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In this study, cobalt composite immobilized on polysulfone fibrous

network nanoparticles (CCPSF NPs) were synthesized in a controllable

and one-step way under microwave-assisted conditions. The structure of

CCPSF NPs was characterized by SEM images (for morphology and size

distribution), TGA (for thermal stability), BET technique (for the specific

surface area), FT-IR spectroscopy (for relation group characterization),

and XRD patterns (for crystal size). The oxidation of the primary and

secondary alcohols to aldehyde and ketone was investigated using

synthesized CCPSF NPs under solvent-free microwave-assisted

conditions, and high oxidizing activity was observed. In addition to

oxidation properties, the anticancer activity of the synthesized CCPSF

NPs in breast cancer was evaluated by the MTT method , and significant

results were obtained.
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1 Introduction

The increase in the world population causes an increase in

the consumption of various substances. As we know, the use of

traditional methods in the synthesis of compounds leads to

environmental pollution. With the progress of science and

technology, new and green methods have taken the place of

classical methods. Therefore, the use of green methods leads to

the reduction of environmental pollution and high productivity.

One of the recently developed methods for the synthesis of green

materials is the use of nanoparticles (Appa et al., 2019; Singh

et al., 2021; Vallinayagam et al., 2021; Venkateswarlu, 2021;

Alshahrani et al., 2022; Naidu and Venkateswarlu, 2022).

Nanomaterials with disordered structures such as carbon

nanotubes, oxide structures, composites, and metal–organic

frameworks (MOFs) have been synthesized and used for

various applications (Wu et al., 2013; Athab et al., 2015; Al-

Rowaili et al., 2018; Mohanta et al., 2019; Güemes et al., 2020). In

the meantime, many applications such as therapeutic activities,

gas storage, separation, and catalytic capabilities of MOF

compounds have been reported (Chen et al., 2020; Wu et al.,

2020). The review of past literature shows that MOF compounds

have biological activities such as antitumor activity, antioxidant,

DNA cleavage, antimicrobial, and biofilm inhibition activities

(Rojas et al., 2014; Gecgel et al., 2022).

The significant porosity, high specific surface area, and small

and uniform particle size can be mentioned among the factors

that have affected the importance and applications of these

compounds (Ding et al., 2019). Co-precipitation methods

(Rani et al., 2020), such as sol–gel (Tarzanagh et al., 2019)

and hydrothermal (Zhao et al., 2008) methods, are the

methods that have been reported for the synthesis of MOF

compounds.

It is very essential to use green and environmentally friendly

methods to synthesize these compounds. Since 1986, microwave

irradiating technology to speed up the process of chemical

reactions has been used. In this method, the reaction is

performed in a shorter time with high efficiency, and it is a

convenient and effective technique for heating the reaction

medium (Lee et al., 2004; Mohammadi et al., 2009;

Ghalehbandi et al., 2020).

In the synthesis of MOF compounds, the choice of synthesis

method is critical and affects the physical and chemical

properties of the products. Reviewing the literature shows that

the synthesis of these compounds using microwaves can affect

their specific surface and improve their properties (Shu et al.,

2020; Ma et al., 2021; Mirhosseini et al., 2021).

As mentioned, one of the applications of MOF compounds is to

use them as catalysts. In this field, there have beenmany reports that

these compounds have been used to synthesize organic compounds

and polymers (Pascanu et al., 2019; Konnerth et al., 2020).

One of the essential developments in the synthesis of organic

compounds is the production of carbonyl compounds by

oxidizing alcohols (Ghafuri, 2015; Manesh and Nazari, 2015;

Alshammari et al., 2017; Al-Khafaji et al., 2018).

Carbonyl-containing organic compounds by the creation of

active intermediates are key chemical compounds for the

synthesis of advanced chemicals and effective substances (Reis

et al., 2010; Bayat et al., 2015; Sun et al., 2017).

Among the reactions that have recently received attention is

the oxidation of alcohols using microwave radiation technology.

