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Clinically, periodontitis is a chronic nonspecific inflammation that leads to

damaged teeth and their supporting gum tissues. Although many studies on

periodontitis have been conducted, therapy with natural products is still rare.

Silibinin has been proven to have anti-inflammatory and antioxidant activities.

However, the effects of silibinin on lipopolyssacharide (LPS)-induced

inflammation in periodontal ligaments (PDLs) have not yet been investigated.

In this study, the PDLs were treated with silibinin (10, 20, and 40 μM) in the

presence of LPS. The results showed that silibinin treatment reduced the levels

of NO, PGE2, IL-6, TNF-α, MMP-1, and MMP-3 and enhanced the activities of

superoxide dismutase (SOD) and glutathione (GSH). Moreover, silibinin

treatment downregulated RANKL levels and upregulated OPG and ALP

levels. In summary, silibinin protected PDLs against LPS-induced

inflammation, oxidative stress, and osteogenic differentiation.
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Introduction

Periodontitis is a chronic nonspecific inflammation caused by periodontal

pathogenic bacteria (Seo et al., 2004; Nagatomo et al., 2006; Yamamoto et al.,

2006). In the early stages of periodontitis, only the gums are inflamed, and bleed

(Choi et al., 2012; Jun et al., 2012). However, with continuous stimulation of pathogenic

microorganisms and their metabolites, the periodontal tissue produces immune

responses, resulting in the secretion of a large number of inflammatory factors

(Kim et al., 2009; Lee et al., 2012; Lei et al., 2014). These factors damage the

periodontal supporting tissue, loosening the teeth, ultimately leading to tooth loss.

The periodontal ligament (PDL) is an important periodontal tissue that connects the

alveolar bone and root (Grzesik and Narayanan, 2002; Choi et al., 2012; Shin et al.,

2015). PDL cells, the base units of PDLs, maintain periodontal health by secreting

various inflammatory factors and osteoblast/osteoclast regulators (Abiko et al., 1998;

Miura et al., 2000; Gyawali and Bhattarai, 2017).
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Periodontitis is mainly caused by the imbalance between

host’s defense and accumulating bacteria (Slots et al., 1986;

Birkedal-Hansen, 1993). Lipopolysaccharides (LPS) are

bacterial membrane proteins that are present in most

subgingival Gram-negative organisms (Aznar et al., 1990;

Nair et al., 1996). LPS is a stimulant that induces vascular

dilatation and edema of periodontal tissues. In addition,

sustained LPS stimulation damages periodontal tissue by

producing harmful pro-inflammatory mediators, including

IL-1β, IL-6, and TNF-α (Gowen et al., 1983; Boyce et al.,

1989; Milica et al., 2017). Moreover, LPS stimulation increases

the receptor activator of the nuclear factor kappa-B (NF-κB)
ligand (RANKL) and reduces osteoprotegerin (OPG). These

mediators further stimulate periodontitis (Belibasakis et al.,

2007). Thence, clearing inflammation had been recognized as

an effective method for improving disease.

Phytoconstituents have been used as beneficial and

therapeutic agents since ancient times owing to their low

toxicity and biological benefits. Some of them have

beneficial therapeutic effects in the treatment of

periodontitis. Silibinin (SB) is an important polyphenol

found in Silybum marianum L. (Kim et al., 2003; Esmaeil

et al., 2017; Amato et al., 2019) (Figure 1). Natural products

and their derivatives play increasing roles in disease

prevention (Cheng et al., 2022; Zhang et al., 2022). SB

has been confirmed to have stimulating health benefits

and shows promising biological activities, including anti-

inflammatory, antioxidant, anti-tumor, and anti-fibrotic

effects (Raina et al., 2013; Federico et al., 2017; Zheng

et al., 2017). As a reliever of inflammation, SB reportedly

ameliorates silica-induced pulmonary fibrosis by reducing

the pro-inflammatory mediators (IL-1β, IL-6, and TNF-α)
and collagen deposition (Ali et al., 2021). SB is effective

against LPS-induced inflammation in PBMCs in horses

(Gugliandolo et al., 2020). SB also ameliorates

hepatotoxicity by inhibiting inflammation and oxidative

stress (Saxena et al., 2022). Moreover, SB can enhance

anti-inflammatory activity when combined with thymol

(Chen et al., 2020), while it is also used as a beneficial

dietary supplement to maintain body health and treat

liver disorders.

FIGURE 1
Chemical structure of SB.

FIGURE 2
Cytotoxicity assay of SB.

