com) (Nagy et al., 2021).

Statistical significance was defined as a log-rank p-value of <0.05.
All data processing was performed using R version 4.1.2.

Genetic alterations analysis

We obtained RIOK2 alteration data from 162 samples

comprising 20 cancer types from the TCGA database.

cBioPortal (cbioportal.org) was used to summarize alterations,

especially mutations, at various sites in the primary structure of

RIOK2. Kinase activity was likely to change if member residues in

the functional domain were more frequently mutated. Mutations

were mapped to the sequences and structures obtained from the

STRING version 11.5 protein database (https://string-db.org)

(Szklarczyk et al., 2021) using BIOVIA Discovery Studio

2019 Client software. Furthermore, we applied Cox

proportional hazards regression analysis to investigate the

time-dependent prognostic value of RIOK2 mutations.

Phosphorylation and methylation
modification analysis

To analyze the differential expression of phosphorylated

RIOK2 in pan-cancer, we obtained phosphorylated

RIOK2 expression data from 767 samples comprising five

cancer types and normal pairs from the CPTAC database.

Differential gene expression analysis was performed using the

UALCAN database. The differential signature score was tested

according to Z-value, and its significance was calculated by

Student’s t-test (Chandrashekar et al., 2017) (p < 0.05).

Simultaneously, the RIOK2 phosphorylation of tumor sites in

the tumor, healthy, and prediction groups were obtained from

the databases of Quantification of Post-Translational

Modifications (http://qptm.omicsbio.info), Phosida (http://141.

61.102.18/phosida/index.aspx), Phosphosite Plus (https://

phosphosite.org/homeAction.action), and PhosphoNET

(http://www.phosphonet.ca) (Gnad et al., 2007; Gnad et al.,

2011; Yu et al., 2019).

To compare the difference in RIOK2 methylation degree

between healthy and tumor samples and to assess their relevance

to expression, we obtained 11 methylation probes from

hg38 coordinates provided by Zhou et al. (2017) (http://

zwdzwd.github.io/InfiniumAnnotation). We comprehensively

analyzed RIOK2 DNA methylation alongside other omics data

from TCGA with the Wilcoxon rank sum test and by using the

Shiny Methylation Analysis Resource Tool (Letunic et al., 2021)

(http://bioinfo-zs.com/smartapp) and MEXPRESS web tool

(Koch et al., 2019) (https://mexpress.be). Beta values ranged

from 0 to 1, with 0 being unmethylated and 1 being fully

methylated. Statistical significance was defined as a p < 0.05,

as calculated via the Wilcoxon rank sum test and adjusted using

the Benjamini–Hochberg method. To investigate the relationship

between the methylation of RIOK2 within the range of

TSS1500 and overall survival of patients, Cox proportional

hazards regression was applied. All possible cutoff values

(mean, median, interquartile range, and maximum) were

computed, and the best-performing threshold was used as a

cutoff. The difference in overall survival between the lower and

higher methylated groups of patients was visualized using

Kaplan–Meier plots on MethSurv (Modhukur et al., 2018)

(https://biit.cs.ut.ee/methsurv). A log-rank p-value < 0.05 was

considered to be statistically significant.

Immune infiltration analysis

In order to investigate the correlation between

RIOK2 expression and immune cell infiltration (EPIC and
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xCell algorithms), we obtained RIOK2 expression and

immune infiltrate data of 12,159 samples comprising

33 cancer types from the TCGA database (Li et al., 2016; Li

et al., 2017; Sturm et al., 2019; Li et al., 2020). In addition, we

used Spearman correlations to investigate the relation

between the abundance of 28 tumor-infiltrating

lymphocytes, three kinds of immunomodulators

(immunoinhibitors, immunostimulators, and major

histocompatibility complex molecules) and the expression

of RIOK2 using the Tumor and Immune System

Interaction Database (Ru et al., 2019). Statistical

significance was set at p < 0.05.

RIOK2-related gene enrichment analysis

The RIOK2 pathway was investigated at the genetic and

protein levels. Seventy-six RIOK2-interacting proteins were

selected from the STRING database according to an

interaction score of >0.4 and verified by experiment. The

protein—protein interaction (PPI) network was clustered

using molecular complex detection (with a plugin in

Cytoscape version 1.5.1), and five interacting proteins

were identified. Spearman’s rank correlation test was

performed to analyze the correlation between the

expression of RIOK2 and that of the above five proteins.