According to the reactions related to the production of carbonyl

compounds with the help of oxidation of alcohols, we conclude

that there are still many opportunities to develop methods and

achieve simpler, gentler, and environmentally friendly strategies

(Hashemi et al., 2004; Ghalehbandi et al., 2020; Alameri and

Almashhedy, 2021; Lihumis et al., 2022).

Considering the importance of the oxidation reaction of

alcohols and the use of efficient catalysts and green methods,

in this research, cobalt composite immobilized on polysulfone

fibrous network nanoparticles (CCPSF NPs) were synthesized by

a microwave synthesis method and used as catalysts in the

oxidation of alcohols under microwave conditions. The

advantages of this catalyst are that they oxidize type-1 and

type-2 alcohols and diols with higher efficiency and less time

and can be reused. Continuing investigations on CCPSF NPs,

their anticancer properties were evaluated, and they were also

introduced as anticancer agents.

2 Experimental Section

2.1 Devices and materials

The SEM images were prepared using a Hitachi S-4800

FESEM. A thermal analyzer, STA 409, at a heating rate of

10°C/min was used to record TGA curves. A Nicolet

AVATAR 360 FT-IR spectrophotometer was used to obtain

the FT-IR spectrum of compounds. Philips XPERT PRO Cu-

Kα radiation was used to obtain the XRD pattern of the

compound, and finally, a Bruker FT-NMR Ultra Shield

spectrometer (250 and 75 MHz) was used to obtain the 1H

and 13C-NMR spectra. For the synthesis of cobalt composite,

TAP SONIC (Fanavaran Nano-Meghyas) was used.

An advanced microwave synthesis laboratory station

(MicroSYNTH, Milestone Co.) was used for microwave

irradiation oxidation of alcohol derivatives.

The solvents and reagents used in this study were prepared by

Sigma Aldrich and Merck.

2.2 Synthesis of cobalt composite

A mixture of 0.2 mmol of Co(NO3)2 and 0.6 mmol of

pyridine-2,6 dicarboxylic acid in 50 ml of double-distilled

water was stirred for 30 min at 70°C. The mixture was placed
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in an ultrasonicator under a power of 470 W for 20 min at 25°C.

Finally, sediment crystals were isolated by centrifugation and

nanofiltration, washed several times with acetic acid and water,

and dried at room temperature.

2.3 Synthesis of cobalt composite
immobilized on polysulfone fibrous
network nanoparticles

A mixture of 0.05 g of polysulfone powder and 10 mg of

cobalt composite was dissolved in 8 ml of acetic acid. A solution

was electrospun at a voltage of 25 kV and a spinning distance of

15 cm, and to eject the solutions from the nozzle tip flow, a rate of

5 ml/h was used.

2.4 Microwave irradiation oxidation of
alcohol derivatives by cobalt composite
immobilized on polysulfone fibrous
network nanoparticles

A mixture of 10 mmol of alcohol derivatives and 1 mg of

CCPSF NPs was stirred at room temperature for 5 min, and then

the mixture was irradiated. After completion of the reaction

(monitored using thin-layer chromatography), the combinations

were cooled, and CCPSF NPs were separated by nanofiltration.

To reuse the catalyst, after its separation, it was washed several

times with double-distilled water and ethanol and dried under

vacuum at 100°C. Finally, for a pure product, crude was passed

through a short silica gel column with ethyl acetate:ether (1:7) as

solvent.

SCHEME 1
Synthesis of cobalt composite immobilized on polysulfone fibrous network nanoparticles (CCPSF NPs) using ultrasonic and electrospinning
methods.

FIGURE 1
SEM image of (I) cobalt composite and (II) CCPSF NPs.
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FIGURE 2
Thermal stability curve of synthesized cobalt composite (I) and CCPSF NPs (II).

FIGURE 3
N2 adsorption/desorption of CCPSF NPs.
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FIGURE 4
FT-IR spectrum of CCPSF NPs.

