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In order to solve the poor cycle stability and the pulverization of cobalt sulfides electrodes, a
series of amorphous and crystalline cobalt sulfides were prepared by one-pot solvothermal
synthesis through controlling the reaction temperatures. Compared to the crystalline
cobalt sulfide electrodes, the amorphous cobalt sulfide electrodes exhibited superior
electrochemical performance. The high initial discharge and charge capacities of 2,132
mAh/g and 1,443 mAh/g at 200 mA/g were obtained. The reversible capacity was 1,245
mAh/g after 200 cycles, which is much higher than the theoretical capacity. The specific
capability was 815 mAh/g at 800 mA/g and increased to 1,047 mAh/g when back to 100
mA/g, indicating the excellent rate capability. The outstanding electrochemical
performance of the amorphous cobalt sulfide electrodes could result from the unique
characteristics of more defects, isotropic nature, and the absence of grain boundaries for
amorphous nanostructures, indicating the potential application of amorphous cobalt
sulfide as anodes for lithium-ion batteries.
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INTRODUCTION

Lithium-ion batteries (LIBs) have been wildly used in small consumer electronics, electric vehicles,
and medical apparatus as energy storage devices due to their advantages of high energy density, long
cycle life, high working voltage, no memory effect, small self-discharge, and wide operating
temperature range (Sun et al., 2010; Wang et al., 2020c; Gu et al., 2021; Li et al., 2021a; Li et al.,
2021b; Li et al., 2021c; Li et al., 2021d; Zhao et al., 2021; Liang et al., 2022). However, to apply in large-
scale energy storage projects and other high-power systems, the electrochemical properties of power
density, rate capacity, cycle stability, and safety issue should be further improved (Sun et al., 2011;
Zhang et al., 2019b; Wang et al., 2020b; Zhang et al., 2020a; Wang et al., 2021b). Current commercial
graphite anode materials exhibit the advantages of high energy density, high conductivity, and
security. Still, their low theoretical capacity of 372mAh/g and poor rate capability have confined the
further development of LIBs(Zhang et al., 2019a; Hou et al., 2020; Li et al., 2020b; Gao et al., 2021;
Wang et al., 2021a). Therefore, it is urgent to develop high-performance anode materials to meet the
high power energy needs in the future (Zhao et al., 2019; Zhao et al., 2020; Liu et al., 2021a). It has
long been discovered that cobalt sulfides (CoS, CoS2, Co3S4, Co9S8) have lithium storage ability and
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high reversible capacities (Yan et al., 2005; Shi et al., 2012; Gu
et al., 2013). In order to achieve the practical application of cobalt
sulfides as anode materials, the intrinsic drawbacks of low
conductivity and significant volume expansion during cycles
must be solved (Gu et al., 2013; Jiang et al., 2020). Many
different crystalline nanostructures and morphologies have
been designed and prepared to relieve the decomposition
caused by the volume expansion. Carbon-based materials have
also been introduced to increase the conductivity (Yan et al.,
2005; Shi et al., 2012; Gu et al., 2013; Jiang et al., 2020). Yang et al.
reported that the cubic phase of CoS2 was prepared by calcination
at high temperature and exhibited the initial discharge capacity of
1,280 mA h/g and the reversible capacity of 350 mA h/g after ten
cycles at 50 mA/g (Yan et al., 2005). Yan et al. prepared carbon-
coated Co9S8 nano-dandelions by a facile solvothermal method,
and the high reversible capacity of 520 mA h/g at the current
density of 1 A/g (1.8 C) after the 50th cycle was obtained (Shi
et al., 2012). Wang et al. prepared standard hexagonal CoS
nanocomposites wrapped by graphene by a solvothermal
method. The CoS nanocomposites exhibited a high reversible
capacity of 749 mA h/g after 40 cycles at 62.5 mA/g (Gu et al.,
2013). Wei et al. prepared the polycrystalline Co9S8/C composites
by an electrospinning method, and the electrodes exhibited an
initial discharge capacity of 823 mA h/g and a reversible capacity
of 1,063 mA h/g after 200 cycles at 300 mA/g (Jiang et al., 2020).
Even though good electrochemical performance has been
observed in these crystalline cobalt sulfides, the poor cycle
stability and the pulverization of the materials caused by the
volume expansion still exist. Therefore, it is necessary to find a
new way to solve these problems. Amorphous nanostructures
always have more defects, which will provide more active sites.
Furthermore, the isotropic nature and the absence of grain
boundaries for amorphous nanostructures could improve the
capacity to sustain high strain and the insertion of lithium ions,
which is helpful to inhibit the volume expansion (Liu et al., 2013;
Lu et al., 2018; Wu et al., 2019; Duan et al., 2021; Wu et al., 2021).
Zhao et al. reported that the amorphous VO(PO3)2 exhibited a
high initial discharge capacity of 1,297 mA h/g and a reversible
capacity of 676 mA h/g after 150 cycles at the current of 100 mA/
g, which is much higher than those of crystalline VO(PO3)2 due to
the isotropic ions diffusion paths (Wu et al., 2021). Wu et al.
reported that amorphous V2O3/C composite exhibited higher
reversible capacity and superior cycling stability than crystalline
V2O3/C composite, which accounted for the oxygen vacancies
and amorphous phase (Wu et al., 2019). Yang et al. reported that
compared to the crystalline Sn@C anodes, better rate capability,
longer cycle life, and higher capacity had been observed for
amorphous Sn@C anodes because of the defect sites and the
improved strain regulation (Duan et al., 2021). However, as far as
we know, the amorphous anode materials have not been
systematically investigated, and the amorphous cobalt sulfides
anode materials for LIBs have not been reported.

