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Tyrosine threonine kinase (TTK) is the key component of the spindle assembly

checkpoint (SAC) that ensures correct attachment of chromosomes to the

mitotic spindle and thereby their precise segregation into daughter cells by

phosphorylating specific substrate proteins. The overexpression of TTK has

been associated with various human malignancies, including breast, colorectal

and thyroid carcinomas. TTK has been validated as a target for drug

development, and several TTK inhibitors have been discovered. In this study,

ligand and structure-based alignment as well as various partial charge models

were used to perform 3D-QSAR modelling on 1H-Pyrrolo[3,2-c] pyridine core

containing reported inhibitors of TTK protein using the comparative molecular

field analysis (CoMFA) and comparative molecular similarity indices analysis

(CoMSIA) approaches to design better active compounds. Different statistical

methods i.e., correlation coefficient of non-cross validation (r2), correlation

coefficient of leave-one-out cross-validation (q2), Fisher’s test (F) and

bootstrapping were used to validate the developed models. Out of several

charge models and alignment-based approaches, Merck Molecular Force Field

(MMFF94) charges using structure-based alignment yielded highly predictive

CoMFA (q2 = 0.583, Predr2 = 0.751) and CoMSIA (q2 = 0.690, Predr2 = 0.767)

models. The models exhibited that electrostatic, steric, HBA, HBD, and

hydrophobic fields play a key role in structure activity relationship of these

compounds. Using the contour maps information of the best predictive model,

new compounds were designed and docked at the TTK active site to predict

their plausible bindingmodes. The structural stability of the TTK complexes with

new compounds was confirmed using MD simulations. The simulation studies

revealed that all compounds formed stable complexes. Similarly, MM/PBSA

method based free energy calculations showed that these compounds bind

with reasonably good affinity to the TTK protein. Overall molecular modelling

results suggest that newly designed compounds can act as lead compounds for

the optimization of TTK inhibitors.
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Introduction

The dual specificity kinase TTK (Also known as monopolar

spindle 1 or MPS1) is the core component of spindle assembly

checkpoint that ensures accurate segregation of chromosomes

during mitosis. TTK controls the bipolar attachment of

chromosomes to spindle microtubules by regulating the

spindle assembly checkpoint (Wei et al., 2005; Lindberg and

Meijer, 2021; Xing et al., 2021). TTK is activated at the

unattached kinetochores and recruits’ components of the

mitotic checkpoint complex (MCC), thereby initiating SAC

(Fisk and Winey, 2001; Stucke et al., 2002; Laufer et al., 2014;

Huang et al., 2021). MCC hinders metaphase to anaphase

transition by inhibiting the activation of Anaphase Promoting

Complex/Cyclosome (APC/C) until all the kinetochores are

correctly attached to the microtubules, which is prerequisite

for accurate chromosome division (Wengner et al., 2016).

TTK is composed of 857 amino acids with double lobed

protein kinase structure. It comprises C terminal catalytic and

activation loops having residues ranging from 515-794. The N

terminal lobe (Glu 516-Met602) is smaller than the C terminal

lobe (Asn606-Gln794) and has six beta sheets and one alpha

helix. The larger C-terminal lobe, however, is more complex and

consists of 2 beta sheets, 7 alpha helices together with the

activation, catalytic and p + 1 loops. Both lobes join the hinge

region through the amino acid residues Glu603 and Gly605. In its

dormant state TTK is catalytically inactive as the activation loop

is locked. However, phosphorylation at the activation loop

enables the TTK to adopt an active conformation and elevate

its catalytic activity (Wang et al., 2009). Besides its role in mitosis,

it also plays a role in meiosis, cell transformation and cytokinesis

(Maia et al., 2015; Sugimoto et al., 2017b). TTK overexpression is

detected in many cancer types including, breast, hepatocellular

and thyroid carcinomas (Maia et al., 2015; Lu and Ren, 2021).

Overexpression of TTK is associated with high serum AFP

(alpha-fetoprotein) levels, large tumor size, advanced TNM

stage (tumor, nodes, and metastases), and distant metastases.

Enhanced expression can also lead to centrosome duplication,

genomic instability, mitotic check point failure, abrogated

kinetochore attachment, incorrect spindle stress, and

chromosomal misalignment (Liu and Winey, 2012; Liu et al.,

2015a; Liu et al., 2015b; Sugimoto et al., 2017a). Due to its major

role in mitotic checkpoint and overexpression in different

malignancies, TTK is considered a potential anti-cancer drug

target.

Studies involving RNA interference-mediated knockdown or

chemical inhibition of TTK have validated it as a target for cancer

therapeutics (Schmidt et al., 2005; Brough et al., 2011; Daniel

et al., 2011). Several TTK inhibitors, therefore, have been

discovered during the last decade. This includes NMS-P715,

CCT251455, CFI-402257, BOS172722, S81694,

BAY1161909 and BAY 1217389 with last five progressing to

clinical evaluations (Chen et al., 2018). Similarly, some other

small-molecule inhibitors i.e., Diaminopyridine,

pyrrolopyrimidine and quinazolines containing compounds

have shown low nano-molar activities with reasonably well

growth inhibition of cell lines (Kusakabe et al., 2012;

Bursavich et al., 2013).