Furthermore, the Similar Gene Detection module of

GEPIA2 was used to detect the co-expression of genes

with RIOK2. According to their Spearman correlation

coefficient ranking, the top 500 RIOK2-related target

genes were verified a second time via the Spearman’s rank

correlation test (Tang et al., 2019) (correlation >0.33, p <
0.05). Finally, we used the clusterprofiler R package (Yu et al.,

2012), KEGG (Kyoto Encyclopedia of Genes and Genomes),

and GO (Gene Ontology) enrichment analysis to study which

biological processes RIOK2 affected. Statistical significance

was set at p < 0.05.

Results

Elevated RIOK2 expression acrossmultiple
cancer types

RIOK2 was previously confirmed to be highly expressed

and over-activated in non-small cell lung cancer, prostate

cancer, and glioblastoma, driving the occurrence and

development of related tumors (Read et al., 2013; Liu

et al., 2016; Liu et al., 2018; Mohamed et al., 2018;

Delman et al., 2019; Song et al., 2020). We obtained

RIOK2 expression data of 31 cancer types, matched

normal pairs from the TCGA and GTEx databases, and

performed an in-depth analysis of RIOK2 to determine

whether its expression varied between tumor and healthy

groups. RIOK2 mRNA levels were elevated in most tumor

types, with the highest levels detected in cholangiocarcinoma

(CHOL), diffuse large B-cell lymphoma (DLBC), thymoma

(THYM), glioblastoma multiforme (GBM), brain lower-

grade glioma (LGG), and pancreatic adenocarcinoma

(PAAD), followed by colon adenocarcinoma (COAD),

liver hepatocellular carcinoma (LIHC), kidney renal clear

cell carcinoma (KIRC), head and neck squamous cell

carcinoma (HNSC), stomach adenocarcinoma (STAD),

and esophageal carcinoma (ESCA). Interestingly,

RIOK2 expression in malignant tissues was lower than

that in healthy tissues, as was the case for lung squamous

cell carcinoma (LUSC), kidney renal papillary cell carcinoma

(KIRP), kidney chromophobe (KICH), uterine corpus

endometrial carcinoma (UCEC), and thyroid carcinoma

(THCA) (Figures 1A,B, Wilcoxon p-value < 0.05). To

further verify the above results, area under the receiver

operating characteristic curve analysis was performed on

the normalized log2-transformed expression values of

RIOK2. The results indicated that elevated

RIOK2 expression was common in most cancer patients,

with our values ranging from 0.699 to 0.975 (Supplementary

Figure S1B). In addition, tumor samples from the

International Cancer Genome Consortium database

delivered similar results (Supplementary Figure S2A).

To investigate the protein expression levels of RIOK2 in

pan-cancer, we obtained proteomic expression data for seven

cancer types and normal pairs from the CPTAC database.

RIOK2 protein levels were significantly elevated in breast

cancer, lung adenocarcinoma (LUAD), UCEC, and KIRC,

which was in concordance with the high levels of

RIOK2 mRNA in KIRC and LUAD (Figure 2C, Student’s

t-test, p < 0.05). To determine the prevalence of human

cancers that were RIOK2 protein-positive,

immunohistochemistry of tumor tissues with

RIOK2 antibodies was obtained from the Human Protein

Atlas website. High regulation of RIOK2 expression

occurred more frequently in breast cancer, LUAD, UCEC,

and KIRC than in the corresponding healthy tissues, which

was consistent with the above results (Figures 2C,D).

Considering that a variety of cell types are present in

tumors, we applied partial Spearman’s correlation to

determine whether RIOK2 was expressed by cancer cells.

