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Animal bile is an important component of natural medicine and is widely used in

clinical treatment. However, it is easy to cause mixed applications during

processing, resulting in uneven quality, which seriously affects and harms

the interests and health of consumers. Bile acids are the major bioactive

constituents of bile and contain a variety of isomeric constituents. Although

the components are structurally similar, they exhibit different pharmacological

activities. Identifying the characteristics of each animal bile is particularly

important for processing and reuse. It is necessary to establish an accurate

analysis method to distinguish different types of animal bile. We evaluated the

biological activity of key feature markers from various animal bile samples. In

this study, a strategy combining metabolomics and machine learning was used

to compare the bile of three different animals, and four key markers were

screened. Quantitative analysis of the key markers showed that the levels of

Glycochenodeoxycholic acid (GCDCA) and Taurodeoxycholic acid (TDCA)

were highest in pig bile; Glycocholic acid (GCA) and Cholic acid (CA) were

the most abundant in bovine and sheep bile, respectively. In addition, four key

feature markers significantly inhibited the production of NO in LPS-stimulated

RAW264.7 macrophage cells. These findings will contribute to the targeted

development of bile in various animals and provide a basis for its rational

application.
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1 Introduction

As a kind of natural medicine, animal medicine is an

important part of traditional Chinese medicine because of its

abundant resources and curative effects (Feng et al., 2009).

Animal bile has been used as a medicine for thousands of

years. Nearly 30 kinds of animal bile are contained in the

“Compendium of Materia Medica”, including birds, reptiles,

mammals, etc. It is bitter in taste and cold-natured, with the

effects of eyesight, antispasmodic, clearing heat, and cooling, and

detoxification (Qiao et al., 2011). Pig bile, bovine bile, and sheep

bile are the most commonly used and readily available bile

medicines. However, there are great differences in the

pharmacological effects and main applications of various types

of bile. The misuse of bile by some producers results in the

uneven quality of animal bile herbs and disorder in the market.

This phenomenon seriously affects economic interests and

endangers the health of consumers (Xiong et al., 2019). Most

of the available literature reports focused on the determination of

one animal bile with a lack of studies on the simultaneous

determination of components in multiple animal bile.

Therefore, there is an urgent need to establish accurate

analytical techniques for the isolation and identification of

these species. It is of great significance for its processing and

utilization as well as for ensuring its quality and curative effect.

Bile acids are the most abundant bioactive substances in bile,

which are synthesised from cholesterol in hepatocytes by the

catabolic pathway, comprising primary and secondary bile acids

(Cao et al., 2022). Its structure contains a steroid nucleus with a

valeric acid side chain attached to the C-17 position (McGlone

and Bloom 2019). In recent years, numerous studies have found a

significant medicinal value for bile acids, such as regulating lipid

metabolism and glucose metabolism and treating cholestatic liver

disease, obesity, type 2 diabetes, dyslipidemia, and nonalcoholic

steatohepatitis (Li and Chiang 2014; Arab et al., 2017; Chavez-

Talavera et al., 2017). Currently, Ursodeoxycholic acid (UDCA)

and Chenodeoxycholic acid (CDCA) are widely used as listed

medicines (Fiorucci and Distrutti 2019). With the widespread

application of bile acids in the pharmaceutical industry, the

demand for animal bile has increased. The preparation of bile

acids is mainly obtained by natural bile extraction (Chanquia

et al., 2018; Namegawa et al., 2018). However, bile from different

animals is difficult to distinguish, and the major bile acids present

in each bile as well as the biological activities of bile acids are not

yet clear, which greatly limits the processing and reuse of bile.

Therefore, it seems to be crucial to distinguish animal bile to

improve the sustainable development of the industrial chain. The

screened chemical markers can provide a basis for the targeted

development of the bile acids of bile from different animals.