FIGURE 5
XRD patterns of synthesized cobalt composite (I) and CCPSF NPs (II).
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FIGURE 6
Proposed possible structure for CCPSF NPs.

SCHEME 2
Microwave irradiation oxidation of 1-butanol to 1-butanal using CCPSF NPs as nanocatalysts.

TABLE 1 Optimization conditions in the oxidation of 1-octanol to 1-octanal using CCPSF NPs as nanocatalysts under MW irradiation.

Entry mg catalyst MW power (W) Irradiation time (min) Yield

1 1 — reflux (12 h) 61

2 1 300 10 72

3 1 400 5 91

4 1 500 2 95

5 2 500 2 95

6 3 500 5 89

7 4 500 10 85

8 5 500 20 71

That the bold values indicates the selection of optimal conditions.

The optimal conditions: 1 mg of catalyst (CCPSF NPs) and power of microwave irradiation of 500 W for 2 min were used.
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2.4.1 Aldehyde derivatives
1-Octanal (6B); IR (KBr) = 2,999, 2,841, 1725, and

1,487 cm−1; 1H NMR (250 MHz, CDCl3) δ = 9.48 (t, 1H),

2.31–238 (m, 2H), 1.42–1.49 (m, 2H), 1.22–1.27 (m, 8H), and

0.84 (t, 3H); 13C NMR (75 MHz, CDCl3) δ = 191.86, 42.75, 31.66,

30.24, 29.41, and 23.94.

4-Methoxybenzaldehyde (12B); IR (KBr) = 3,021, 2,948,

2,799, 1721, 1,646, 1,499, 1,320, 1,199, and 841 cm−1; 1H NMR

(250 MHz, DMSO) δ = 9.91 (s, 1H), 7.65 (d, 2H, J = 8.4 Hz), 7.09

(d, 2H, J = 8.6 Hz), and 3.54 (s, 3H); 13C NMR (75 MHz, CDCl3)

δ = 191.21, 131.59, 130.54, 114.79, and 55.26.

2.4.2 Ketone derivatives
2-Methylcyclopentaone (2D); IR (KBr) = 3,431, 2,901, 2,838,

1728, 1,427, 1,254, 1,137, and 876 cm−1; 1HNMR (250MHz,CDCl3)

δ = 2.51 (m, 1H), 2.34 (m, 1H), 2.09 (m, 1H), 1.81 (m, 1H), 1.58 (m,

1H), 1.49 (m, 1H), and 1.19 (m, 1H); 13CNMR (63MHz,CDCl3) δ=

218.13, 44.01, 37.56, 33.45, 21.94, and 15.46.

Acetophenone (4D); IR (KBr) = 3,140, 3,054, 1701, 1,621,

1,354, 1,246, and 778 cm−1; 1H NMR (250 MHz, CDCl3) δ =

7.39–7.52 (m, 5H) and 2.31(s, 3H); 13C NMR (75 MHz, CDCl3)

δ = 193.17, 135.82, 131.45, 127.99, 125.09, and 26.76.

2.4.3 Diketone derivatives
Acetylacetone (1F); IR (KBr) = 3,326, 2,458, 1728, and

1,614 cm−1; 1H NMR (250 MHz, DMSO) δ = 3.51 (s, 2H),

1.96 (s, 6H), and [15.66(O-H), 5.47 (vinyl H in enol form)];
13C NMR (75 MHz, DMSO-d6) δ = 200.07, 57.95, 31.42, and

[191.35, 101.21, 31.17, 22.86, in enol form].

2-Aminoanthraquinone (2F); IR (KBr) = 3,495, 1,676, 1,433,

1,298, 1,251, 1,149, 1,069, and 961, 777 cm−1; 1H NMR

(250 MHz, DMSO) δ = 6.51–7.66 (m, 8H) and 2.21 (2H); 13C

NMR (75 MHz, DMSO-d6) δ = 189.13, 178.21, 154.66, 135.27,

134.84, 134.18, 131.04, 126.95, 122.43, 118.79, and 110.07.