According to the regression curves (Supplementary Figure

S1A), RIOK2 mRNA was enriched in adrenocortical

carcinoma, brain LGG, and skin cutaneous melanoma

(SKCM) with an increasing level of tumor purity

(Figure 1C), indicating that elevated or decreased

RIOK2 expression in most tumors partly originated from

tumor cells and partly from non-tumor cells. These results

also imply that RIOK2 may play a role in the tumor

microenvironment.
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FIGURE 1
Expression level of RIOK2 gene in different tumors and normal tissues. The distribution of RIOK2 expression levels is shown using box plots. We
identified RIOK2 mRNA (A,B) and protein (C) that were upregulated or downregulated in tumors (red) compared to healthy tissues (blue) for each
cancer type, as displayed in gray columns where control data were available. (D) Representative images of immunohistochemistry staining for
RIOK2 protein constructed from four cancer types. Scale bars: 200 μm. Statistical significance, as computed using the Wilcoxon test, is
annotated by the number of stars (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 2
Correlation between RIOK2 gene expression and lymph nodemetastasis and four pathological stages of cancers. (A) Box plots representing the
RIOK2 mRNA level calculated by TPM (y-axis) for each nodal metastasis status of TCGA cancer types (x-axis). The blue box represents the healthy
group, and the red one represents the tumor group. The nodal metastasis status is divided into N0, N1, N2, and N3. Among them, N0 indicates no
regional lymph node metastasis; N1 indicates metastases in 1–3 axillary lymph nodes; N2 indicates metastases in 4–9 axillary lymph nodes;
N3 indicates metastases in ten or more axillary lymph nodes. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (B) The expression of RIOK2 in
TCGA RNA-Seq datasets in four pathological stages (stages I–IV) were calculated by mean value of log2 (TPM +1) using violin plots. (C) The
expression of RIOK2 at protein level in pathological stages I–IV was evaluated by Z-value using box plots. (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 3
Relevance between RIOK2 gene expression and survival prognosis of cancers in TCGA. (A) The correlation between RIOK2 expression and
overall survival and relapse-free survival across multiple cancer types is shown in a heatmap. The bold border in the heatmap represents significance
(p < 0.05). (B,C) The overall and relapse-free survival Kaplan-Meier curves of the various cancer types that have significant survival risk (p < 0.05) are
displayed, with high RIOK2 expression curves colored in red and low ones in blue.
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RIOK2 level was related to tumor
metastasis and determined cancer
prognosis

In previous investigations, RIOK2 mRNA expression in

metastases was higher in SKCM compared to the primary focus,

which may indicate that RIOK2 expression is related to cancer

metastasis (Figure 1A, Wilcoxon p-value < 0.05). Given the high

expression of RIOK2 in pan-cancer, we investigated whether

RIOK2 was required for tumor progression to worsen prognosis

and shorten patient survival. First, we performed differential gene

expression analysis to assess the relationship between

RIOK2 expression, nodal metastasis status, and pathological

stages in pan-cancer. Interestingly, positive correlations between

RIOK2 mRNA and nodal metastatic status were established in six

different cancer types, namely adrenocortical carcinoma, breast

invasive carcinoma (BRCA), KICH, COAD, KIRC, and THCA

(Figure 2A, p < 0.05). In addition, in the case of KICH, KIRP,

LICH, LUSC, ovarian serous cystadenocarcinoma (OV), clear cell

renal cell carcinoma (ccRCC), LUAD, and UCEC, RIOK2 mRNA

expression was lower in healthy tissue and increased with

pathological stage, with the highest levels observed in invasive

cancer samples (Figure 2B, p < 0.05). We arrived at a similar

conclusion regarding RIOK2 protein levels in OV, ccRCC,

LUAD, and UCEC (Figure 2C, p < 0.05). Consistent with the

above results, we also found a positive correlation between the

expression of RIOK2 and metastasis in BRCA, COAD, rectum

adenocarcinoma (READ), andDLBC tumor cell lines, but a negative

correlation between these two factors inOV (Supplementary Figures

S2B–E, p < 0.05).

We performed Cox proportional hazards regression to

further confirm the impact of RIOK2 target gene expression

on patient survival across the pan-cancer cohort. Patients with

low RIOK2 expression had the best outcome, followed by

patients with high RIOK2 expression in more cancers

(Figure 3; Supplementary Figure S3. Overexpression of

RIOK2 in bladder urothelial carcinoma (BLCA), ESCA,

HNSC, KIRP, LIHC, and THCA was strongly associated with

poor patient outcomes. Poor prognosis was also linked to low

RIOK2 expression in tumors with increased RIOK2, including

KIRC, REA, STAD, THCA, and UCEC. (Figure 3;

Supplementary Figure S3).

These results suggest that a high expression of RIOK2 is

associated with tumor progression and poor patient survival,

indicating that it may be a potential biomarker to characterize

prognosis.

Impact of DNA methylation of the
RIOK2 gene in pan-cancer

DNA methylation in the kinase promoter region has often

been described as a “silent” epigenetic marker, because it can

change genetic performance without changing the associated

DNA sequence. Based on the widespread elevation of

RIOK2 expression in tumors, we postulated that

RIOK2 expression changes due to its methylation. Reduced

RIOK2 expression in some tumor samples with increased

promoter methylation was confirmed by statistical analysis

of the correlation between DNA methylation and gene

expression (Figure 4A, Wilcoxon p-value < 0.05). To

analyze the impact of DNA methylation at the

RIOK2 promoter region on patient survival across the pan-

cancer cohort, we performed Cox proportional hazards

regression for the promoter region probe cg06664872. As

illustrated in Figure 4B, the degree of methylation at the

RIOK2 promoter region was significantly and negatively

correlated with overall survival in most cancer patients,

indicating that the hypermethylation of RIOK2 in the

TSS1500 region may inhibit the occurrence and

development of tumors by inhibiting the expression of RIOK2.