In this work, a series of amorphous and crystalline cobalt
sulfide nanomaterials were prepared by a facile solvothermal
method at different reaction temperatures. Due to the unique
characteristics of more defects, isotropic nature, and the
absence of grain boundaries for amorphous nanostructures,

the amorphous cobalt sulfide exhibited superior
electrochemical performance compared to the crystalline
cobalt sulfide. The initial discharge and charge capacities of
the amorphous samples are 2,132 mAh/g and 1,443 mAh/g,
respectively, at 200 mA/g. The Coulombic efficiency sharply
increased to 97.44% in the second cycle and maintained near
100% to the 200th cycle. The high reversible capacity of
1,245 mAh/g after 200 cycles was observed. The specific
capability was 815 mAh/g at 800 mA/g and increased to
1,047mAh/g when back to 100 mA/g, indicating the
excellent rate capability. The amorphous cobalt sulfide
nanomaterials with outstanding electrochemical
performance have the potential application as anodes
for LIBs.

EXPERIMENTAL SECTION

Materials and Batteries
The schematic illustration of preparing CoS (amorphous and
crystalline) materials and the assembling of the half cells (CR-
2032) is shown in Figure 1. The cobalt sulfide nanomaterials were
prepared as follows. 713.79 mg (3 mmol) of CoCl2·6H2O were
added into 70 ml of ethylene glycol and magnetically stirred for
2∼3 h. 89.7 mg (4 mmol) of L-cysteine were added consequently
and magnetically stirred for another 2∼3 h to dissolve completely.
The mixed solution was divided into two Teflon-lined autoclaves
(50 ml) and put in an air blast drying cabinet for 24 h at different
reaction temperatures of 140°C, 160°C, 180°C, and 200°C,
respectively. After the precipitates were alternately washed
with deionized water and absolute alcohol several times, the
precipitates were dried in a vacuum drying oven at 60°C for
12 h. Finally, the amorphous and crystalline cobalt sulfide
nanomaterials were obtained. According to the reaction
temperatures, the as-prepared cobalt sulfide nanomaterials
were denoted by CoS-140, CoS-160, CoS-180, and CoS-200,
respectively.

