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Bioassay-guided isolation of spiroaspertrione A from cultures of Aspergillus sp.

TJ23 in 2017 demonstrated potent resensitization of oxacillin against

methicillin-resistant Staphylococcus aureus by lowering the oxacillin minimal

inhibitory concentration up to 32-fold. To construct this unique spiro[bicyclo

[3.2.2]nonane-2,1′-cyclohexane] system, a protocol for ceric ammonium

nitrate-induced intramolecular cross-coupling of silyl enolate is disclosed.
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Introduction

The expansion of multidrug-resistant pathogens is a threat to human health that can

effectively take us back to the pre-antibiotic era for many infectious diseases (Walsh et al.,

2011). Considering its grave roles in hospital and community-acquired infections,

methicillin-resistant Staphylococcus aureus (MRSA) is a “superbug” with an extreme

array of resistance and virulence factors (Gonzales, et al., 2015). Drug-resistance gene

mutations of MRSA are exemplified by mecA, the disruption of which can produce

inducible resistance to β-lactam antibiotics because it encodes penicillin-binding protein

2a (Fuda et al., 2005). With the rapid acquisition of resistance restricting therapeutic

options for MRSA, many scientists have explored treatment methods combining the use

of small molecules to render MRSA sensitive to the effects of conventional β-lactam

antibiotics (Van Hal et al., 2011; Long et al., 2014; Bush, 2015; Gonzales et al., 2015).

In 2017, Zhang group used a bioassay-guided approach to isolate a novel terpene-

polyketide hybrid spiromero-terpenoid from a culture of Aspergillus sp. TJ23,

spiroaspertrione A (1), which bears a unique spiro[bicyclo[3.2.2]nonane-2,1′-
cyclohexane] carbocyclic skeleton (Figure 1) (He et al., 2017). Spiroaspertrione A

demonstrated potent resensitization of oxacillin against MRSA by lowering the

oxacillin minimal inhibitory concentration (MIC) up to 32-fold from 32 μg/mL to

1 μg/mL (He et al., 2017). This promising bioactivity together with a unique spiro

[bicyclo[3.2.2]nonane-2,1-cyclohexane] carbocyclic skeleton renders spiroaspertrione A

an interesting and challenging target for total synthesis. To date, no synthesis method for

spiroaspertrione A has been reported.

Here, we analyzed and constructed the core skeleton of this spiromeroterpenoid,

culminating in a strategy of intramolecular enol oxidative coupling (Figure 2). When
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designing this synthetic strategy for spiroaspertrione A, we

noticed that the E lactone ring can be obtained by simple

lactonization during later synthesis. Construction of the spiro

[bicyclo[3.2.2]nonane] system of the ABCD rings exhibits a high

degree of ring tension and rigidity–the most interesting and

challenging feature of spiroaspertrione A synthesis. The core

skeleton of spiroaspertrione A could be constructed through

Birch reduction followed by methylation of the naphthene

compound 2. This synthetically significant and more tractable

spiro-ring system can then be built by an intramolecular enol

oxidative coupling (EOC) reaction of precursor 3, which can then

be traced back to a 1,4-conjugate addition of western fragment

5 and eastern fragment 4.

As an efficient synthetic method to directly construct C-C

bonds, the oxidative coupling reaction of enol derivatives has

been applied in the syntheses of polyketides, alkaloids, and other

natural products. (Murarka and Antonchick 2018). Although the

first oxidative coupling reaction of enol derivatives dates back to

1935, it did not receive widespread attention from chemists until

the 1970s because the efficiency and practicality of this reaction

were less than satisfactory (Fujii et al., 1992; Kohno and Narasaka

1995; Ryter and Livinghouse 1998; Ekebergh et al., 2011; Rathke

and Lindert 1971; Dessau and Heiba 1974; Xie and Huang 2010;