2.5 Anticancer activity

Anticancer activity studies of CCPSF NPs using the MTT

method and previously reported on MCF-7 breast cancer cells

SCHEME 3
Microwave irradiation oxidation of primary alcohol derivatives (I), secondary alcohol derivatives (II), and diol derivatives (III) using CCPSF NPs as
nanocatalysts.
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TABLE 2 Green oxidation of primary alcohol derivatives to aldehyde derivatives using CCPSF NPs under MW irradiation.

Primary alcohol
(A)

Aldehyde (B) Time (min) Yield (%) Found M.
P. (°C)

Reported M. P. (°C)
(Ghalehbandi et al.,
2020)

1 2 91 Liq. Liq.

2 3 92 Liq. Liq.

3 2 90 Liq. Liq.

4 2 91 Liq. Liq.

5 2 91 Liq. Liq.

6 2 95 Liq. Liq.

7 2 100 Liq. Liq.

8 2 100 Liq. Liq.

9 2 93 Liq. Liq.

10 2 98 101–103 104

11 2 97 76–77 77

(Continued on following page)
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TABLE 2 (Continued) Green oxidation of primary alcohol derivatives to aldehyde derivatives using CCPSF NPs under MW irradiation.

Primary alcohol
(A)

Aldehyde (B) Time (min) Yield (%) Found M.
P. (°C)

Reported M. P. (°C)
(Ghalehbandi et al.,
2020)

12 2 100 Liq. Liq.

13 2 100 Liq. Liq.

14 2 96 103–106 104–105

15 2 95 Liq. Liq.

16 3 92 Liq. Liq.

Optimal conditions: 1 mg of CCPSF NPs and power of microwave irradiation 500 (W).

TABLE 3 Green oxidation of secondary alcohol derivatives to ketone derivatives using CCPSF NPs under MW irradiation.

Secondary alcohol
(C)

Ketone (D) Time (min) Yield (%) Found M.
P. (°C)

Reported M. P. (°C)
(Ghalehbandi et al.,
2020)

1 3 91 Liq. Liq.

2 4 92 Liq. Liq.

3 3 93 Liq. Liq.

(Continued on following page)
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TABLE 3 (Continued) Green oxidation of secondary alcohol derivatives to ketone derivatives using CCPSF NPs under MW irradiation.

Secondary alcohol
(C)

Ketone (D) Time (min) Yield (%) Found M.
P. (°C)

Reported M. P. (°C)
(Ghalehbandi et al.,
2020)

4 2 100 Liq. Liq.

5 2 97 44–46 45

Optimal conditions: 1-mg of CCPSF NPs and power of microwave irradiation 500 (W).

TABLE 4 Green oxidation of diol derivatives to diketone derivatives using CCPSF NPs under MW irradiation.

Diol (E) Diketone (F) Time (min) Yield (%) Found M.
P. (°C)

Reported M.
P. (°C) (Ghalehbandi et al.,
2020)

1 3 93 Liq. Liq.

2 2 100 282 280

3 3 95 251–252 250–252

4 4 93 290–293 290

Optimal conditions: 1 mg of CCPSF NPs and power of microwave irradiation 500 (W).
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were done. The densities of 1.2 × 104 (cells/well) MCF-7 breast

cancer cells for 24 and 48 h in concentrations of 5, 10, 20, 40, 80,

120, and 200 mg/ml CCPSF NPs were tested (Moghaddam-

Manesh and Hosseinzadegan, 2021).

3 Results and discussion

3.1 Characterization of cobalt composite
immobilized on polysulfone fibrous
network nanoparticles

Using ultrasonic and electrospinning methods, according

to Scheme 1, cobalt composite immobilized on polysulfone

fibrous network nanoparticles (CCPSF NPs) were

synthesized.