In addition to the effect of DNA methylation on gene

expression, tumors are characterized by methylation

imbalance. In general, DNA methylation within the CpG

island region of a gene’s promoter region is correlated with

gene expression, while DNAmethylation within the gene body

is also associated with chromosomal integrity (Jones, 2012).

To examine the methylation status of RIOK2, 11 probes from

the SMART database were selected and analyzed across pan-

cancers. Differentially methylated probe sets were

significantly enriched in N-shelves but were not mentioned

in previous studies. The N-shelf probe cg26082324 showed a

pattern with reduced methylation in almost all examined

malignancies relative to healthy tissues, suggesting that

differential RIOK2 N-shelf site methylation may be related

to carcinogenesis in pan-cancer (Figure 4C). Despite the

aforementioned differences in the RIOK2 methylation

region, the methylation levels of RIOK2 were correlated

with tumorigenesis and progression.

Genetic alteration among individual
cancer types

Alterations in kinase genes associated with human cancers

have previously been identified, the majority of which are

located within the kinase domains (Negrini et al., 2010). To

identify the types and regions of RIOK2 mutations,

comprehensive characterization of RIOK2 alterations in a

total of 10,967 samples comprising 23 cancer types were

evaluated using cBioPortal. RIOK2 alterations occurred

most frequently in UCEC (4.9%), followed by OV (3.4%),

and SKCM (3.2%) (Figure 5A). There were five types of

RIOK2 alterations: mutation, fusion, amplification, deep

deletion, and multiple alterations. Mutations and deep

deletions were more common in the pan-cancer cells.
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FIGURE 4
Methylation feature of RIOK2 in different tumors of TCGA.(A) Correlation between the RIOK2 methylation levels and expression is displayed
using a radar chart across the various cancer types. The pattern is observed with the CpG island probe cg06664872. The statistical significance
computed by the Spearman test is annotated by the number of stars (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (B)Correlation between the
RIOK2 methylation levels and overall survival is shown by the Kaplan-Meier curves across the various cancer types which have significant
survival risk (p < 0.05). (C) Differences in RIOK2 methylation levels between tumors and healthy groups are displayed using box plots that are
upregulated or downregulated in tumors (red) compared to healthy tissues (gray) for each cancer type. The pattern is observed with the N-shelf
probe cg26082324. Beta-values are between 0 and 1, with 0 being unmethylated and 1 being fully methylated. The statistical significance computed
by the Wilcoxon test is annotated by the number of stars (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 5
Mutation feature of RIOK2 in different tumors of TCGA. (A) The histogram compares the frequency of RIOK2 gene alteration type between
different tumors. (B) Mutation sites of RIOK2 in 32 studies of TCGA Pan-Cancer Atlas. Mutation diagram circles are colored with respect to the
corresponding mutation types. In case of different mutation types at a single position, color of the circle is determined with respect to the most
frequent mutation type. (C) The disease-specific, disease-free, and progression-free survival curves of the BRCA which have significant survival
risk (p <0.05). (D) The image indicates the relationship between the domain of the RIO1 family, N-terminal of RIO2, ATP-binding site, inhibitor binding
site, and mutation site, using a 3D structure from different angles.
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FIGURE 6
Phosphorylation feature of RIOK2 in different tumors of TCGA. (A) An overview of the changes in RIOK2 phosphorylation in breast cancer, colon
cancer, ccRCC, UCEC, and OV from the CPTAC database. (B) Box plots representing the RIOK2 phosphorylation level calculated by Z-value (y-axis)
for each TCGA cancer type and corresponding healthy groups (x-axis). The statistical significance computed by Student’s t-test is annotated by the
number of stars (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C) The Venn diagram on the left counts the number of
RIOK2 phosphorylation sites in cancer and healthy tissues, including experimental data and predicted data. The right panel of the chart depicts the
difference between tumor cells, normal cells, and predictive sites of RIOK2 phosphorylation. The information about RIOK2 phosphorylation sites in
tumor cells was extracted from 72 samples of the Quantification of Post-Translational Modifications database, and the phosphorylation sites in
healthy cells were obtained from the PhosphoNET, Phosphosite Plus, and Phosida datasets (these data have been verified by high-throughput
proteomics technologies); the predicted phosphorylation sites come from thr PhosphoNET database.
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Cancer types with high RIOK2 mutation levels included

UCEC, SKCM, BLCA, and CHOL (Figure 5A). Since the

amino acid residues of human RIOK2 that undergo

mutation were previously unknown, we summarized our

results on cBioPortal. There were significantly more

mutation events at amino acid residues Arg519, Ser456,

Arg356, Arg276, Asp271, Asp228, and Arg126 (Figure 5B).