Recently, metabolomics has been widely used in the field of

traditional Chinese medicine, including quality evaluation of

medicinal materials, chemical composition analysis, toxicity

mechanism research, and pharmacodynamic material

mechanism research (Schrimpe-Rutledge et al., 2016; Chu

et al., 2020; Ma et al., 2020; Zhang et al., 2020). In the

pharmaceutical field, it is a tool for finding differential

markers and distinguishing different types of pharmaceutical

products. It includes a variety of chemometric methods, such as

orthogonal partial least-squares discrimination analysis (OPLS-

DA) and hierarchical clustering analysis (HCA), which have been

widely used in various analytical research fields (Liu et al., 2019;

Li et al., 2020). This also provides the basis for the screening of

differential markers. However, the volume of data collected by

metabolomics is large, and the similarity of most samples is high,
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which makes it difficult to achieve consistency evaluation and

identification of unknown samples only by omics approaches

(Liang et al.,2022). As a result, smarter and more efficient means

of processing data are needed. In this case, machine learning is a

good choice, which can largely compensate for the lack of data

classification and processing (Woolley et al., 2021).

In this study, a multivariate statistical method based on

UPLC-Q-TOF/MS was used to screen the chemical markers of

bile from different animals. Second, neighborhood component

analysis (NCA) was adopted to extract the most effective key

feature markers, and a support vector machine (SVM) algorithm

was combined to verify the accuracy and specificity of the key

markers. Finally, the contents of four key feature markers were

accurately quantified, and their anti-inflammatory activities were

evaluated. This is the first time that the “metabolomic strategy-

machine learning-anti-inflammatory cell assay” has been

combined for an in-depth and comprehensive comparison

and analysis of bile acids in bile from various animals. This

study provided a useful reference for the development and

utilization of key markers in the bile of different animals.

2 Materials and methods

2.1 Chemicals and reagents

30, 32, and 31 batches of fresh pig bile, sheep bile, and bovine

bile were purchased from farmers’ markets in Tianjin. HPLC-

grade methanol was obtained from Tianjin Concord Technology

Co., Ltd. (Tianjin, China). HPLC-grade formic acid was acquired

from Thermo Fisher (Shanghai, China). GCA, TDCA, and

GCDCA were purchased from Shanghai Macklin Biochemical

Co., Ltd. (Shanghai, China); CA and taurochenodeoxycholic acid

(TCDCA) were obtained from Dalian Meilun Biotechnology Co.,

Ltd. (Dalian, China); CDCA was procured from Meryer

Chemical Technology Co., Ltd. (Shanghai, China);

glycodeoxycholic acid (GDCA), glycohyodeoxycholic acid

(GHDCA), and sodium taurocholate (TCA-Na) were

purchased from Shanghai Yuanye Bio-Technology Co., Ltd.

(Shanghai, China); tauro hyodeoxycholic acid (THDCA) was

obtained from Sollerbauer Technology Co., Ltd. (Beijing, China).

2.2 Screening for chemical markers
among the bile of different animals

2.2.1 Sample preparation
The bile was filtered through gauze and then prefrozen at

−80°C for 12 h. All samples were lyophilized in a vacuum freeze-

dryer (EYELA, TOKYO RIKAKIKAI CO., LT D, FDU-2110) for

48 h. Approximately 5 mg of bile powder was weighed and

extracted by ultrasonication for 45 min with a mixed solvent

(water containing 1% formic acid mixed with methanol in a

volume ratio of 5:95). The solution was fixed in a 10 mL

volumetric flask, mixed well, and filtered through a

microporous membrane (0.22 μM) before use (Li et al., 2022).

All bile samples were mixed to obtain a quality control

sample (QC).