To identify and confirm the structure of cobalt composite

immobilized on polysulfone fibrous network nanoparticles

(CCPSF NPs), SEM images for morphology and size

distribution, TGA for thermal stability, BET technique for

specific surface area, FT-IR spectroscopy for relation group

characterization, and XRD patterns for the crystal size

were used.

SEM images of cobalt composite and CCPSF NPs are given in

Figure 1.

Figure 1 shows that the size of the nanoparticles is in the nano

range and has the same fiber morphology.

As we know, thermal stability is one of the practical factors in

designing MOF nanostructures for application in various fields

(Ding et al., 2019). The thermal stability curve of synthesized

cobalt composite (I) and CCPSF NPs (II) are displayed in

Figure 2. The thermal stability of CCPSF NPs was obtained at

around 400°C. The high thermal stability of CCPSF NPs shows

their high catalytic ability.

The specific surface area of CCPSF NPs by N2 adsorption/

desorption isotherms and BET technique 2,450 m2/g was

obtained (Figure 3). The specific surface area obtained for

CCPSF NPs proves that this compound has a high capability

in the contact surface with combinations and use as a catalyst. It

also seems that CCPSF NPs with an increased specific contact

surface can create an increased contact surface with microbial

agents and create a high effect.

Based on the FT-IR spectrum (Figure 4), the peaks of the

groups present in the structure of CCPSF NPs were observed.

The peak in region 3,300 cm−1 was related to hydroxyl (OH)

groups. Stretching peaks of C–H groups were shown near

3,067 cm−1 and 2,919 cm−1. The peak due to carbonyl groups

(CO) was near 1,610 cm−1. The peak of C=C was at 1,538 cm−1.

The bending peak of C–H was 1,435 cm−1. The S=O groups

showed a peak in1370 cm−1. C–O, C–N, and C–S groups showed

peaks at 1,206, 1,106, and 810 cm−1, respectively (Moghaddam-

Manesh et al., 2020). The absorption due to Co–O was near

710 and 530 cm−1 (Hafeez et al., 2020).

XRD patterns of CCPSF NPs are shown in Figure 5. XRD

patterns obtained for CCPSF NPs are similar to XRD patterns

reported for cobalt nanoparticles (Raza et al., 2016). The crystal

size of CCPSF NPs obtained using the Debby Scherrer equation

was about 31 nm.

The structure of Figure 6 was consistent for synthesized

CCPSF NPs based on the analyses carried out.

FIGURE 7
Reusability of CCPSF NPs in the oxidation of benzyl alcohol (row 13 of Table 2)
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SCHEME 4
Suggested mechanism for the oxidation of alcohols using CCPSF NPs as the catalyst.

TABLE 5 Different catalysts recently reported for the oxidation of benzyl alcohol.

Entry Reaction condition Yield (%) Time Ref.

1 Pd@TiC 97 8 (h) Bhaumik et al. (2016)

2 Silica-supported DABCO tribromide 95 1 (h) Moghaddam et al. (2013)

3 Rh/NAC catalysts 50 24 (h) Verma et al. (2017)

4 This study (CCPSF NPs) 100 2 (min) —

Comparing the results proves that CCPSF NPs can oxidize benzyl alcohol with higher efficiency in less time.
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FIGURE 8
Anticancer activity of CCPSF NPs against MCF-7 breast cancer cells at 24 h. Data represented mean (n = 3) ± SD.

FIGURE 9
Anticancer activity of CCPSF NPs against MCF-7 breast cancer cells at 48 h. Data represented mean (n = 3) ± SD.
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3.2 Results of microwave irradiation
oxidation of alcohol derivatives by cobalt
composite immobilized on polysulfone
fibrous network nanoparticles as
nanocatalyst

In this research, for the oxidation of alcohol derivatives by

microwave irradiation and CCPSF NPs as nanocatalysts, first,

reaction conditions such as MW power and amount of catalyst

for 1-butanol to 1-butanal were optimized (Scheme 2).