Renaud and Fox 1998). In 2005, Baran group began to conduct

in-depth research on the oxidative coupling reaction of enolates

and successfully applied their findings to the total synthesis of

multiple complex natural products (Baran et al., 2005; Richter

et al., 2007; DeMartino et al., 2008). To date, the oxidative

coupling reaction of enol derivates remains under constant

development and optimization. The EOC reaction can be

broadly divided into two categories: direct oxidation, involving

the construction of C-C bonds under single-electron oxidants

(e.g., ketones, carboxylic acids, esters, and amides) bound to the

corresponding enols or enolates; and indirect oxidation, in which

single-electron oxidants are converted to the corresponding enol

(e.g., silanes and enamines) prior to construction of the C-C

bonds (Figure 3). The EOC reaction has been reviewed by Plumet

(Csákÿ and Plumet 2001), Baran (Baran 2006), Dong (Yeung

Dong 2011), Thomson (Guo et al., 2012), Ma (Nagaraju and Ma

2018), Chen (Chen and Liu 2021), and others.

In recent years, intermolecular and intramolecular EOC

reactions have been applied to many natural products as an

efficient method of constructing C-C bonds (Figure 4). Baran

FIGURE 1
Structure of spiroaspertrione A (1).

FIGURE 2
Retrosynthetic analysis.
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group completed the construction of the core skeleton of the

natural product maoecrystal V using intermolecular EOC

reactions (Krawczuk et al., 2009). Furthermore, Yang group

(You et al., 2015) used enol silyl ethers substrates to realize

the enantioselective synthesis of propindilactone G from the

Schisandra family by cross-oxidative coupling reaction.

Moreover, Thomson groups disclosed a method of self-

intermolecular EOC reactions applied to the synthesis of

dimerized natural product bis-murrayaquinone A (Konkol

et al., 2011).

Using intramolecular EOC reactions, Overman group

(Martin et al., 2008; Martin et al., 2010) made important

progress toward the total synthesis of the indole alkaloids

(±)-actinophyllic acid. From 2010 to 2014, Ma group (Zuo

FIGURE 3
Types of enol oxidative coupling reaction.

FIGURE 4
Application of EOC reaction in the synthesis of natural products.
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et al., 2010; Zuo and Ma 2011; Zi et al., 2012; Wei et al., 2013;

Teng et al., 2014) realized the efficient construction of the core

skeleton of indole alkaloids and synthesized several indole

alkaloids such as (+)-communesins A. In 2018, Thomson

group (Guo et al., 2012; Jones et al., 2014; Robinson and

Thomson, 2018) reported the strategy of intra-EOC reaction

using enol di-silyl ether to realize the formal synthesis of

natural products (+)-7,20-diisocyanoadociane and other

derived products.

FIGURE 5
Synthesis of precursor 3.

TABLE 1 Optimization of the reaction conditionsa.

Entry Conditions Yield (2a+2a9)

1 LHMDS, CuCl2 <5%, 60% (brsm)b

2 LHMDS, FeCl3 <5%, 53% (brsm)b

3 LDA, CuCl2 complex mixture

4 KHMDS, CuCl2 9%

5 NaHMDS, CuCl2 11%

6c NaHMDS, CuCl2, O2 --

7d NaHMDS, CuCl2, air --

8 NaHMDS, Cu(acac)2 8%

9 NaHMDS, FeCl3 9%

10 NaHMDS, I2 --

11e

Cu(acac)2

--

aReactions were carried out with 3a (30 mg, 0.081 mmol), metal base (0.243 mmol), and single-electricity oxidant (0.162 mmol) in THF (2.0 ml) under N2.
bBrsm = based on the recovered starting material.
cReactions were carried out with CuCl2 (20% mmol) under O2.
dReactions were carried out with CuCl2 (20% mmol) under air.
eReactions were carried out with 10 mol% catalyst and Cu(acac)2 (20 mol%).
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TABLE 2 Optimization of silyl bis-enol etherification conditionsa.