In the current study Pyrrolo pyridine derivatives were used to

develop 3D-QSAR models for designing of TTK inhibitors with

improved activity. To the best of our knowledge so far, no QSAR

modeling and docking simulations have been performed on this

class of compounds. CoMFA and CoMSIA models were

developed using different alignment schemes and charge

models which were then validated using various statistical

methods. The information derived from the models were

exploited in designing of new compounds that are predicted

to have better biological activities than the existing compounds in

this class. The stability of binding modes and interactions of

newly designed compounds with TTK protein were confirmed by

MD Simulations.

Materials and methods

Data collection

Different reported inhibitors of TTK protein sharing similar

scaffolds but different biological activities were retrieved from the

literature (Naud et al., 2013). The IC50 values of all inhibitors

were converted into pIC50 values. The 39 retrieved compounds

were randomly divided into two groups: training

(28 compounds) and test (11 compounds) datasets (Puzyn

et al., 2011). The pIC50 values were used as dependent

variable while CoMFA and CoMSIA descriptors were taken as

independent variables (Balasubramanian et al., 2014).

Structure preparation and alignment

The 2D structures of inhibitors were sketched by 2D builder

tool of Maestro implemented in Schrödinger’s suite (Bhachoo

and Beuming, 2017). The structures of all compounds were

minimized by Conjugate gradient and Powell methods, while

the partial charges were computed by Gasteiger Huckel (GH),

Gasteiger Marsili (GM), Pullman, and MMFF94 charges (Sainy

and Sharma, 2015; Shiri et al., 2016). The compound with the

highest biological activity among all the inhibitors was selected as

a template for ligand and structure-based conformer alignment

of all compounds.
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CoMFA and CoMSIA field calculations

The CoMFA electrostatic and steric fields were

calculated through SYBYL software using a 3D grid

having a 2.0 Å spacing (Ghosh et al., 2021). A fixed

energy value of 30 kcal/mol was set to avoid energy

clashes. A carbon with sp3 hybridization and an atom

with +1.0 charge were used as steric and electrostatic

probes, respectively. A probe atom having a radius of

1.0 Å was used to calculate the CoMSIA fields. The

attenuation factor (α) with a default value 0.3 was used

to calculate the distance dependent similarities. The Eq. 1

was used to calculate the indices. All computations were

carried out in the same way as the CoMFA analysis (Hu

et al., 2009; Li et al., 2017).

Aq
F,K(j) � ∑ωprobe, kωike−ar

2
iq (1)

Aq = similarity index

K = physiochemical properties of CoMFA fields descriptors

ωprobe = the probe atom

i = summation index of molecule

jωik = observed value k of a specific property of the atom

ir = atomic radius

The efficiency of SAR model was determined by Partial Least

Square regression. The CoMFA and CoMSIA descriptors

were selected as dependent variables while IC50 value was

selected as an independent variable in PLS regression (Tahir

et al., 2018). The cross validation using the leave-one-out

method was used to select the best model that had high

prediction power. The cross-validation (q2) analysis is

defined by Eq. 2.

q2 � 1 − ∑y(ypred − yobs)
2

∑y(yobs − ymean)2
(2)

ypred = predicted values

yobs = experimental values

ymean = mean values

For non-cross validation, the column filtering was set to

2.0. Standard error estimation (SEE) values were also

calculated along cross and non-cross validation. To

evaluate the effectiveness of the generated models,

bootstrapping was used up to 100 runs. Predictive r2 was

used to express the predictive ability of the developed models,

that was based on the test set compounds. The predictive r2

was calculated using Eq. 3.

r2pred �
(SD − PRESS)

SD
(3)

SD = sum of squared deviations between pIC50 values of the test

set and mean pIC50 values of the training set

PRESS = sum of squared deviations between the test molecules

observed and expected activities

Designing of new compounds

Based on the information obtained from the contour maps of

best predictive CoMFA and CoMSIA models, ten new

compounds were designed by substitution of specific

electrostatic, steric, hydrophobic, hydrogen bond donor, and

hydrogen bond acceptor groups to enhance their inhibitory

activities against TTK protein. The newly designed

compounds belong to the synthetic class of compounds and

their biological activities were predicted using the best predictive

models (Lorca et al., 2018; Ghosh et al., 2021).

Molecular docking

The co-crystal structure of TTK (PDB ID: 4C4J) was

prepared by protein preparation wizard implemented in

Maestro. The receptor was preprocessed by adding hydrogens,

removing water, adding charges and fixing residues side chain

atoms. The unnecessary ligands and chains were removed while

the tautomeric states were generated at pH 7.0. The structure of

the receptor was further optimized and minimized by

OPLS_2005 forcefield [34]. The grid was generated by

selecting the co-crystal ligand to perform site-specific docking.

To soften the potential of non-polar sections of the receptor, the

van der Waals radii of the receptor atom were scaled to 1.0 and

the partial charge cutoff value was set to 0.25. The values for the

X, Y, and Z coordinates were 0.8, 17.52, and 45.37 respectively.