The results of the optimization of 1-butanol to 1-butanal as a

sample are given in Table 1.

Using CCPSF NPs as nanocatalysts and microwave

irradiation, oxidation of primary alcohol derivatives (Scheme

3-I), secondary alcohol derivatives (Scheme 3-II), and diol

derivatives (Scheme 3-III) to aldehyde derivatives, ketone

derivatives, and diketone derivatives, respectively, was studied.

The rest of the primary alcohol derivatives, secondary alcohol

derivatives, and diol derivatives studied in this research were

oxidized using optimal conditions according to Tables 2–4.

The results of Tables 2–4 showed that CCPSF NPs have a

high ability to oxidize primary alcohol derivatives, secondary

alcohol derivatives, and diol derivatives in optimal conditions

with high efficiency.

The main advantage of the oxidation reaction using

microwave irradiation and CCPSF NPs as nanocatalysts was

that the reaction was carried out in solvent-free microwave-

assisted conditions, and the reaction conditions were green.

Another advantage of the CCPSF NPs was their reusability,

which was used up to five times (for 1-butanol). The results

presented in Figure 7 show that the reaction efficiency did not

change much after reuse. For leaching, after the catalyst was

reused, a hot filtration test was done, and no enhancement in

conversion was noticed in the filtrate.

The proposed mechanism for the oxidation of alcohols using

CCPSF NPs as catalyst is presented in Scheme 4.

Some of the recently reported methods for the oxidation of

alcohols were using Pd@TiC (Bhaumik et al., 2016), silica-supported

DABCO tribromide (Moghaddam et al., 2013), platinum (IV)

complex (El-Bendary et al., 2022), and Rh/NAC catalysts (Verma

et al., 2017) as catalysts. Table 5 compares some of the reported

methods for the oxidation of benzyl alcohol in this study.

3.3 Anticancer activity

The results of the anticancer activity of CCPSF NPs are

shown in Figures 8–10.

The IC50 values of CCPSF NPs at 24 and 48 h, 149.0312 and

110.3137 mg/ml, respectively, were obtained. The cell proliferation

and viability were then controlled at a concentration of 200 mg/ml at

24 and 48 h, and 38.9% and 28.8%, respectively, were observed. The

comparison of 24 and 48 h is shown in Figure 10.

Based on the obtained results, it can be concluded that the

effect of CCPSF NPs on MCF-7 breast cancer cells depends on

concentration and time, and the impact increases with increasing

concentration and time.

The anticancer activity of CCPSFNPs can be attributed to the

presence of polysulfone (with high biological properties) and

cobalt in their structure (Mohamad et al., 2019; Alkış et al., 2021;

Chen et al., 2021), as well as its high specific surface area, which

was created as a result of the appropriate synthesis method.

FIGURE 10
Comparing the results of anticancer activity of CCPSF NPs against MCF-7 breast cancer cells in 24 and 48 h.
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4 Conclusion

In the present research, using ultrasonic-assisted and

electrospinning methods, cobalt composite immobilized on

polysulfone fibrous network nanoparticles (CCPSF NPs) were

synthesized. After confirming the structure of CCPSF NPs, it

was proved that the synthesis method resulted in the synthesis

of nanoparticles with a high specific surface area. The high specific

surface area of CCPSF NPs made it possible for it to be used as a

green, efficient, and reusable nanocatalyst in the oxidation of

primary alcohols, secondary alcohols, and diols using

microwave irradiation. The obtained results of oxidation of

alcohols using CCPSF NPs were higher efficiency and less time

required compared to previously reported methods. Among the

other capabilities of CCPSF NPs that can be mentioned are their

biological properties. In the biological evaluation of nanoparticles,

anticancer properties against MCF-7 breast cancer cells were

investigated. High effectiveness was observed, which can be

attributed to the presence of polysulfone and cobalt in the

structure and the high specific surface area of CCPSF NPs.
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