Hotspots in RIOK2 at Arg126, Asp228, Phe271, and Arg276

(four conserved sites in RIO1) were self-stabilizing

(Figure 5B). These mutations could have widespread effects

because RIO1 is a binding partner of ATP. Furthermore, we

observed that Pro176, Pro195, Ile235, Glu238, Thr243, and

Asp246 were located within the active region of RIOK2

(Figure 5D). Recently, Wang et al. (2019) developed a

crystal structure of a specific inhibitor that binds to the

active center of RIOK2, called RIOK2i. Notably, Ile235,

which was mutated to Val235, was not only within the

active region of RIOK2 but also within the binding site of

RIOK2i.

Finally, we probed for associations between RIOK2

mutations and overall survival, disease-specific survival,

disease-free survival, and progression-free survival for all

cancers (Figure 5C). Patients with higher RIOK2 alterations

were significantly correlated with poorer prognosis in BRCA.

Impact of RIOK2 protein phosphorylation
in pan-cancer

Many cancers arise as a result of deregulation of kinase

phosphorylation, which alters protein function. Thus,

studies on RIOK2 phosphorylation may reveal the factors

underlying carcinogenesis and progression. RIOK2 has the

capability to auto-phosphorylate, which is important for its

function (Zemp et al., 2009). We identified six sites where the

phosphorylation frequency changed in colon cancer, breast

cancer, UCEC, OV, and KIRC, namely Ser335, Ser337,

Ser354, Ser380, Ser382, and Ser385. Except for OV, the

phosphorylation levels at these six sites increased

significantly (Figures 6A,B, Student’s t-test, p < 0.05).

Furthermore, Ser337 and Ser380 were most frequently

phosphorylated among the five types of cancer in which

phosphorylation was enhanced. To determine whether

RIOK2 phosphorylation is required for tumorigenesis, we

summarized experimentally verified and predicted

phosphorylation sites of tumors and normal tissues based

on the four databases of Quantification of Post-Translational

Modifications, Phosida, Phosphosite Plus, and PhosphoNET.

Venn diagram analysis identified two phosphorylated amino

acids that were significantly tumor-specific: Ser149 and

Asn397 (Figure 6C). Therefore, over-phosphorylation of

RIOK2 in tumors suggests its potential functional

importance in pan-cancers.

Relationship betweenmRNA expression of
RIOK2 and the tumor-immune
microenvironment

The above results suggest that aberrance in

RIOK2 expression and function in cancer cells probably

contributes to the occurrence and progression of cancer. It is

now clear that tumorigenesis and metastasis of tumors lie in the

two-way interaction between cancer cells and their environment,

forming a tumor microenvironment (Oehler et al., 2009). To

investigate the association between RIOK2 expression and

immune cell infiltration levels in pan-cancer, TCGA data were

analyzed via purity-adjusted Spearman’s rank correlation tests

using EPIC and xCell algorithms (Zemp et al., 2009). The results

demonstrated that high expression of RIOK2 was associated with

CD8+T cells, CD4+Th2 cells, CD4+Treg cells, and cancer-

associated fibroblast infiltration in pan-cancer, whereas

CD4+Th1 cells, macrophages, and natural killer cells showed

the opposite association (Figure 7A). Multiple known

CD8+T cell exhaustion markers, such as HAVCR2, ENTPD1,

TIGIT, TNFRSF9, LAYN, PHLDA1, and SNAP47 (Zheng et al.,

2017), were positively correlated with the expression of RIOK2,

indicating that the elevated expression of RIOK2 resulted in

effector T cells with a reduced capacity to secrete cytokines and

an increased expression of inhibitory receptors (Figure 7B). The

CD4+Th1/CD4+Th2 balance plays an important role in the

tumor microenvironment (Ruterbusch et al., 2020), and our

results showed that high expression of RIOK2 was negatively

correlated with CD4+Th1/CD4+Th2 cells, indicating that

RIOK2 is involved in Th1/Th2 regulation (Figure 7C).