After grid generation, newly designed compounds were prepared

by LigPrep tool of Maestro prior to docking [35]. Different

ionization states were generated at pH 7 by using Epik [35].

The stereoisomers of compounds with specified chirality were

generated by using OPLS_2005 forcefield. The prepared ligands

were then docked to the prepared receptor by using the Glide

docking tool and the binding poses were analyzed based on the

glide gscore.

MD simulations

The binding poses of each compound were used to make

complexes with the TTK protein. The stability of each protein-

ligand complex was estimated by running MD simulation

using NAMD (Acun et al., 2018). All the complexes were

prepared by using LeaP module of AMBER21 tools (Case

et al., 2021). The parameters of the ligands were generated by

antechamber program by semi-empirical calculation. The

PDB4amber module was used to convert the amino acid

residues to amber format. The forcefield parameters for

protein and ligands were AMBER ff14SB force field and

general amber forcefield, respectively (Duan et al., 2003).

The parameters of ligands and receptor were connected by

tleap program. All the complexes were solvated in a water box
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of size 10 Å using TIP3P water model. To neutralize the

system, counter ions Na+ and Cl− were added by using

LeaP. The systems were minimized by conjugating gradient

and steepest descent method for 10,000 times. The water

equilibration was done for 5,000 steps, followed by the

three-temperature equilibration from 0 to 200 K,

200–250 K, and 250–300 K for 5,000 steps. After

equilibration of the system at different temperatures, the

production of systems was run for 25 ns with constant

temperature 310 K and pressure of 1 atm using NPT

ensemble. The trajectories of all the systems were analyzed

to get RMSD, RMSF, Radius of gyration, SASA, PCA, by using

VMD tcl commands, CPPTRAJ (Roe et al., 2013) and R

package.

Binding free energy calculation

The binding free energy of the system was calculated by using

molecular mechanics-based scoring methods MM/PBSA (Sun

et al., 2014). The calculations were based on a total of

300 snapshots of the complex, taken at 2 ps interval from the

last 2 ns stable MD trajectories. The binding free energy was

determined as the difference between the total free energy

(ΔGcom) of the ligand-receptor complex and the sum of free

energy of individual receptors (ΔGpro) and ligand (ΔGlig) using

the equation provided below:

ΔGbind � ΔH − TΔS � ΔGcom − [ΔGpro + ΔGlig]

The ΔG for the complex, receptor and ligand can be

calculated by the following equation:

ΔG � ΔEMM + ΔGsol − TΔS

ΔEMM = Molecular Mechanics Energy

ΔGsol = Solvation Free Energy

TΔS = Entropy at given Temperature

ADMET analysis

The physicochemical properties i.e., molecular weight,

Hydrogen bond donors and acceptors along with the ADMET

properties of the newly designed compounds were predicted by

QikProp tool of Maestro (Koç et al., 2021).

Results and discussion

An essential stage in ‘3D-QSAR’ is the systematized

assortment of compounds and their division into training and

test datasets. Compounds and their biological activities in terms of

pIC50 values are mentioned in Supplementary Table S1. They

were classified into two categories with respect to their activity

range from high to low while maintaining structural variations. All

the selected compounds possess a common sub-structure 1H-

Pyrrolo[3,2-c] pyridine as shown in Figure 1A. These compounds

have mainly hydrophobic (halogens Cl and Br) and hydrophilic

substituents (amine and amides) attached to the core scaffold 1H-

Pyrrolo[3,2-c] pyridine. Hydrogen bond donors like NH and OH,

hydrogen bond acceptors like N, O and F and steric groups like

CH3 and Cl have been attached to enhance the activities of the

compounds. By changing the substituent at main scaffold, the

activity of the compounds predicted by the developed models, was

affected. The quality of the models is affected by multiple factors

like the conformation of the molecules and their assigned partial

charges (Muddassar et al., 2009; Wang et al., 2015). Therefore,

different conformations of dataset molecules using ligand and

structure-based approaches were generated along with different

charge models i.e., GH, GM, MMFF. For structural alignment,

compounds were aligned on a common sub-structure to get the

best predictive “CoMFA” and “CoMSIA” models (Figure 1).

The best models were obtained with Merck Molecular Force

Field charges using structure-based conformation alignment as

shown in Figure 1B. The correlation coefficient q2 of leave-one-

out cross validation for CoMFA fields was 0.589, with 3 optimum

FIGURE 1
Alignment of dataset compounds: (A) Common Substructure and (B) Structure-based alignment of docked compounds.
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number of components, the standard error of estimation was 0.088,

non-cross validated coefficient (r2ncv) = 0.902, F-value = 73.624 and

r2pred = 0.751 as mentioned in Table 1. The electrostatic and steric

fields contributed 68.3% and 31.7% respectively to the model.