2.2.2 Chromatography and mass spectrometry
The separation was performed on an ultrahigh-performance

liquid chromatography (UPLC) system (I-Class, Waters Corp.,

Manchester, United Kingdom) combined with a quadrupole

time-of-flight mass spectrometer (Q-TOF/MS, Xevo G2-S,

Waters Corp., Manchester, United Kingdom). The mobile phase

consisted of a 0.1% formic acid aqueous solution (A) and a 0.1%

formic acid acetonitrile solution (B). The gradient elution procedure

used was as follows: 0–0.5 min, 5% B; 0.5–1 min, 5% B→20% B;

1–3 min, 20% B→40% B; 3–12 min, 40% B→60% B; 12–16 min,

60% B→90% B; 16–17 min, 90% B→100% B; 17–18 min, 100% B;

18–19 min, 100%B→5%B; and 19–20 min, 5%B. The flow rate was

0.25 mL/min, and the injection volume was 5 μL. The column and

autosampler were maintained at 40°C. An electrospray ion source

(ESI) was used to perform a full scan in the negative ion mode. Data

collection ranged from 50 to 1000 Da. The operating parameters of

the ESI sourcewere as follows: capillary voltage, 2.0 kV; cone voltage,

30 V; cone gas flow rate, 50 L/h; ion source temperature, 100°C; and

dissolvent gas temperature, 450°C.

2.2.3 Method validation for metabolomics study
1) Instrumental precision: The same QC sample was injected for

6 times, 10 peaks were randomly selected and the RSD values

of peak area and retention time were calculated for each of the

10 peaks.

2) Method precision: Six QC samples were prepared in parallel

and injected for analysis. 10 peaks were randomly selected

and the RSD values of peak areas and retention times of the

10 peaks were calculated.

3) Sample stability test: The same QC sample solution was

sampled at 0, 6, 12, and 18 h. Ten peaks were randomly

selected and the RSD of peak area and retention time were

calculated for each of the ten peaks.

2.2.4 Multivariate statistical analysis of bile from
different animals

To compare and distinguish the bile of each species, UPLC-

Q-TOF/MS was used for sample analysis in this study. First, raw

data were exported to MassLynx version 4.1 software (Waters

Corp., Milford, MA), and the data provided the m/z value and

retention time as well as the detected peak with a certain

intensity. Then, the data were normalized and imported into

SIMCA-P14.1 (Umetrics AB, Sweden) for multivariate data

analysis. The aggregation degree of bile can be determined

from the score plot of principal component analysis (PCA).

To clarify the differences between them, chemical markers of

the bile from three animals were screened. Then, an OPLS-DA
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model of the samples was performed, and the variable

importance projection (VIP) of each chemical component was

calculated. A variable whose VIP was greater than 1.0 was usually

considered to be a potential marker (Li et al., 2020). Therefore,

the components with VIP>1 were screened and subjected to

statistical analysis by SPSS 20.0, and chemical markers with

statistically significant differences were obtained (p < 0.05).

2.3 Establishment of machine learning
models

To further validate the accuracy of the chemical markers,

NCA analysis of the chemical markers was performed using

MATLAB (MathWorks, United States). The input variables were

as follows: sheep bile labeled “1”, bovine bile labeled “2”, and pig

bile labeled “3”. The SVM machine learning models were built

with the marker values as input variables and the response values

of key markers as feature variables. Samples were randomly

divided into a training set (2/3) and a test set (1/3) for model

building and accuracy verification. Thus, the accuracy of key

markers was further validated.

2.4 Quantitative analysis of key markers

To further determine the distribution of screened key markers in

each bile, UPLC (1290 Infinity, Agilent Technologies) combined with

QQQ-MS (QTRAP ®6500, AB SCIEX) was used for quantitative

analysis in this study. Chromatographic separation was achieved on a

UPLC BEH C18 column (Waters ACQUITY, 100mm × 2.1 mm ×

1.7 μm). The mobile phase consisted of a 0.01% formic acid aqueous

solution (A) and a 0.01% formic acid acetonitrile solution (B). The

elution program was as follows: 0–2min, 10% B; 2–3.5 min, 10%

B→50% B; 3.5–9min, 50% B→70% B; 9–10.5 min, 70% B→90% B;