The cobalt sulfide nanomaterials, carbon black, and binder
were mixed at a weight of 7: 2: 1 and roundly ground. The binder
is carboxymethyl cellulose (CMC) dissolved in deionized water
with a weight ratio of 10%. The black slurry was smeared evenly
on the copper foil and then dried in a vacuum drying oven at
60°C for 12 h. The copper foil was punched into many disks with
an area of 113 mm2. The average loading mass of the active
materials is 0.82 mg/cm2. Finally, the half cells were assembled
with the copper disks and the lithium metal foil in an argon-
filled glove box. The diaphragm and electrolyte are the Celgard
2,250 film and 1M LiPF6 dissolved in a mixed solution of ethyl
carbonate and dimethyl ethyl carbonate with a volume ratio
of 1:1.

Structure and Morphology
The structure was characterized by X-ray diffraction (XRD,
Smart Lab, Rigku Japan) in the range of 20°–80° using a Cu Lα
radiation. The morphology was further identified by a
scanning electron microscope (SEM, GeminiSEM300, Zeiss,
Germany).
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Electrochemical Performance
Characterization
The electrochemical performance and impedance characteristics
were measured by battery measuring systems (Land-ct2001A,
China) and electrochemical workstation (CHI660E, China) in the
potential range of 0.01–3.0 V at room temperature.

RESULTS AND DISCUSSION

Structure and Morphology
The XRD patterns of the as-prepared materials reacted at
different temperatures are shown in Figure 2. With the
increase of the reaction temperatures, the diffraction peaks

gradually become apparent. No diffraction peak is observed
for the CoS-140 sample, indicating the amorphous or
nanocrystalline structure due to low reaction temperature. The
diffraction peaks gradually appear, and the intensities increase
gradually for the CoS-160 and CoS-180 samples, which indicates
a progressively crystallized process with the increase of the
reaction temperatures. For the CoS-200 sample, the diffraction
peaks are very remarkable, which means good crystallization. The
diffraction peaks at 31.05°, 35.68°, 47.13°, and 54.91° are consistent
with the standard card of PDF No. 19–0366 (CoS1.097), and these
peaks correspond to the (204), (220), (306) and (330) crystal
planes of hexagonal CoS1.097, respectively. In addition, no other
diffraction peaks are observed, indicating the pure cobalt sulfide
nanomaterials of our samples. The degree of crystallization
increases with the reaction temperatures. A series of
amorphous and crystalline cobalt sulfide nanomaterials were
prepared by controlling the reaction temperatures.

The morphologies of the amorphous and crystalline cobalt
sulfide nanomaterials can be determined by the SEM images
shown in Figure 3. From Figure 3A, the morphology of the
amorphous CoS-140 sample is rough and irregular with many
pits on the surface, and there are no noticeable regular crystalline
grains observed, which is consistent with the absence of
pronounced diffraction peaks shown in Figure 2. For the CoS-
160 sample, some regular nanospheres are observed on the rough
surface. And the regular nanospheres with different diameters
should be crystalline structures. While for the CoS-180 sample, in
addition to the regular nanospheres, some cracks are observed on
the surface, which could result from the growth of the crystalline
grains. A lot of small regular nanoparticles are observed for the
CoS-200 sample, indicating crystalline growth of the sample,
which strongly consists with the obvious diffraction peaks shown
in Figure 2. Controlling reaction temperatures is crucial to
synthesizing the cobalt sulfide nanomaterials with different
amorphous or crystalline structures.

FIGURE 1 | The schematic illustration of preparing the CoS materials and assembling half cells.