However, ligand-based conformations yielded the poor predictive

models. Powell method generated conformation with MMFF

charges produced best CoMFA model with q2 = 0.268 value for

3 optimum number of components (other data shown in

Supplementary Table S2). Similarly Conjugate Gradient

conformation method with MMFF charges using 2 optimum

number of components yielded q2 = 0.191 value for steric and

electrostatic fields (Supplementary Table S3). In the ligand-based

alignment technique, the effects of different charges on the models

are shown in Supplementary Table S3. The reasons for superior

performance of one charge method over the other in “CoMFA” and

“CoMSIA” predictive models are still unknown, as the literature

shows variable performance of these charge models on compounds

targeting different proteins. As for as COMSIA models are

concerned, structure-based alignment with Merck Molecular

Force Field charges produced q2 = 0.690 with N = 3, SEE =

0.109, F-value = 108.296, r2ncv = 0.931, and r2pred =

0.767 shown in Table 1. The CoMSIA fields like steric,

electrostatic, hydrophobic, hydrogen bond donor and acceptor

contributions were 12.9%, 23.1%, 25.1%, 17.7% and 21.2%

respectively. The results exhibited that electrostatic and

hydrophobic interactions and hydrogen bond donors played

major role in CoMSIA model. In CoMSIA modeling GH, GM,

PM, andMMFF94 charges did not significantly influence the quality

of models. Using the best predictive CoMFA and CoMSIA models,

the biological activities of the training and test dataset compounds

were predicted as shown in Figures 2A–B , respectively. The

scattered plots show that the predicted values are similar to the

TABLE 1 Statistical parameters of structure based CoMFA and CoMSIA models with different charge schemes.

Gasteiger Huckel
charges (GH)

Gasteiger Marsili
Charges (GM)

Pullman
charges (PM)

Merck molecular
force field
(MMFF94)

Parameters CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

N 3 3 3 3 3 3 3 3

q2 0.583 0.705 0.584 0.665 0.575 0.663 0.589 0.690

r2(NoV) 0.891 0.946 0.888 0.918 0.893 0.950 0.902 0.931

SEE 0.090 0.075 0.090 0.068 0.093 0.087 0.088 0.109

F 65.535 139.223 63.112 89.516 66.594 152.924 73.624 108.296

Pred (r2) 0.638 0.814 0.767 0.804 0.619 0.721 0.751 0.767

r2bs 0.928 0.959 0.913 0.937 0.942 0.930 0.919 0.941

SDbs 0.215 0.168 0.216 0.179 0.206 0.201 0.216 0.187

Fields contribution

Steric (S) 0.714 0.126 0.724 0.139 0.670 0.128 0.683 0.129

Electrostatic(E) 0.286 0.227 0.276 0.192 0.330 0.216 0.317 0.231

Hydrophobic (H) ----- 0.263 ----- 0.258 ----- 0.272 ----- 0.251

Donor (D) ----- 0.171 ----- 0.166 ----- 0.172 ----- 0.177

Acceptor (A) ----- 0.213 ----- 0.245 ----- 0.212 ----- 0.212

N, “Optimal number of components; q2, cross-validated correlation coefficient; r2, determination coefficient; r2 nov, non-cross validated correlation coefficient; SEE, standard error of

estimate; F, Fischer’s test F-value; Pred-r2, predictive r2 for test set compounds; r2 bs, r2 obtained after 100 bootstrapping runs; and SDbs, bootstrapping standard deviation.

FIGURE 2
Correlation plots between experimental and predicted biological activities (A) From CoMFA Model (B) From CoMSIA Model.
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experimental values except one compound (Outlier). Outliers can

occur as a result of incorrectly measured inhibitory concentrations,

variable binding confirmations, ormajor physicochemical variances.

Similarly, external validation (higher r2pred values of test set

compounds) of both models shows their highly predictive nature.

Internal validations such as r2ncv, F-values, and r2bs values revealed

their reliability and precision to design and improve new

compounds. As any individual field can influence the quality of

the model, therefore models with good statistical significance were

used to design new compounds for improved activity as shown in

Table 2.

CoMFA contour maps

Contour maps of the best predictive models were

generated on the most active compound, and then this 3D

information was exploited to create new compounds predicted

TABLE 2 Comparison of parent and modified compounds activities.

Parent compounds Actual pIC50 Modified compounds Predicted-pIC50

9 6.92 NDC1 7.04

19 7.63 NDC2 6.96

9 6.92 NDC3 7.36

2 7.29 NDC4 7.10

15 6.19 NDC5 7.24

16 5.36 NDC6 7.13

10 6.34 NDC7 7.13

26 7.03 NDC8 7.913

37 7.56 NDC9 8.062

39 7.68 NDC10 8.063

Frontiers in Chemistry frontiersin.org06

Ashraf et al. 10.3389/fchem.2022.1003816

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1003816


to have improved biological activities. The contour maps of

CoMFA fields for the best model are shown in Figures 3A,B.