Entry Conditions Yield %

Bis-silyl Mono-silyl

1 LDA, TBSOTf, THF complex mixture

2 LHMDS, TBSOTf, THF 21 75

3b LHMDS, HMPA, TBSCl, THF 24 74

4 KHMDS, TBSOTf, THF 35 60

5 NaHMDS, TBSOTf, THF 58 30

6c Et3N, TBSOTf, DCM 0 90

aReactions were carried out with 3a (30 mg, 0.081 mmol), base (0.243 mmol), and TBSOTf (0.162 mmol) in THF (2.0 ml) at -78°C under N2.
bReactions were carried out with 3a (30 mg, 0.081 mmol), LHMDS (0.243 mmol), TBSCl (0.162 mmol) and HMPA (0.162 mmol) in THF (2.0 ml) at -78°C under N2.
cReactions were carried out with 3a (30 mg, 0.081 mmol), Et3N (0.243 mmol), TBSOTf (0.162 mmol) in DCM (2.0 ml) at room temperature under N2.

TABLE 3 Optimization of intramolecular EOC reaction conditionsa.

Entry R M Oxidant Solvent T (oC) drb Yieldc

1 Me TBS CAN CH3CN/THF 0 8.7:1 77%

2 Et TBS CAN CH3CN/THF 0 8:1 74%

3 iPr TBS CAN CH3CN/THF 0 4.9:1 69%

4 tBu TBS CAN CH3CN/THF 0 12:1 68%

5 iBu TBS CAN CH3CN/THF 0 6.4:1 62%

6 iPr TES CAN CH3CN/THF 0 5.8:1 64%

7 iPr TIPS CAN CH3CN/THF 0 6.8:1 64%

8 iPr TBS CuCl2 CH3CN/THF –78 to rt -- 21% (50%)d

9 iPr TBS Cu(acac)2 CH3CN/THF –78 to rt -- --

10 iPr TBS FeCl3 CH3CN/THF –78 to rt -- 23% (54%)d

11 iPr TBS AgF, PhBr CH3CN Rt -- no reaction

12 iPr TBS PhI(OH)OTs DCM –78 12:1 61%

aReactions were carried out with 6 (0.08 mmol), CAN (0.24 mmol), and NaHCO3 (0.48 mmol) in CH3CN/THF (0.1 M, 4:1) at 0°C under N2.
bDetermined ratio of 2′ and 2 by 1H NMR.
cIsolated yields of 2 and 2′ after purification by column chromatography.
dIsolated yields of 3 after purification by column chromatography.
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Materials and methods

Unless otherwise noted, all reactions were carried out

under N2 atmosphere. All reagents were from commercial

sources and used as received without further purification. All

solvents were dried by standard techniques and distilled prior

to use. Column chromatography was performed on silica gel

(200–300 meshes) using petrol etherand ethyl acetate as

eluent. NMR spectra were recorded on a Bruker Avance

operating at for 1H NMR at 500 MHz, 13C NMR at

126 MHz and spectral data were reported in ppm relative to

tetramethylsilane (TMS) as internal standard and CDCl3 (
1H

NMR δ 7.26, 13C NMR δ 77.0) as solvent. All high-resolution

mass spectra (HRMS) were obtained by Thermo Scientific’s

UltiMate 3,000 Series liquid system and Thermo Scientific

Q-Exactive combined quadrupole Orbitrap mass

spectrometer.

According to our retrosynthetic analysis, we chose known

compound 5 (Li et al., 2019) and 4 self-prepared from 3-

methylcyclohept-2-en-1-one as substrates to form the

important precursor 3. Following screening of various

conditions, we obtained compound 3 as a minor product

with a yield of 30% under NaH and MeOH, and compound

5’s O-1,4-addition byproduct as the major product.

Subsequent screening of several Lewis acids, such as

BF3·OEt and TiCl4, yielded substrate 5’s O-DA reaction

byproduct as the major product. To our delight, conducting

the reaction in acetone at 55°C in the presence of K2CO3(2 eq)

afforded the desired 1,4-addition product 3 with 60%–68%

yield (Figure 5).