FIGURE 3
SB treatment reduced LPS-induced NO (A) and PGE2 (B) in hPDLs. #p < 0.05, compared to the LPS group.
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The aforementioned evidence suggested that SB has

good anti-inflammatory activity. Similarly, many studies

have shown that periodontitis can be improved by

inhibiting inflammatory responses. We designed and

evaluated the anti-inflammatory effects of SB on LPS-

induced hPDLCs.

Results and discussion

Cytotoxicity assay of SB

To evaluate the cytotoxicity of SB on hPDLs, we exposed

hPDLs to various concentrations of SB (10, 20, and 40 μM) for

FIGURE 4
SB treatment inhibited LPS-induced IL-6 (A) and TNF-α (B) in hPDLs. #p < 0.05, compared to the LPS group.

FIGURE 5
SB treatment inhibited LPS-induced MMP-1 (A) and MMP-3 (B) in hPDLs. #p < 0.05, compared to the LPS group.

FIGURE 6
SB treatment regulated LPS-induced SOD (A) and GSH (B) in hPDLs. #p < 0.05, compared to the LPS group.
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24 h and tested cell viability using theMTTmethod. Based on the

MTT assay results (Figure 2), SB was found to have no effect on

the cell viability, indicating non-cytotoxicity to hPDLs at the

tested concentrations (10–40 μM).

SB reduce LPS-induced NO and PGE2

NO and PGE2 are two inflammatory mediators produced by

the induction of iNOS and COX-2, respectively (Jeong et al.,

2009; Jeong et al., 2011). They can effectively influence

inflammation and are classical markers of inflammation.

Inhibition of NO and PGE2 is considered an effective strategy

for the treatment of inflammation. The effects of SB on NO and

PGE2 levels were assayed in LPS-induced hPDLs. From

Figure 3A, it could be seen that LPS treatment significantly

increased the NO level to 23.37 ± 3.04 μM compared to the

control group. However, the elevated LPS-induced NO levels

decreased by treatment with SB in a dose-dependent manner.

FIGURE 7
SB treatment regulated LPS-induced SOD (A) and GSH (B) in hPDLs. #p < 0.05, compared to the LPS group.

FIGURE 8
SB treatment regulated LPS-induced ALP in hPDLs. #p < 0.05,
compared to the LPS group.

FIGURE 9
Effect of SB on LPS-induced hPDLs.
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The NO level reduced to 10.75 ± 0.96 μM, when treated with SB

at 40 μM. Similarly, SB (40 μM) treatment inhibited the

abnormally elevated PGE2 level induced by LPS stimulation to

64.12 ± 3.43 ng/ml (Figure 3B).

SB inhibit LPS-induced IL-6 and TNF-α

Next, the effects of SB on LPS-induced IL-6 and TNF-α levels
were examined by ELISA. It is well known that the

overexpression of pro-inflammatory cytokines is closely

related to various inflammatory processes (Lee et al., 2020;

Tan et al., 2021). The release of pro-inflammatory cytokines

results in the elimination of foreign pathogens. Therefore,

reduction in pro-inflammatory cytokines is very important for

the treatment of inflammation. As shown in Figure 4, LPS

stimulation visibly increased IL-6 (up to 371.88 ± 21.13 pg/

ml) and TNF-α (2,180.74 ± 160.30 pg/ml) levels compared to

the control group. SB pre-treatment could significantly decrease

the IL-6 level to 255.26 ± 10.39 pg/ml at 40 μM compared to the

LPS-induced group (Figure 4A). Moreover, pre-treatment with

40 μM SB also reduced the TNF-α level to 1,419.61 ± 59.69 pg/ml

(Figure 4B).

SB inhibit LPS-inducedMMP-1 andMMP-3

Matrix metalloproteases (MMPs) are the major proteases of

ECM metabolism and are involved in the destruction of

periodontal tissues (Hosokawa et al., 2021). MMP-1

progresses and damages periodontal soft tissues by degrading

type 1 collagen of periodontal tissues. MMP-3 is also reported to

be involved in soft tissue destruction through the activation of

pro-MMP-1. Hence, regulation of MMP-1 and MMP-3 leads to

the improvement of periodontitis. SB treatment decreased LPS-

induced MMP-1 and MMP-3 production in a dose-dependent

manner (Figure 5). SB (40 μM) treatment reduced the MMP-1

and MMP-3 levels to 16.71 ± 1.12 and 40.72 ± 2.72 ng/ml,

respectively, compared to the LPS group (30.09 ± 1.76 and

89.41 ± 4.23 ng/mL pg/ml, respectively).