The steric contour maps are shown in Figure 3A, the

green contour denotes the favored area for bulky group

substitution, whereas the yellow contour shows the

disfavored area for bulky group substitutions. The

replacement of bulky groups at R4 position will increase

the activity of compounds. For example, compound 27

(pIC50 = 8.1) with azetidine amide at R4 is predicted to

be more active than compound 17 (pIC50 = 7.13) which

has nothing at same position. Figure 3B shows the

electrostatic field contour maps. The red and blue contours

represent the effect of the electrostatic field on the biological

activity of compounds. The large blue contour near

R1 position shows that the substitution of electron

donating group will increase the activity of compound

that’s why the activity of compound 1 (pIC50 = 7.60)

having electron donating nitrogen at R1, is better than

compound 10 (pIC50 = 6.34) that has electron with

drawing difluromethyl at the same position. Similarly, the

red contour near the R2 indicates that the replacement with

electron withdrawing group will increase the bioactivity of the

compounds. These observations are in agreement with

previously published results (Vaidya et al., 2017).

FIGURE 3
“Structure-based model of the most active compound represented through contour maps (36). (A) Contour maps of CoMFA steric field; (B)
Contour maps of CoMFA electrostatic fields; (C)Contour maps of CoMSIA hydrophobic field; (D)Contour maps of CoMSIA hydrogen bond acceptor
fields; (E) Contour maps of CoMSIA hydrogen bond donor fields; (F) Structure activity relationship representation of contour groups.”
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CoMSIA contour maps

The contour maps of CoMFA and CoMSIA showed the

similarity in steric and electrostatic fields. The remaining fields of

CoMSIA i.e., hydrophobic, HBA and HBD are shown in Figures

3C,D,E. Figure 3C shows the hydrophobic contour, where yellow

contour at the R3 position indicates that the substitution of the

hydrophobic group is favorable to increase the activity while white

contour near R1 position shows that the activity can be increased by

replacing the hydrophilic group at this position. Therefore,

compounds 22, 23, 28-30 and 33-39 with hydrophobic groups at

the R3 position showed significant predicted biological activities.

Figure 3D indicates the hydrogen bond acceptors contour. Magenta

contour shows the area which is favorable for hydrogen bond

acceptor group substitution while red region is favorable for

hydrogen bond donor group substitution to increase the activity

of compounds. Similarly, the purple contour in Figure 5E shows the

disfavored area for hydrogen bond donor group substitution. So, the

substitution of hydrogen bond donor groups at R1 and R4 position

will increase the biological activity of compounds, while the

substitution of hydrogen bond acceptor groups at R2 position will

increase the activity. In the contour maps, hydrogen bond acceptors

and donors shared 80% for favored regions while 20% for unfavored

regions to increase the biological activity of compounds. The

structure-activity relationship diagram (Figure 3F) was obtained

from the CoMFA and CoMSIA contour maps. In order to design

new compounds with better biological activities, the regions R1, R2,

R3, and R4 are favorable for substitutions of electron donating

groups, hydrogen bond acceptor groups, hydrophobic groups and

bulky groups, respectively. In order to design new compounds,

FIGURE 4
Docking protocol validation studies. The redocking of co-crystal ligands of three TTK X-rays crystal structures, (A) redocked pose of ligand in PDB
ID: 3WZK is shown in cyan sticks, (B) redocked pose of ligand in PDB ID: 4C4J isshown in green sticks, (C) redocked pose of ligand in PDB ID: 5AP7 is
shown in yellow sticks. The RMSD of redocked poses was less than 1Å. (D) The estimation of docking accuracy by AUC curve with a value of 0.80.
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FIGURE 5
The binding interactions of newly designed compounds with the key residues of TTK binding pocket. The hydrogen bonds are denoted with
black dash lines. The distance between the compounds and binding site residues is measured in Å.
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different modifications in the parent structures have been introduced

based on the best CoMFA and CoMSIA models contours. For

example, pyrazole ring of compound 9 showed favorable region

for electron donating groups, so by replacing the methyl group with

hydroxyl group, new compounds showed better predicted activity

than parent compound. Similarly, a hydroxyl group was added to the

compound 2 to get a new molecule with better activity. All new

compounds were designed by adding specific groups at the favorable

electron donating, hydrogen bond acceptor and steric group regions

for better activities.

FIGURE 6
Root Mean Square Deviations in backbone of TTK bound to newly designed compounds; (A)TTK-NDC1 (red), TTK-NDC2 (green), TTK-NDC3 (blue),
TTK-NDC4 (yellow), TTK-NDC5 (violet) (B)TTK-NDC6 (cyan), TTK-NDC7 (magenta), TTK-NDC8 (orange), TTK-NDC9 (indigo) and TTK-NDC10 (turquoise).

Frontiers in Chemistry frontiersin.org10

Ashraf et al. 10.3389/fchem.2022.1003816

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1003816


Binding mode elucidation of newly
designed compounds

Newly designed compounds NDC1-10 were docked into the

active site of TTK protein to identify their plausible binding modes.

Prior to the docking of newly designed compounds, the glide

docking protocol was validated by calculating the RMSD of

redocked poses of co-crystal ligands (Muddassar et al., 2010).