10.5–12min, 90%B; 12–12.1 min, 90%B→10%B; 12.1–15min, 10%

B. The total analysis time was 15min, the injection volume was 2 μL,

and the flow was retained at 0.3 mL/min. The ESI source worked in

negative ionmode under the following conditions. Curtain gas (CUR)

30, nebulizing gas (GS1) 55, drying gas (GS2) 55, ion spray voltage

(IS) −4.5 kV, ion source temperature (TEM) 550°C, declustering

potential (DP)-130.0, entrance potential (EP)-10.0, collision cell

exit potential (CXP)-13.0. Data were analyzed by Analyst 1.6.3

(AB SCIEX, United States).

2.5 Anti-inflammatory activity research of
key markers

2.5.1 Dual-luciferase reporter gene system of
293T cells for the detection of NF-κB expression

Before the luciferase experiments, cell viability under

different concentrations of key markers was first

investigated. 293T cells at the logarithmic growth stage

were inoculated in 96-well cell culture plates at a density

of 2 × 105 cells/mL. Then, 100 μL of 0.01, 0.1, 1, 10, and

100 μM CA, GCA, GCDCA, and TDCA were added to each

well in 4 parallels. After 24 h of treatment, the

supernatant was aspirated, and CCK-8 solution was added

to each well and then incubated for 30 min at 37°C. The

absorbance OD value was measured at 450 nm by an enzyme

marker.

The NF-κB luciferase reporter plasmid (pGL4.32) and

PGMLR-TK Renilla Fluorescein Reporter Plasmid (pGL4.75)

were simultaneously transfected into 293T cells with PEI

(1 mg/mL) transfection reagent. Cells transferred into

plasmid were cultured for 24 h, and then dexamethasone

(10 μM) and the key marker with a safe concentration

were separately added. Control and Model groups were set

up and incubated for another 6 h. The cells were then lysed

and assayed with the Dual-Luciferase assay system. Six

parallel wells were set up and replicated three times.

Finally, the relative luciferase activity was obtained by

comparing firefly luciferase activity with Renilla reniformis

luciferase activity.

FIGURE 1
BPI chromatograms of bile (A): pig bile; (B) bovine bile; (C)
sheep bile in negative ESI mode. 1 TCA; 2 TDCA; 3 GCA; 4 GCDCA;
5 GDCA; 6 CA; 7 THDCA; 8 TCDCA; 9 GHDCA; 10 CDCA.
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2.5.2 Effect of key markers on NO production in
LPS-stimulated RAW264.7 macrophages

First, cell viability assays were performed on RAW264.7 cells.

RAW264.7 cells at the logarithmic growth stage were collected

and added to 0.01, 0.1, 1, 10, 100 μM CA, GCA, GCDCA, and

TDCA solutions. Four parallel wells were set for each

concentration, and the control group and DMSO group

without drugs were set at the same time. After 24 h of dose

addition, 100 μL CCK-8 solution was added to each well and

incubated at 37°C for 30 min. The absorbance OD value was

measured at 450 nm with a microplate reader, and the cell

viability was calculated.

RAW264.7 cells were treated with LPS at a concentration of

1 μg/mL and CA, GCA, GCDCA, and TDCA at a final

concentration of 0.1 μM. After 24 h of dose addition, the

medium supernatant was collected from microporous plates.

Then, the solution was mixed with the same amount of Griess

reagent, and the absorbance value of the solution was measured

at 540 nm. The concentration of NO in the samples was

calculated according to the standard curve.

3 Results and discussion

3.1 Identification and comparison of the
bile from various animals

Bile acids are the main active components of bile. UPLC-Q-

TOF/MS was used to collect the spectral information of each bile

sample in negative ion mode, and the BPI chromatograms of QC

were shown in Figure 1. The RSD values of the chromatographic

peak areas were less than 15% and the RSD values of the retention

times were less than 3% (Supplementary Table S2–S7). The

results showed that the instrument precision, and the method

precision were good, the samples were stable during the injection

process. As many bile acid components are isomers of each other,

reference substances are required for comparison. The sample

profiles were compared with the profiles of dozens of bile acid

reference substances available in the laboratory and 10 bile acids

were accurately identified (Supplementary Table S1). Where

TCA, TDCA, GCA, GDCA, GCDCA, GHDCA, THDCA, and

TCDCA summed in a [M-H]- manner and CA, CDCA summed

in a [2M-H]- manner.