Furthermore, we identified other types of tumor-infiltrating

lymphocytes and biomarkers correlated with RIOK2 in

immunotherapy from the Tumor and Immune System

Interaction Database (Ru et al., 2019). The landscape of the

relationship between RIOK2 expression and tumor-infiltrating

lymphocytes in pan-cancer is shown in Supplementary Figures

S4, S5. Specifically, Spearman correlations showed that

RIOK2 expression was negatively associated with the

infiltration levels of B cells, eosinophils, mast cells, monocytes,

and neutrophils. Increasing evidence suggests that immune

checkpoint blockade is among the most promising therapies

for cancer. Our results revealed that RIOK2 is involved in the

regulation of immune checkpoint expression in pan-cancer. The

detailed relationship between RIOK2 and each representative

immune checkpoint is shown in Figure 7B. Notably,

RIOK2 demonstrated mutual exclusivity with several immune

stimulators, namely C10ORF54, CD27, and the tumor necrosis

factor receptor superfamily, but a statistically significant co-

occurrence with some immunological checkpoints, namely

CD274, IDO1, KDR, and transforming growth factor beta

receptor I. In addition, a reduction in major

histocompatibility complex I molecule expression in human

tumors is often detected by pathologists (Burr et al., 2019).
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FIGURE 7
The expression of RIOK2 is correlated with immune cells infiltration and biomarkers in cancer. (A) A heat map showing the correlation between
RIOK2 expression and immune infiltration levels in diverse cancer types. The correlation of infiltrating cells were obtained using the EPIC algorithm,
and the correlation of CD4+T cell subtypes by using the xCell algorithm with Spearman purity adjustment. (B) A heat map conveys the correlation
between RIOK2 expression and seven CD8+T exhaustion markers, four immune checkpoints, and seven immune stimulators in diverse cancer
types. (C) Scatter plots showing the relationship betweenCD4+Th1 and CD4+Th2 infiltrate values and RIOK2 expression. Spearman’s correlationwas
employed to conduct a purity adjustment analysis.
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FIGURE 8
RIOK2-related genes and proteins analysis in tumor tissues. (A) A connectivity map of the PPI network involving 76 experimentally available
RIOK2 interaction proteins from the STRING database linked via 2,290 interactions. Major hubs are highlighted in red. The minimum required
interaction score was for medium confidence (0.400). The resulting PPI network was visualized using Cytoscape and further analyzed using
molecular complex detection. (B) A radar chart shows that the correlation between RIOK2 expression and five proteins was assessed by purity-
adjusted partial Spearman’s rho-value in pan-cancer. (C) Genes that correlated with RIOK2 expression with the top 500 Spearman correlation
coefficients were obtained from TCGA. The expression correlation of the top eight RIOK2-related genes and RIOK2 was visualized by scatter plots
using Spearman’s correlation for supplementary verification.
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FIGURE 9
RIOK2-related genes enrichment analysis in tumor tissues.(A) The chord diagram depicts gene enrichment in the top ten biological processes
processed by the GO enrichment analysis. (B) GO enrichment analysis of the top 500 RIOK2 expression-related genes in various types of tumor
tissues. The functions of these genes were classified into three categories: biological processes, cellular components, and molecular functions. The
ordinate represents the percentage of genes enriched for this function. (C) KEGG enrichment analysis of the top 500 RIOK2 expression-related
genes in various types of tumor tissues. The functions of these genes enriched by KEGG are classified into five main classes: cellular processes,
environmental information processing, genetic information processing, metabolism, and organismal systems. The ordinate represents the
percentage of genes enriched in the function. (D) The ScatterPlot shows the KEGG enrichment pathways, which have significantly rich factors
(p < 0.05).
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Understanding how a given tumor can evade detection by CD8+

T cells could help determine immunotherapies that are most

likely to succeed against that tumor. As shown in Supplementary

Figure S4E, the expression of major histocompatibility complex I

molecules, such as HLA-A, HLA-B, and HLA-C, was found to be

negatively associated. These findings indicate that RIOK2 is

closely related to the infiltration of immune cells, which may

be involved in regulating the tumor microenvironment in pan-

cancers.

Signaling pathways involving RIOK2-
interacting proteins

Withmixed reports of its behavior, we sought to understand the

potential mechanism of RIOK2 activity in pan-cancer using

functional gene and protein interaction networks. We used gene

expression profiles to construct RIOK2 PPI networks based on the

STRING database and assessed their correlations with RIOK2 in a

pan-cancer analysis. The resulting PPI network contained 76 nodes

and 2,290 non-redundant edges visualized using Cytoscape and

further analyzed by molecular complex detection. We later re-

clustered the above proteins with molecular complex detection in

the same software to obtain Cluster1 and Cluster2. Cluster2 was

more densely connected to RIOK2 than Cluster1 (Figure 8A). The

expression of five proteins in Cluster2 that were related to

RIOK2 was assessed using purity-adjusted partial Spearman’s

rho-value as the degree of their correlation in pan-cancer, as

illustrated in our radar chart (Figure 8B).