The co-crystal ligands were extracted from the co-crystal

structures (PDB IDs: 3WZK, 4C4J, 5AP7) and docked again at

the same binding position where cocrystal ligands were making the

hydrogen bonding interactions with the hinge region residues. The

FIGURE 7
(A,B). Root Mean Square Fluctuations of amino acid residues of TTK protein and its complexes to compare the flexibility of protein structures.
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docked pose was then aligned on the native ligand which showed

identical interaction with <1.0 Å deviation from original pose. The

redocking of representative co-crystal ligands can be observed in

Figures 4A–C.Moreover, the accuracy of glide tool was estimated by

area under curve studies. A decoy dataset of 917 compounds was

used along with active compounds of TTK. The AUC curve value of

0.80 showed that the true positive rate was higher than the false

positive results produced by the glide scoring scheme as shown in

FIGURE 8
(A,B). Radius of gyration of Cα atoms of TTK protein with bound compounds to analyze the relative compactness of protein complexes.
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Figure 4D. After validation of docking method, newly designed

compounds were docked in the active site of TTK protein. All

compounds showed good binding affinities in terms of glide scores

given in Supplementary Table S4. The binding interactions of the

newly designed compounds were analyzed and it was observed that

all compounds were making hydrogen bonds with the hinge region

FIGURE 9
(A,B). Solvent accessible surface area (SASA) calculation of TTK protein and its complexes throughout the simulation to find the exposed surface
of protein to solvent during simulation.
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residues especially Gly110. The other interacting residues were Ile36,

Lys58, Glu76, Met107, Cys109, Asn111, Ile112, Ser116, Lys120,

Asp169, Met176 and Pro178. In case of hydrogen bonding,

NDC1 made two hydrogen bonds with Glu76 and Gly110 with a

distance of 1.7 and 2.8 Å respectively. NDC2 made one hydrogen

bond with Gly110, while NDC3 was making two hydrogen bonds

with Gly110. The same bonding pattern was observed in all

complexes i.e., hydrogen bonding with Gly110, Glu76. Moreover,

the residues Ile36, Ile112, Met105, Met176 and Pro178 were

involved in hydrophobic interactions with the newly designed

compounds. The hydrogen bonds and the distances between the

ligands and key residues are given in Figure 5.

MD simulation analysis

MD simulations were carried out to estimate the steady nature

and stability of the protein and ligand complexes. The protein-ligand

complex stability was estimated by the Root Mean Square Deviation

(RMSD) of the complexes in 25 ns long simulation. The RMSD

FIGURE 10
The representation of proportion of variance % (TTK-NDC1) against eigenvalue calculated by Principal Component Analysis. Three PCs are
showing the fluctuating regions. The fluctuations in PC1, PC2, and PC3 are 29.54%, 15.39% and 6.92% respectively. The overall fluctuations are
51.85%.
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trajectories of ten complexes are shown in Figures 6A,B. The ideal

range for the stable complex in terms of RMSD is 2–3 Å. It can be

observed that all the complexes showed a stable RMSD value i.e., less

than ~2.5 Å as compare to the apo TTK which showed higher

deviation in confirmation than complexes. All the complexes

equilibrated at ~ 2 ns and then got stability till the end of the

simulation. Some complexes showed higher stability than others

i.e., TTK-NDC4 and TTK-NDC5 with a RMSD values less than

~1.5 Å. Additionally, the behavior of apo protein was also tested

which showed that the protein complexes weremore stable than apo

protein.

The fluctuations in the amino acid residues were calculated by

Root Mean Square Fluctuation (RMSF). The residues with high

RMSF values showed higher flexibility, or the residues that form

loop regions showed higher RMSF values. Similarly, the residues

with lower RMSF values remained rigid during the simulation.

Figures 7A,B describes the RMSF plots of all complexes. The C and

N terminals showed highest RMSF values while the loop regions also

showed relatively higher values than the rigid residues. All the

complexes showed almost the same trend in RMSF values, with

two regions having major fluctuations except for TTK-NDC3 and

TTK-NDC6 complex. The major fluctuations were observed in the

regions 85 to 115 and 210 to 225 residues. These correspond to the

loop regions in the TKK protein while the other residues remained

rigid having only a minor fluctuation in RMSF values.

Rg (radius of gyration) is used to show the change in the

structure compactness of subjected protein during simulations. The

compactness shows that bound small molecules did not induce any

conformational in the protein over the simulation time period

(Seeliger and de Groot, 2010). Rg analysis represents how the

FIGURE 11
The Dynamic Cross-Correlation map of TTK-NDC1 complex. The positive and negative correlation among the residues is shown by cyan and
purple color, respectively.
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secondary structures are compactly packed in 3D structure of

proteins. The Rg plots of all complexes and apo TTK are shown

in Figures 8A,B. TTK-NDC1 (black) had shown highest Rg during

~5–8 ns, with Rg value reaching16.6 Å, while TTK-NDC2 (red) had

shown the second highest value of ~16.6 Å during first 5 ns

simulations. The remaining complexes showed the stable Rg

values throughout the simulation period. The stable Rg values

indicated that the protein remained compact, and less unfolding

was observed in all protein-ligand complexes as compare to the apo

protein which showed higher Rg values than complexes throughout

the simulation period (Grutsch et al., 2014).