To visualize and compare the differences in bile between

different animals, the PCA model was established (Figure 2A).

The PCA score plot results showed a clear trend toward

separation among pig bile, bovine bile, and sheep bile. The

contribution of each marker to distinguishing between

different bile was then further analyzed by loading plot

(Figure 2B). The greater the absolute value of each component

in the coordinate system, the greater the contribution to

differentiating the bile of different animals.

3.2 Screening of chemical markers among
various bile

OPLS-DA is a supervised classification technique that filters

out discrepant components from a dataset to further enhance its

interpretation (Guo et al., 2018). OPLS-DA models were

established to screen the chemical markers that distinguish

between pig, bovine, and sheep bile (Figures 2C1–C3). The

models could enhance the separation trend by reducing

extraneous noise in the data. The R2Y of the models ranged

from 0.863–0.990, and the Q2 ranged from 0.823–0.985. The

majority of the samples fell within the 95% confidence interval,

indicating that the models were stable and reliable. Then, the

models were subjected to a permutation test 200 times. As shown

FIGURE 2
Multivariate statistical analysis for bile in negative ion mode.
(A). PCA score plots; (B). Loading plots of components; (C1–C3).
OPLS-DA score plots between various bile acids; (D1–D3).
Permutation test of the OPLS-DA models.
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in Figures 2D1–D3, all models had good fitting and prediction

ability. After statistical analysis, components with VIP >1 and a

significant difference in the content (p < 0.05) were considered

chemical markers. There were six chemical markers between

bovine bile and pig bile, which were THDCA, GDCA, TCA,

TDCA, GCA, and GHDCA. Five chemical markers were

screened between bovine bile and sheep bile (GCDCA,

GDCA, TCA, GCA, and CA), and six chemical markers were

screened between sheep bile and pig bile (TCA, THDCA, TDCA,

GHDCA, GCDCA, and GCA).

The OPLS-DA results showed a large difference in the

composition of the three bile acids, which could be easily

distinguished. These differences may be caused by different

animal species, habits, and living environments. Thus, these

chemical markers are the material basis for the differences in

bile quality between animals.

3.3 Screening and validation of key feature
markers

3.3.1 Screening of key feature markers
According to the OPLS-DA models, we initially screened

eight bile acids that could distinguish three kinds of bile.

However, when establishing a machine learning model, not

every feature contributes significantly to the predicted target

value (Kaplan et al., 2021). Removing low contributing variables

and using key feature markers to construct machine learning

models can improve the generalization ability of the models.

NCA is an effective means of finding key features and is

commonly used by researchers for feature selection when

modeling against high-dimensional data (Jiménez-Grande

et al., 2021). In this study, NCA was used to select key

features for chemical markers between the bile of different

animals, and key feature markers were modeled as feature

variables. The weight values for each feature are shown in

Supplementary Figure S1. The features with higher weights

were the ones that were more significant to the classification

value. The weights of TDCA, GCA, CA, and GCDCA were all

greater than 1, indicating that these four components contributed

more to differentiating the bile of different animals. All four

components have been shown to have antibacterial, anti-

inflammatory, antihypertensive, anti-cough, and expectorant

pharmacological effects. Previous reports showed that these

four feature markers had pharmacological effects, such as

bacteriostasis, anti-inflammatory, antihypertensive, antitussive,

and expectorant effects (Zhou et al., 2021).