With precursor 3a in hand, we intended to construct the

desired C-C bond by single-electron oxidation under

conditions including a metal base (Table 1). In the presence

of LHMDS and cupric chloride (CuCl2) or ferric chloride

(FeCl3), we obtained a very small amount of the EOC

product 2a and 2a′, although the recovery yield was 60%

(Table 1, entries 1 and 2). We assumed that LHMDS

conditions were not conducive to the formation of stable

enolates, thus, screened various metal bases. When using

LDA as the base, the reaction only provided a complex

mixture and trace amount of product with the oxidant

CuCl2 (Table 1, entry 3). The substrate was completely

consumed under conditions including KHMDS or NaHMDS

(Table 1, entries 4 and 5). Although we tried numerous

oxidative conditions, the yield of oxidative coupling products

was not significantly improved (Table 1, entries 6 to 11).

Results and discussion

According to the unsatisfactory experimental results

described above, we assumed that substrate 3a may form

more stable metal complexes with Cu(II) or Fe(III) ions

under the alkaline system, thereby inhibiting the process of

oxidative coupling. Therefore, we envisaged the replacement

of this stable complex by enol silyl ether (Table 2). We chose

compound 3a as a substrate to first optimize the silyl bis-enol

etherification condition. The desired silyl bis-enol ether

product 6a was obtained with 21% yield in THF (2.0 ml) at

-78°C under N2 in the presence of LHMDS (0.243 mmol) and

TBSOTf (0.162 mmol) (Table 2, entry 2). As previously

mentioned, it was not conducive to obtain silyl enol ethers

and could be broken down using LDA as the base (Table 2,

entry 1). Encouraged by this result, we surveyed other bases

including NaHMDS, KHMDS and Et3N, and found that

NaHMDS generated the best yield (58%) while Et3N only

generated monosilyl product (Table 2, entries 3–6).

With the enol bis-silyl ether 6a in hand, we intended to

optimize the intramolecular enol oxidative coupling reaction

(Table 3). Conducting the reaction in CH3CN/THF at 0°C in

the presence of CAN (0.24 mmol) and NaHCO3 (0.48 mmol)

exclusively afforded the coupling products in 77% isolated

yield after 0.5 h (Table 3, entry 1). However, the main product

4a′ identified by X-ray analyses was an undesired

stereoisomer. We intended to optimize the diastereomeric

ratio (dr) by changing the ester group of 6 (Table 3,

entries 2–5) and found that the isopropyl dr of ester

substrate (3c) reached 4.9:1. We also explored the effect of

different silicon groups (Table 3, entries 6–7).

Unfortunately, changing the silicon groups did not

decisively progress the EOC reaction. Finally, we evaluated

different oxidants to optimize the dr of products

(Table 3, entries 8–12). Cu(II) chloride and Fe(III) chloride

produced the coupling products with 21% and 23% yields,

but even more of the desilylation product 3 (Table 3,

entries 8 and 10). Other metal oxidants, including

Cu(acac)2 and AgF, provided a complex mixture of product

and raw product 6c (Table 3, entries 9 and 11), and the result of

Koser’s reagent (PhI(OH)OTs) was also unsatisfactory

(Table 3, entry 12).

Conclusion

In conclusion, we developed an efficient method of

constructing the spiro[bicyclo[3.2.2]nonane] system by

intramolecular enol oxidative coupling reaction.

Although the diastereomeric ratio of products is

embarrassing, the high yield of this remote oxidative

coupling reaction to build rigid spiro[bicyclo[3.2.2]

nonane] structures is encouraging. Our findings once

again confirm the practicality of enol oxidative coupling

reactions in natural products and provide a new strategy

for the synthesis of spiroaspertrione A. Further study for

the total synthesis of spiroaspertrione A is underway in our

laboratory.
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