SASA (solvent accessible surface area) is the surface area of a

biomolecule that is accessible to a solvent. It determines how

much an amino acid is exposed to its environment. Lower SASA

values represent compact structure of protein while high values

represent unfolded structures. SASA values of all TTK protein

and its complexes were analyzed to predict the changes in the

structure of the protein Figures 9A,B. The Figure shows that the

proteins with ligands NDC2, NDC3 and NDC5 have higher

SASA values while proteins with rest of the ligands have lowest

SASA values. These results indicate that ligand binding can affect

the protein’s tertiary structure. Increased values of SASA

represent distortion in the structures.

PCA (Principal Component Analysis) characterizes the

dynamic behavior of proteins (David and Jacobs, 2014). It helps

to identify collective motions of the trajectories during MD

simulations. In the graph of TTK-NDC1 (Figure 10), eigenvalues

of the proteins were plotted against the corresponding eigenvector

index for the first twenty modes of motion. The eigenvalues

represent eigenvector fluctuations in hyperspace. In simulations

overall movement of the proteins is controlled by eigenvectors

with higher eigenvalues. In our systems, the first five eigenvectors

exhibited dominant movements with a higher eigenvalue

(29.5–70.3%), whereas the remaining eigenvectors had low

eigenvalues. The plotted first three PC1, PC2 and PC3 covered

themore than 50%of total variations. The Figure 10 plots shows that

PC1 clusters possessed highest variability of 29.54%, PC2 depicted

the variability of 15.39%, while PC3 exhibited minimal variability

which is 6.92%. Minimal variability suggests that PC3 has the most

stabilized protein ligand binding and occupies less region in phase

TABLE 3 Components of the binding free energies of TTK and designed compounds complexes.

Complexes ΔEvdW ΔEele EPB ΔGNP ΔGDIS ΔGgas ΔGsolv ΔGbind

TTK-NDC1 −59.30 ± 0.34 −5.85± 0.30 18.54 ± 0.38 −28.92± 0.05 56.32 ± 0.20 −65.16 ± 0.46 45.95 ± 0.54 −19.20 ± 0.81

TTK-NDC2 −59.19 ± 0.30 0.39 ± 0.21 16.74 ± 0.33 −30.64± 0.13 61.17 ± 0.17 −58.84 ± 0.38 47.27 ± 0.40 −11.57 ± 0.43

TTK-NDC3 −54.15 ±0.20 −4.09 ± 0.23 18.27 ± 0.24 −27.20 ± 0.04 53.56 ± 0.09 −58.25 ± 0.31 44.63 ± 0.29 −13.61 ± 0.42

TTK-NDC4 −58.18 ± 0.20 −2.38 ± 0.18 16.47 ± 0.27 −28.00 ± 0.03 56.23 ± 0.08 −60.56 ± 0.24 44.70 ± 0.34 −15.86 ± 0.46

TTK-NDC5 −60.40 ± 0.25 −8.55 ± 0.23 30.06 ± 0.42 −28.38 ± 0.04 57.43 ± 0.09 −68.95 ± 0.32 59.10 ± 0.46 −9.85 ± 0.53

TTK-NDC6 −64.34 ± 0.33 −2.05 ± 0.17 27.69 ± 0.45 −33.11 ± 0.06 62.10 ± 0.11 −66.41 ± 0.34 56.68 ± 0.50 −9.73 ± 0.55

TTK-NDC7 −56.79 ± 0.26 −2.57 ± 0.20 14.23 ± 0.24 −27.97 ± 0.04 54.40 ± 0.10 −59.36 ± 0.30 40.65 ± 0.33 −18.71 ± 0.38

TTK-NDC8 −29.34 ± 0.21 −19.18 ± 0.45 48.81 ± 0.51 −39.58 ± 0.09 70.59 ± 0.12 −78.53 ± 0.51 79.82 ± 0.56 1.28 ± 0.40

TTK-NDC9 −78.76 ± 0.28 −5.04 ± 0.26 26.06 ± 0.28 −38.91 ± 0.08 75.29 ± 0.11 −83.80 ± 0.42 63.07 ± 0.35 −20.72 ± 0.55

TTK-NDC10 −72.07 ± 0.34 −5.22 ± 0.18 27.94 ± 0.37 −36.57 ± 0.12 73.83 ± 0.20 −77.30 ± 0.39 65.21 ± 0.47 −12.08 ± 0.41

TABLE 4 Predicted physicochemical properties of the newly designed molecules.