To extract co-expressing genes, we calculated the Spearman

correlation of the expression value against the RIOK2 gene in the

expression matrix (Figure 8C). Genes that correlated with the

expression of the RIOK2 with top 500 Spearman correlation

coefficients were defined as genes co-expressing RIOK2. We then

performed KEGG pathway and GO enrichment analyses of

signaling pathways. There were two types of visualization to

plot the gene co-expression data and display their functional

annotations: first, a Circos plot to display gene co-expression and

highlight co-expressing genes (Figure 9A); second, a functional

histogram and bubble chart to display functional annotation of

the co-expressing gene (Figures 9B–D). The results indicated that

genes co-expressed with RIOK2 were involved in the processes of

metabolism, cell cycle, and autophagy (Figure 9C). Furthermore,

these genes were directly or indirectly associated with key

molecules in crucial signaling pathways, namely the Hedgehog

signaling pathway, Fanconi anemia pathway, and mRNA

surveillance pathway (Figure 9D).

Discussion

RIOK2 was discovered 12 years ago but has been the subject

of only 17 publications since, resulting in a limited amount of

information regarding its normal and oncogenic functions. The

involvement of RIOK2 as an oncogenic driver was described for a

spectrum of tumor types. Based on our novel conceptualization

of RIOK2-mediated tumorigenesis and development, we

performed a pan-cancer analysis based on multi-omics for a

comprehensive panel of RIOK2 for the first time. A range of new

and powerful bioinformatics tools revealed that RIOK2 is a

candidate target across many cancer types which may

stimulate novel ideas and strategies for the development of

anti-neoplastic drugs. This is the first and most

comprehensive analysis of the cancer-associated disruption of

RIOK2.

To date, RIOK2 has been found to be highly expressed only

in non-small cell lung cancer (Liu et al., 2016; Liu et al., 2018),

prostate cancer (Read et al., 2013), glioblastoma (Liu et al., 2016),

acute myeloid leukemia (Messling et al., 2021), and

hepatocellular carcinoma cells (Delman et al., 2019). However,

we showed that RIOK2 is common not only in these four cancer

types but also in CHOL, DLBC, THYM, LGG, COAD, KIRC,

HNSC, STAD, SKCM, and ESCA. Due to its prevalence in pan-

cancer, we reasoned that RIOK2 may have profound clinical

applications. As expected, the incidence of RIOK2 was relatively

higher in metastatic SKCM, BRCA, KICH, COAD, KIRP, OV,

ccRCC, LUAD, and UCEC and was lower in THCA than in

primary tumors. Cox proportional hazards regression revealed

an association between higher expression of RIOK2 and shorter

overall survival and relapse-free survival. These findings reflect

that more intensive testing for RIOK2 expression in pan-cancer

can provide an earlier diagnosis and treatment with fewer cases of

progression to metastatic cancer.

In addition to the effect on gene expression, RIOK2 can

also be regulated at multiple levels, such as epigenetic

modifications, gene alterations, and post-translational

modifications. Changes in DNA methylation in cancer have

been identified as promising targets for the development of

robust diagnostic, prognostic, and predictive biomarkers

(Koch et al., 2018). We observed that pan-cancer tumors

had distinct DNA methylation profiles and that a negative

correlation existed between DNA methylation levels in the

promoter region of RIOK2 and RIOK2 expression levels.

Hereby, we speculated that methylation regulation might

participate in tumorigenesis and cancer development to

affect patient survival. Thus, the potential of

RIOK2 methylation assessments in cancer should be

explored in the future.

Of note, although evidence concerning the association

between gene alterations and cancer is mounting (Skoulidis

and Heymach, 2019), no clinical data existed for the

correlation between RIOK2 alterations and tumors. This study

provides the first comprehensive report examining the

association between tumor response and specific mutations in

RIOK2. Among the six mutation sites examined, Ile235, which

was mutated to Val235, was strongly associated with
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RIOK2 kinase activity. We further showed that the

RIOK2 mutation was strongly and negatively correlated with

patient survival in BRCA.

In addition, the accumulation of hyperphosphorylated kinase

is also linked to cancer; however, the relationship between

RIOK2 phosphorylation and tumors has not been reported in

the literature. Our previous studies have shown that RIOK2 is

phosphorylated by ATP activation at Asp257 in the active site,

which could trigger late cytoplasmic 40S subunit biogenesis42. In

this study, we showed for the first time that the protein kinase

activity of RIOK2 was enhanced; six amino acids were identified

to be phosphorylated frequently in pan-cancer, among which

Ser149 and Asn397 appeared to be tumor-specific

phosphorylation sites.