FIGURE 2 | The XRD patterns of the CoS samples prepared at different
temperatures.
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Electrochemical Performance
In order to compare the electrochemical performance of the series of
amorphous and crystalline cobalt sulfide nanomaterials, the cycle
performance at 200mA/g and the rate capability at different current
densities weremeasured and shown inFigure 4. FromFigure 4A, the
samples of the CoS-140 and CoS-160 exhibit the relative constant
reversible capacities, which indicates better cycle stability than that of
the crystalline cobalt sulfide samples (CoS-160 and CoS-200). For the
CoS-180 and CoS-200 samples, the specific capacities decrease first
and then increase with the cycles, which is very common for the
crystalline transitionmetal sulfides electrodes (Zhou et al., 2015). The
first decrease could be due to the evolution of the SEI layers and the
insufficient reaction of some active sites, and the subsequent increase
could result from the polymeric gel-like layer and the decomposition
of the crystal structure of CoS nanoparticles during the discharge-
charge cycles (Zhou et al., 2020). However, the specific capacity of the
CoS-200 sample decreases more sharply and obviously in the first
cycles, which could result from the rapid decomposition of the
crystalline structure during the cycles (Zhou et al., 2015; Wang
et al., 2020b; Jiang et al., 2020). The CoS-140 sample exhibits the
best cycling stability with the initial discharge and charge capacities of
2,132mAh/g and 1,443mAh/g, respectively. The Coulombic
efficiency in the first cycle is 67.67% and radically increases to
97.44% in the second cycle, and maintains near 100% to the 200th

cycle. Significantly, the reversible capacity of 1,245mAh/g after 200
cycles was obtained, which is much higher than the theoretical
capacity of 589mAh/g (Yan et al., 2005). The initial discharge
capacity and the reversible capacity in this work and those of

other reported cobalt sulfide-based electrodes are listed in Table 1,
which indicates the outstanding electrochemical performance of the
amorphous sample of CoS-140.

From Figure 4B, the samples of the CoS-140 and CoS-160 also
exhibit better rate capability than that of the crystalline cobalt sulfide,
which is consistent with the results of the cycle performance shown
in Figure 4A. Even though the reversible capacity returns to
658mA h/g when the current density goes back to 100mA/g, the
crystalline sample of CoS-200 exhibits the worst rate capability than
other samples. The details of the average reversible capacities for the
series of cobalt sulfide nanomaterials at different current densities are
listed in Table 2, which also indicates the best rate capability of the
amorphous sample of CoS-140 at each current density. The
reversible capabilities of the amorphous CoS-140 sample are
1,450 mAh/g, 1,170 mAh/g, 958 mAh/g, and 815mAh/g at
100mA/g, 200 mA/g, 500mA/g, and 800mA/g, and the
capabilities increase to 889mAh/g, 1,015 mAh/g, and
1,047 mAh/g when back to 500mA/g, 200 mA/g, and 100mA/g,
indicating the excellent rate capability. The outstanding
electrochemical performance of the amorphous sample could
result from the more active sites due to the more defects and the
improved ability of the volume accommodation because of the
isotropic nature and the absence of grain boundaries for the
amorphous structure (Li et al., 2012; Liu et al., 2013; Wu et al.,
2019; Wang et al., 2020b; Duan et al., 2021; Wu et al., 2021).

Due to the best electrochemical performances, further
investigation was focused on the amorphous CoS-140 sample. In
order to comprehend the electrochemical reaction mechanism, the

FIGURE 3 | The SEM images of CoS-140 (A), CoS-160 (B), CoS-180 (C), and CoS-200 (D).
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FIGURE 4 | The cycle stabilities at 200 mA/g (A) and rate capabilities (B) of the CoS samples prepared at different temperatures. The solid and hollow circles
represent the discharge and charge capacities, respectively.

TABLE 1 | The comparison of the electrochemical performance between this work and other reported cobalt sulfide-based electrodes.