SB regulate LPS-induced SOD and GSH

It has been revealed that the inflammatory response

involves cross-talk with oxidative stress in the defense

against pathogenic microorganisms (Chang et al., 2014;

Wang et al., 2019). The effects of SB on superoxide

dismutase (SOD) and glutathione (GSH) levels, which are

important indicators of oxidative stress, were assayed. The

results in Figure 6 showed that LPS stimulation could

obviously reduce SB on SOD levels in hPDLs, which could

be increased by SB treatment (Figure 5A). Similarly, treatment

with SB (Figure 6A) significantly increased GSH reduction

following LPS stimulation (Figure 6B).

SB regulate LPS-induced RANKL and OPG

RANKL and OPG have been reported to play important roles

in bone resorption. RANKL regulates osteoclast differentiation

(Shu et al., 2008). OPG is a decoy receptor that binds to RANKL

to regulate its activity (Bae et al., 2018). We evaluated the effects

of SB on LPS-induced RANKL and OPG expressions. As shown

in Figure 7A, SB treatment clearly downregulated the unusually

high RANKL expression induced by LPS. However, treatment

with SB enhanced the unusually low OPG levels induced by LPS

(Figure 7B).

SB regulate LPS-induced ALP

Alkaline phosphatase (ALP) is an important marker of

osteoblast differentiation and plays a key role in connective

tissue calcification and mineral deposits (Li and Peng,

2019). Studies have shown that LPS can inhibit ALP

activity, cell metabolism, and viability in osteoblasts. Our

results (Figure 8) showed that LPS treatment significantly

inhibited ALP activity compared with the control

group. However, the reduced ALP activity induced by

LPS treatment was effectively reversed by treatment

with SB.

Conclusion

We treated PDLs with silibinin (10, 20, and 40 μM) in the

presence of LPS to investigate the protective effects of silibinin

against periodontitis. Our findings revealed that silibinin

treatment reduced the levels of NO, PGE2, IL-6, TNF-α,
MMP-1, and MMP-3 and enhanced the activities of SOD

and GSH. Moreover, silibinin treatment downregulated

RANKL levels and upregulated OPG and ALP levels.

Our results indicate that silibinin could affect

inflammation, oxidative stress, and osteogenic

differentiation capacity against LPS (Figure 9) and

could be used as an effective agent for the treatment of

periodontitis.

Experimental

Cell culture and treatment

hPDLCs were prepared using previously reported

methods (Blufstein et al., 2021) and cultured in α-MEM
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with 10% FBS, 100 U/mL penicillin, and 100 μg/ml. The cells

were divided into five groups: control group (no agent), LPS

group (treatment with 1 μg/ml LPS), and three SB groups

(treatment with 10, 20, and 40 μM SB, before 1 μg/ml LPS

treatment).

Cytotoxicity assay

The cytotoxicity of SB on hPDLCs was assayed using the

MTT assay. hPDLCs were seeded into 96-well plates for 24 h

and then treated with SB (10, 20, and 40 μM) for another

24 h. The MTT reagent (0.5 mg/ml) was added to each well

and incubated for 4 h. DMSO was used to dissolve the

resulting crystals, followed by absorbance measurement at

570 nm.

Determination of NO

The hPDLCs were treated with SB (10, 20, and 40 μM) for

2 h, followed by exposure to LPS (1 μg/ml) for 24 h. The NO level

in the supernatant was then determined using the Griess reagent.

An equal volume of the Griess reagent was added to the culture

supernatant and incubated for 10 min. The absorbance was then

measured at 540 nm.

Determination of PGE2

After hPDLCs were treated for 24 h, the culture

supernatant was harvested. PGE2 levels in each group were

measured using an EIA kit according to the manufacturer’s

instructions.

Determination of IL-6, TNF-α, MMP-1,
MMP-3, and OPG

After hPDLCs were treated for 24 h, IL-6 and TNF-α levels

were measured in the harvested culture supernatant using the

corresponding IL-6, TNF-α, MMP-1, MMP-3, or OPG ELISA

assay kits.

Determination of SOD and GSH

After hPDLCs were treated for 24 h, SOD and GSH levels

were measured in the harvested cells using the corresponding

commercial kits.

Determination of RANKL

After hPDLCs were treated for 24 h, the cells were harvested

and lysed and RANKL levels were measured using RANKL

ELISA kits.

Determination of ALP activity

After hPDLCs were treated for 7 days, the harvested cells

were lysed using 1% Triton X-100. After centrifugation, ALP

activity of the supernatant was detected the ALP activity using an

ALP assay kit.
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