It remains unknown what role the aberrance in

RIOK2 expression and function plays with immune cells in

the tumor microenvironment. It is worth noting that the

tumor microenvironment is one of the important factors

leading to tumor migration and invasion (Kaymak et al.,

2021). To better understand the relationship between

RIOK2 and tumor-immune escape, we profiled and

compared the changes in RIOK2 expression and tumor

microenvironment immune cell composition in pan-cancer.

We found that the infiltration levels of CD8+T cells,

CD4+Th2 cells, CD4+Treg cells, and cancer-associated

fibroblasts increased with elevated RIOK2 expression. As

expected, we observed upregulation of known inhibitory

immune checkpoints (CD274, IDO1, KDR, and

transforming growth factor beta receptor I), markers of

progressive CD8+T cell exhaustion (HAVCR2, ENTPD1,

TIGIT, TNFRSF9, LAYN, PHLDA1, and SNAP47), and

CD4+Th2/Th1, all of which demonstrated that

RIOK2 might be a potential therapeutic target governing

key hallmarks of immune suppression in various cancer

types. Although RIOK2 has been found to be strongly

correlated with tumor survival and metastasis, the

underlying molecular mechanism requires further

exploration. Recently, RIOK2 has been shown to be

involved in tumor migration, invasion, and epithelial-

mesenchymal transition through the AKT/mechanistic

target of rapamycin kinase signaling pathway in

glioblastoma and non-small cell lung cancer9; 10.

Understanding the detailed mechanisms and co-occurrence

genes of RIOK2 in various pathways is critical for the

development of new therapeutic approaches that can

improve patient care. Our results showed that five proteins

(TSR1, NOB1, PNO1, LTV1, and bystin-like protein) among

the 76 proteins we investigated interacted with RIOK2.

Interestingly, it has been reported that NIN1 (RPN12)

binding protein 1 homolog can determine where in the

spectrum of chronic myeloid leukemia progression an

individual patient should be diagnosed (Oehler et al.,

2009). The partner of the NOB1 homolog is also

overexpressed in colorectal cancer and correlates with poor

patient survival, and it exerts oncogenic effects by altering

ribosome biogenesis (Shen et al., 2019). Bystin-like protein

plays an important role in the rapid growth of hepatocellular

carcinoma cells, mediates nucleolus-derived foci and

prenucleolar body formation, and ultimately contributes to

nucleolar assembly during cell division (Wang et al., 2009).

Therefore, we reasoned that it is more likely that it is through

these three proteins that RIOK2 contributes to the survival,

proliferation, and invasion of cancer cells in pan-cancer. In

addition, enrichment analysis of the top 500 genes related to

RIOK2 revealed that multiple pathways were correlated with

metabolism, cell cycle, and autophagy. Among the above

signaling pathways, Hh and autophagy signaling pathways

play critical roles in cancer stem cell progression (Yang et al.,

2020). Fanconi anemia is a genetic disorder characterized by

predisposition to cancer. Carcinogenesis resulting from a

dysregulated Fanconi anemia pathway is multifaceted, as

Fanconi anemia proteins monitor multiple complementary

genome surveillance checkpoints throughout the interphase

(Nalepa and Clapp, 2018). In addition, dysregulated cell cycle

transition caused by inefficient proteolytic control leads to

uncontrolled cell proliferation and finally results in

tumorigenesis (Dang et al., 2021). Overall, RIOK2 may be a

critical factor in the occurrence and development of tumors by

regulating these pathways. However, further studies are

required to validate these assumptions.

An important merit of this study is the comprehensive

understanding of RIOK2 from multiple perspectives, which

can provide guidance for future research. Our findings

demonstrate that RIOK2 expression, methylation,

alteration, and phosphorylation play essential roles in

tumor occurrence and metastasis, which not only reveals a

novel target of RIOK2-mediated proliferation, migration, and

invasion of tumor cells, but also provides a basis for treating

malignant tumors by interfering with RIOK2.

Conclusion

Existing evidence has shown that RIOK2 is involved in

non-small cell lung cancer, glioblastoma, hepatocellular

carcinoma, acute myeloid leukemia, and prostate cancer

progression. However, the role of RIOK2 in tumors

remains unclear. Therefore, it is essential to determine

whether RIOK2 can be used as a predictive biomarker for a

broader range of tumor types. In this study, for the first time,

we found that elevated RIOK2 expression, methylation,

mutation and hyper-phosphorylation were surprisingly

common across multiple cancer types. In conclusion, this

study is the first comprehensive analysis of multi-omic

features of RIOK2 across pan-cancer and helps in

unraveling the role of RIOK2 in cancer. After further
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functional validation, RIOK2 may be utilized as a cancer

biomarker which can be utilized to implement novel

targeted therapies for a range of tumors.
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