Materials Initial discharge capacity
(mAh/g)

Reversible capacity (mAh/g) Current density (mA/g) References

Amorphous CoS 2,132 1,443 (200 cycles) 200 This work
Crystalline CoS 1,205 1,017 (200 cycles)
C@Co9S8 848 520 (50 cycles) 1.8 C Shi et al. (2012)
CoS2 1,280 350 (50 cycles) 50 Yan et al. (2005)
CoS/graphene 1,669 749 (40 cycles) 0.1 C Gu et al. (2013)
Co9S8/C 2026 1,063 (200 cycles) 300 Jiang et al. (2020)
Co9S8-650@C 1,584 1,414 (100 cycles) 100 Zhou et al. (2015)
CoS2NP@G-CoS2 1,504 1,022 (50 cycles) 100 He et al. (2015)
CoS-NP/ACFs 1,137.3 576.7 (200cycles) 100 Yuan et al. (2020b)
CoS2-C/CNT 1,339 1,030 (120 cycles) 100 Ma et al. (2018)
Co3S4/CNF 991 742 (200 cycles) 1,000 Luo et al. (2019)
Si@C-Co9S8/C 1,441 1,399 (200 cycles) 100 Yuan et al. (2020a)
CMF@Co9S8-C 1,315 615 (450 cycles) 500 Zhang et al. (2020)
Co4S3/CNA@CC 1,200 720 (200 cycles) 1,000 Shi et al. (2020)
Co9S8 1,100 910 (100 cycles) 500 Lu et al. (2017)
CNTs@NC 1,366 914 (100 cycles) 100 Wang et al. (2020a)
Co9S8/Ni 1,580 720 (100 cycles) 100 Jin et al. (2016)
CoS2 1,542 737 (200 cycles) 1,000 Yu et al. (2016)
CoS2 NG 1,120 1,018 (50 cycles) 100 Qiu et al. (2015)
CoS2 1,416 883 (100 cycles) 100 Jin et al. (2015)
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first five voltammetry (CV) curves of the amorphous CoS-140
sample were measured at a scan rate of 0.1 mV/s, as is shown in
Figure 5A. In the first discharge process, there is a broad reduction
peak at 0.45 V, which relates to the formation of the solid electrolyte
interface (SEI) and the process of cobalt sulfide reduced to cobalt
metal and Li2S (He et al., 2015; Zhou et al., 2015; Yuan et al., 2020b).
In the following cathodic sweeps, the broad peak divides into two
sharp peaks located at 1.74 and 1.30 V, which correspond to the
formation of LixCoS and the further convention reaction of LixCoS
to Co. metal (Ma et al., 2018; Yuan et al., 2020b). There is a broad
peak at 1.38 V in the first charge process, which consists with the
decomposition of the SEI layer (Zhou et al., 2015; Ma et al., 2018).
This broad peak almost disappears in the following cycles due to the
stability of the SEI layer, which is beneficial for the cycle stability
(Zhou et al., 2015; Ma et al., 2018). There are also two oxidation
peaks around 2.10 and 2.40 V in the five cathodic sweeps, which are
consistent with the above reversible reactions of extraction of lithium
ions to form CoS and the reduction process of Li2S to S (Zhou et al.,
2015; Ma et al., 2018; Luo et al., 2019; Yuan et al., 2020b). The tiny
changes of the positions for the two reduction peaks (1.74 and
1.30 V) and the two oxidation peaks (2.10 and 2.40 V) could result
from a slight transformation of the structure (Zhou et al., 2015; Luo
et al., 2019). The oxidation and reduction peaks almost coincide after
the first cycle, indicating the stable electrochemical reaction process.
The approximate overlap of the CV curves after the first cycle also
shows excellent cycle stability and reversibility (Ma et al., 2018; Luo
et al., 2019; Yuan et al., 2020b).