Compounds MW HBD HBA QPlogPo/w QPlogHERG QPCaco QPlogBB QPlogKhsa

NDC1 320.35 3 5 13.329 −6.193 620.519 −0.945 0.086

NDC2 349.391 2 4 10.346 −6.155 2019.982 −0.427 0.545

NDC3 307.311 5 4 15.776 −5.889 66.578 −1.9 −0.152

NDC4 305.338 4 5 16.231 −6.195 145.681 −1.599 −0.155

NDC5 324.385 5 4 15.72 −5.619 366.227 −1.176 −0.038

NDC6 388.351 4 4 14.646 −5.949 291.298 −1.059 0.217

NDC7 307.354 5 3 14.015 −5.518 189.325 −1.36 0.091

NDC8 504.73 8 8 −0.743 −7.367 1.276 −1.203 −0.007

NDC9 470.573 4 6 15.944 −5.648 401.322 −1.072 0.759

NDC10 482.584 4 6 16.905 −7.032 244.531 −1.612 0.947

“QPlogPo/w recommended range = “−2.0 to 6.5,” QPlogHERG recommended range = “<-5,” QPCaco2 recommended range “<25 poor,” “> 500 great,” QPlogBB recommended range =

“−3.0 to 1.2,” QPlogKhsa recommended range = “−1.5 to 1.5.”
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space; hence its structure is compact as compare to PC1 and PC2.

Through simple clustering in PC subspace, the PCA analysis

revealed conformational changes in all clusters, blue regions

showed most significant movement, white regions show

intermediate movement while red regions show that there is less

movement of flexibility. The PCA plots of remaining complexes are

given in Supplementary Figures S1A–S1I.

The cross-correlation map showed the pairwise correlation of

NDC1 with the TTK protein by the value of pairwise cross-correlation

coefficient (Figure 11). The correlated residues are more than 0.8 and

are shown in cyan color, while the anti-correlated residues (<-0.4) are
indicated with magenta color. The high percentage of pairwise

correlated residues indicated the stable binding of the ligand with

the TKK protein. The cross-correlation maps of other complexes are

given in Supplementary Figures S2A–S2I.

The binding free energy estimation

The MM/PBSA is a significant method to estimate the binding

free energy of protein-ligand complexes. The ΔGbind values for all

complexes were estimated using this method. The ΔG is the

outcome of tcontribu-tion of various protein-ligand interactions

such as van derWaals energy (ΔEvdW), electrostatic energy (ΔEele)
and EPB (electrostatic contribution to solvation free energy by

Poisson-Boltzmann) energy. The ΔEvdW of NDC9 and

NDC10 complexes are found to be -78.76 kcal/mol and-

72.07 kcal/mol respectively and contributing more in binding

affinities as compared to other designed compounds. Whereas

NDC8 complex having −29.34 kcal/mol showing its limited

contribution whereas in remaining complexes it contributed

more. In case of ΔEele contribution, the energy component

is −5.85 kcal/mol in NDC1, 0.39 kcal/mol in NDC2, −4.09 kcal/

mol in NDC3, −2.38 kcal/mol in NDC4, −8.55 kcal/mol in

NDC5, −2.05 kcal/mol in NDC6, −2.57 kcal/mole in

NDC7, −19.18 kcal/mol in NDC8, −5.04 kcal/mol in NDC9,

and −5.22 kcal/mol in NDC10. ΔEele energy contribution of

NDC8 complex is highest among all other complexes. Moreover,

the PB contribution of all complexes are showing that NDC8 has

higher PB value than other complexes. The calculated binding free

energies of all the complexes are shown in Table 3. The binding free

energies ΔGbind of NDC1 (−19.20 kcal/mol), NDC7(−18.71 kcal/

mol) and NDC9 (−20.72 kcal/mol) are quite better than other

complexes. The differences in the binding energies are due to the

difference in the contribution of electrostatic, polar, and non-polar

energies in the protein-ligand complexes.

Calculations of physicochemical
properties

QikProp software was used to estimate the

physicochemical parameters (Table 4). With almost one

rule violation, the majority of newly created

molecules followed the Lipinski’s rule. The predicted

octanol/water partition coefficient ‘QPlogPo/w’ values range

(10.346–16.905), HERG K+ channels “QPlogHERG”

blocking IC50 values range (−7.032 to −5.518), caco-2

cell permeability “QPPCaco’” values range

(66.578–2019.982), brain/blood partition coefficient

“QPlogBB” values range (−1.9 to −0.427), and human

serum albumin binding “QPkhsa” values range

(−0.155–0.947) are within the acceptable ranges for

95 percent oral drugs (Kumar et al., 2016). Within the

recommended ranges, physicochemical qualities such as

‘QPlogPo/w and QPlogHERG’ showed smooth diffusion of

drug and protection against unexpected cardiac arrest (Kumar

et al., 2016).

Conclusion

TTK is an important mitotic kinase whose loss of function

results in chromosomal segregation defects that can lead to

aneuploidy and cell death, making it an attractive drug target

for cancer. Using different partial charges and alignment

methods, structure-based 3D-QSAR models on

MMFF94 charges yielded best CoMFA and CoMSIA

models. Using these predictive models and contour maps

information ten new compounds were designed and their

biological activities were predicted. The newly designed

compounds showed better predicted activities than their

parent compounds, demonstrating that structure-based

approaches using MMFF94 charges can be used to design

better active TTK inhibitors. Further MD simulations

described the stability of protein-ligand complexes.

Similarly computational binding free energy calculations

suggest that newly designed compounds can bind to

TTK protein with better binding affinity than reported

compounds.
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