3.3.2 Validation of key feature markers
To validate the accuracy and specificity of the key feature

markers, a polynomial kernel function classifier (PL-SVM)

model was established using these four feature markers as

feature variables. The classification performance of SVM is

affected by many factors, among which the following two

factors are crucial: 1) the error penalty Factor C and 2) the

form of the kernel function and its parameters (Maltarollo et al.,

2019). The polynomial kernel function that we chose for

modeling is one of the most widely used and applicable kernel

functions (Ye et al., 2013). In this study, the grid search method

was used to perform a global search for optimization of the

parameters C and g to achieve the best discriminative

performance of the PL-SVM model. When C was 0.134 and g

was 3.732, the PL-SVM model had the most accurate

discriminant performance.

In addition to g, the main parameters of the PL-SVM

model also include the polynomial coefficient and coef 0. The

optimal g was determined by the grid search method, and then

an optimization search was performed for the polynomial

coefficients as well as the coef 0 value. The results showed that

the PL-SVM models with optimal performance were obtained

when the polynomial coefficients were 3 and 4, the models

were fitted with 100% CV accuracy, and the classification

accuracy was up to 100% (Supplementary Table S8). However,

the larger the polynomial coefficients are, the higher the

dimensionality of the mapping and the consequent increase

in computational effort. When the coefficients are too large,

learning is too complex and tends to lead to overfitting

(Ellmann et al., 2020). The factor of 3 was chosen to take

into account the size of the calculation and the amount of

memory used. The model performed best when the

polynomial coefficient was 3 and coef 0 was 7.4, with a CV

accuracy of 100% and a classification accuracy of 100%. The

results showed that the established PL-SVM model was stable

and reliable and could accurately differentiate bile from

different sources. In addition, the four key feature markers

were highly accurate and specific.

3.4 Distribution of key feature markers in
the bile of three animals

To further elucidate the distribution of the four key feature

markers in the bile of various animal species, UPLC-QQQ-MS

was used to quantify the content of the four components. The

concentration of each bile acid was calculated from its linear

standard curve, which was plotted with the peak area as the

vertical coordinate and the concentration of the standard

solution as the horizontal coordinate. All standard curves

showed good linearity, with coefficients of determination (R2)

ranging from 0.9885 to 0.9978 (Table 1). Furthermore, violin

plots of each key feature marker in the bile of the three animals

were shown (Figure 3). A violin plot is usually used to show the

state of the distribution in multiple datasets and the probability

density. This plot combines the features of box plots and density

plots, which can show the distribution of the data (Kurasiak-

Popowska et al., 2020). The results showed that there were
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significant differences in the contents of four bile acids in the

various types of animals. GCDCA and TDCA were highest in pig

bile; GCAwas highest in bovine bile; and CAwas highest in sheep

bile, which was consistent with previous studies (Chen et al.,

2021). Therefore, these results could be taken into account when

extracting bile acids from bile to make the use of bile more

effective and targeted.

3.5 Anti-inflammatory activity of key
feature components

Four key feature markers were validated by machine learning,

clarifying the effectiveness of TDCA, GCA, CA, and GCDCA in

differentiating the bile of the three animals. Therefore, anti-

inflammatory activity assays were performed on these four bile

acids to further evaluate their biological activity. It is hoped that the

activity of the key markers will further reveal the differences in the

pharmacological effects of the various bile. This could provide a

strong basis for the selection of bile for later processing.

TABLE 1 Mass spectrum information of key feature markers by UPLC-QQQ-MS.

Compound Retention time
(min)

Qualifier and
quantifier MRM
transitions

DP (volts) CE (volts) R2

Q1 Q3

CA 5.55 407.30 343.40 −130 −46 0.9885

GCA 4.90 464.60 464.60 −140 −15 0.9980

TDCA 7.29 498.30 498.30 −150 −15 0.9978

GCDCA 5.61 448.60 448.60 −208 −15 0.9960

FIGURE 3
Violin plots showing the content of individual key feature
marker in samples of bile from three animals. (A) TDCA; (B) GCA;
(C) GCDCA; (D) CA.