The first five discharge-charge curves at 100 mA/g are also shown
in Figure 5B to compare the results of the CV curves. An extended
voltage plateau from 0.63 to 0.15 V can be observed in the first

discharge curves, which corresponds to the broad reduction peak at
0.45 V in the first CV cathodic sweep. There are two discharge
plateaus around 2.10–1.70 V and 1.45–1.25 V in the following
discharge curve, which consist with the division of the peak of
0.45 V into two peaks of 1.74 and 1.30V. For the first charge curve,
there are three plateaus around 1.20 V-2.00 V, 2.00 V-2.20 V, and
2.20–2.46 V, corresponding to the three peaks of 1.36, 2.10, and
2.40 V in the first anodic sweep. The voltage plateau of 1.20–2.00 V
disappears in the following cycles, indicating the stability of the SEI
layer, which is in agreement with the disappearance of the oxidation
peak at 1.38 V. After the initial cycle, the discharge-charge curves
nearly overlap, which indicates the high reversible cycle stability and
the reversible redox reactions of the amorphous sample.

In order to deeply comprehend the enhanced electrochemical
performance and the reaction kinetics of the amorphous CoS-140
sample, the electrochemical impedance spectroscopies (EIS) were
measured from 10–2 Hz–105 Hz before and after cycling, as is shown
in Figure 6. Both the twoNyquist plots (black scatters) are composed
of one depressed semicircle in high-frequency regions and one
straight line in low-frequency regions, which can be well fitted by
the equivalent circuit (red fitting lines) that is shown in the inset of
Figure 6A. In the equivalent circuit, the parameter of Rs denotes the
ohmic resistance of the electrode and electrolyte, and the parameter of
Rct signifies the charge transfer resistance (Wu et al., 2019; Duan et al.,
2021; Wu et al., 2021). The fitted Rct after cycling (229.5Ω) is much
lower than that of before cycling (7645Ω), indicating the higher
reaction kinetics activity during the cycles, which is in agreement with
the excellent cycle stability and the rate capability shown in Figure 4.
Moreover, the Li-ions diffusion coefficient (DLi+) can be obtained by
the following equations (Wang et al., 2020b; Duan et al., 2021).

TABLE 2 | The reversible capacities of the CoS samples at different current densities.

Samples 100 mA/g 200 mA/g 500 mA/g 800 mA/g 500 mA/g 200 mA/g 100 mA/g

CoS-140 1,451 1,170 958 815 889 1,015 1,047
CoS-160 766 684 595 551 572 643 723
CoS-180 879 546 361 279 280 347 434
CoS-200 389 357 276 230 326 485 658

FIGURE 5 | The first five CV curves at 0.1 m V/s (A) and the first five discharge-charge curves at 100 mA/g (B) for the amorphous CoS-140 sample.
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FIGURE 6 | The EIS of the amorphous CoS-140 sample before (A) and after (B) cycling from 10–2 Hz–105 Hz. The equivalent circuit is shown in the inset of (A).

FIGURE 7 | (A) The CV curves of the amorphous CoS-140 sample with different scan rates (B) The linear fitting of ln (IPeak) vs ln(]). (C) Capacitive contribution at
1 mV/s. (D) Capacitive contributions at different scan rates.
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DLi+ � R2T2

2A2n4F4C2σ2
(1)

Zreal � Rs + Rct + σω−1/2 (2)

The parameters ofR,T,A, n, F,C, σ, andω are the general physical
parameters gas constant, the measuring temperature, the surface area
of the electrode, the number of transferred electrons, the Faraday
constant, the concentration of lithium ions, the Warburg coefficient,
and the angular frequency, respectively (Wang et al., 2020b; Yuan
et al., 2020b). The value of σ could be fitted by Eq. 2 according to the
EIS data in the low-frequency regions, and then the Li-ions diffusion
coefficient can be calculated byEq. 1. The Li-ions diffusion coefficient
after cycling (1.33×10–13 cm2/s) is much higher than before cycling
(6.98×10–17 cm2/s), which also indicates the better electrochemical
kinetic activity during cycles. The three-dimensional isotropy
structure of the amorphous CoS-140 could promote the
penetration of the electrolyte and accelerate the diffusion velocity
of the lithium ions into the activematerials during the lithium storage
process (Etacheri et al., 2015; Wu et al., 2018; Wu et al., 2020).

It is necessary to further understand the reason for the fast
reaction kinetic and the energy storage mechanism of the
amorphous CoS-140 sample. The CV curves with different
scan rates (0.1–3 mV/s) were measured and shown in
Figure 7A. The CV curves maintain analogous shapes, while
the areas enclosed by the CV curves and the identities of the redox
reaction peaks gradually increase with the scan rates, which are
always reported by other works of literature (Wu et al., 2019;
Duan et al., 2021; Wu et al., 2021). The redox peaks are even
evident at the high scan rate of 3 mV/s, indicating the high
reaction dynamics (Wang et al., 2020d). The total energy
storage of the electrode is generally contributed by two
reaction processes of surface capacitive mechanism and
diffusion mechanism (Duan et al., 2021), which can be
roughly estimated by the following equations (Wang et al.,
2020b; Yuan et al., 2020b).

IPeak � avb (3)

1n(IPeak) � b1n(v) + 1na (4)

IPeak represents the currents of the redox peaks at different
scan rates marked by the arrows in Figure 7A, and ] denotes the
corresponding scan rates. a and b are the variable parameters, and
generally, the value of b is between 0.5 and one according to the
different contribution ratios of the two parts. When b � 0.5, the
electrochemical system is controlled by charge diffusion, while
b � 1, the capacitive behavior is dominant (Wu et al., 2019; Wang
et al., 2020b; Jiang et al., 2020; Duan et al., 2021; Wu et al., 2021).
According to the linear fitting of ln (IPeak) vs ln(]) shown in
Figure 7B the values of b for the three redox reaction peaks are
0.68, 0.59, and 0.78, respectively, which indicates the mixed
contribution of surface capacitive effect and diffusion-
controlled process. The quantitative contribution of surface
capacitive effect for the electrochemical system can be further
analyzed by the following equations (Wu et al., 2019; Duan et al.,
2021; Wu et al., 2021).

I � k1v + k2v
0.5 (5)

I

v0.5
� k1v

0.5 + k2 (6)

k1v and k2v
1/2 represent the surface capacitive contribution and

the charge diffusion contribution, respectively (Wu et al., 2019;
Duan et al., 2021). A series of k1 and k2 can be obtained by the
slope and intercept of I/ν0.5 vs ]0.5 plots at different voltages. As
shown in Figure 7C, the capacity contribution of the surface
capacitive effect is 59.7% for the CV curves at the scan rate of
1 mV/s. The surface capacitive contributions for the capacities at
different scan rates are shown in Figure 7D. The capacitive
behavior contribution ratio gradually increases with the
increase of the scan rates. The maximum contribution ratio of
79.8% is achieved at the scan rate of 3.0 mV/s, indicating the
dominance of the capacitive behavior at a high scan rate, which is
in agreement with the outstanding rate capability. The large
contribution ratio of the capacitive behavior could result from
the more surface defects and the inside void space of the
amorphous structure for the CoS-140 sample, which is
beneficial for the enhanced electrochemical performance (Lian
et al., 2017; Li et al., 2020a; Liu et al., 2021b).

CONCLUSION

In summary, through controlling the reaction temperatures, a series
of amorphous and crystalline cobalt sulfide nanomaterials were
prepared by a facile solvothermal method. Compared to the
crystalline cobalt sulfide, the amorphous cobalt sulfide exhibited
superior electrochemical performance with the initial discharge
and charge capacities of 2,132mAh/g and 1,443mAh/g at
200mA/g. The reversible capacity of 1,245mAh/g after 200 cycles
was obtained. After discharge-charge cycles at different current
densities, the specific capability increased to 1,047mAh/g when
back to 100mA/g. The outstanding electrochemical performance
of the amorphous cobalt sulfide nanomaterials could result from the
special structural characteristics of amorphous materials. The
amorphous cobalt sulfide nanomaterials could be used as anodes
for LIBs in the future.
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