FIGURE 4
Expression of NO in RAW264.7 cells treated with different
concentrations of key feature markers. (A) TDCA; (B) GCA; (C)
GCDCA; (D) CA. (##p < 0.01: Model vs. Control; *p < 0.05, **p <
0.01: Model vs. Treatment).
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3.5.1 Effect of each key feature marker on NF-κB
activity in 293T cells

Cytokine expression, apoptosis regulation, and cell

proliferation are highly dependent on the transcription factor

NF-κB, which plays a key role in the regulation of the

inflammatory response (Emam et al., 2021). In this study, the

viability of 293T cells was assessed after treatment with different

concentrations of four key feature markers (Supplementary

Figure S2). GCDCA and TDCA did not show cytotoxic effects

on 293T cells at the test concentrations of 10−2–102 μM; GCA and

CA concentrations of 10−5–10–3 μM and 10−5–10–1 μM,

respectively, showed no cytotoxic effect on 293T cells. TNF-α
was used as the modelling drug and 10 μg/mL of TNF-α complete

medium solution was added to the model group; positive drug

and different concentrations of bile acid solutions were prepared

using 10 μg/mL of TNF-α complete medium solution and the

prepared solutions of each group were added to the cells of the

corresponding group. Then, the cells were treated with the

maximum nontoxic concentrations of each key marker and

evaluated for anti-inflammatory effects. The nuclear factor

NF-κB pathway has long been recognized as a classic

proinflammatory signaling pathway. This was mainly based

on the role of NF-κB in the expression of proinflammatory

genes, including cytokines, chemokines, and adhesion

molecules (Lawrence 2009). Dual luciferase reporter gene

assay systems were used to determine the effect of key feature

markers on the expression levels of NF-κB in cells. As shown in

Supplementary Figure S3, the positive control medicine

dexamethasone (10 μM) significantly inhibited TNF-α-induced
NF-κB production (p < 0.01), and TDCA, GCA, CA, and

GCDCA also had a significant inhibitory effect on NF-κB.
This finding suggested that four bile acids were potential NF-

κB inhibitors, with preliminary confirmation of their anti-

inflammatory activity.

3.5.2 Effect of key markers on NO production in
RAW264.7 macrophages

In this study, the effects of four markers at concentrations

ranging from 10−2–102 μM on the viability of

RAW264.7 macrophage cells were first examined by the CCK-

8 assay, and the results obtained are shown in Supplementary

Figure S4. Compared with the control group, none of the four

feature markers showed cytotoxicity to RAW264.7 cells at a

concentration of 10−2–102 μM. Therefore, 10−2–102 μM of four

markers was used to evaluate the anti-inflammatory effects.

Macrophages can sense and respond to many stimuli and

trigger inflammation by secreting NO. Excessive production of

NO is associated with restriction of the immune response and

remission of inflammation, and excessive NO production by

macrophages has been observed in many inflammatory diseases

(Lee et al., 2021). According to the results observed (Figures

4A–D), nontoxic doses of TDCA, GCA, and GCDCA

significantly inhibited NO release compared to the LPS group

(p < 0.01), as did 10−1 μM CA (p < 0.05). Four key feature

markers could exert their anti-inflammatory activity in LPS-

stimulated RAW264.7 cells by inhibiting NO production.

4 Conclusion

In this work, a strategy integrating metabolomics and

machine learning was proposed for screening key feature

markers that were closely associated with biliary anti-

inflammatory activity. The metabolomics and machine

learning approach were applied to identify four key feature

markers. An SVM machine learning model was successfully

developed to accurately evaluate unknown samples based on

the content of each marker. Furthermore, cellular assays showed

that all four key markers exhibited excellent anti-inflammatory

activity against LPS-stimulated RAW264.7 cells. In brief, the

screening of key feature markers related to anti-inflammatory

function revealed the characteristics and pharmacological basis

of various types of bile, thus providing a reasonable reference for

exploring their pharmacological mechanisms.
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