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The Ni2P nanowires were simply synthesized via a rapid one-step hydrothermal approach,
in which deionized water, red phosphorus, nickel acetate, and hexadecyl trimethyl
ammonium bromide were used as the solvent, phosphor and nickel sources, and
active agent, respectively. The as-synthesized Ni2P nanowire clusters were composed
of uniform nanowires with length of about 10 μm and diameter of about 40 nm. The Ni2P
nanowires exhibited enhanced electrocatalytic activity for both hydrogen evolution reaction
and oxygen evolution reaction This work provides good guidance for the rational design of
nickel phosphides with unique nanostructures for highly efficient overall water splitting.
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INTRODUCTION

Growing energy demands and worsening environmental issues have motivated a large amount of
research into developing efficient energy conversion/storage systems for sustainable alternatives
(Tan et al., 2020; Ji et al., 2021), e.g., Li-ion batteries (Chen et al., 2016; Zhang et al., 2017a; Li et al.,
2017), supercapacitor (Wang et al., 2020; Zhao et al., 2021), water splitting (Wang et al., 2016a;Wang
et al., 2016b; Swierk and Mallouk, 2017), and fuel cells (Debe, 2012). Hydrogen generated by water
splitting is one of the key strategies for conquering these energy challenges (Kuang et al., 2017).
However, the half-reactions of water-splitting, namely hydrogen evolution reaction (HER) and
oxygen evolution reaction (OER), suffer from high overpotentials due to sluggish electrode kinetics
(Huang et al., 2017). Efficient electrocatalysts, such as noble metal catalysts Pt, Ru, and Ir, are one of
the core parts to improve the efficiency of the water decomposition process (Zhou et al., 2016; Zhang
et al., 2017b). However, the high cost and scarcity of resources have severely restricted their large-
scale applications. Hence, it is fairly urgent to explore efficient, low-cost, and earth-abundant non-
noble bifunctional electrocatalysts for HER and OER.

In recent years, nickel-based compounds [oxide (Gong et al., 2014; Qiu et al., 2017; Zhang et al.,
2018), hydroxide (Danilovic et al., 2012; Rao et al., 2016), sulfide (Feng et al., 2015; Zhu et al., 2016),
and phosphide (Gan et al., 2020; Ji et al., 2021)] have displayed remarkable electrocatalytic activity
and stability toward OER and HER, as bifunctional electrocatalysts (Vij et al., 2017). Among them,
nickel phosphides could be considered as an efficient and promising candidate in numerous fields of
electrochemistry including catalysis (Rao et al., 2016), lithium-ion batteries (Li et al., 2016a), and
supercapacitors (Wan et al., 2017). Of note, nickel phosphides (especially metallic-phased
phosphide, such as Ni2P) are excellent catalysts for HER and OER due to their unique
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physicochemical properties imparting their high-efficiency and
low overpotential (Feng et al., 2014; Liao and Huang, 2017). For
example, Matthias Dries et al. (Menezes et al., 2016) reported two
remarkably active nickel phosphides that delivered an
overpotential of 295 mV for Ni12P5 and 330 mV for Ni2P at
10 mA cm−2 for HER, and realized a low potential of 1.64 and
1.58 V at 10 mA cm−2 for OER in 1 M KOH, respectively. NixPy
nanocatalysts are highly efficient at driving an overpotential of
1.57 V at 10 mA cm−2 in 1.0 M KOH for OER (Li et al., 2016b).
Ni2P nanoparticles exhibit an overpotential of 0.2 V at
10 mA cm−2 in 0.1 M KOH for HER (Li et al., 2015). It is
reported that another kind of Ni2P nanoparticle delivers an
overpotential of 290 mV at 10 mA cm−2 in 1 M KOH (Stern
et al., 2015). However, the preparation approaches of metal
phosphide special nanostructures mainly relies on the high-
temperature (over 300°C) oil phase method, e.g., Ni12P5, Ni2P,
and Ni5P4 nanocrystals (320°C) (Pan et al., 2015), and two-step
high-temperature (over 300°C) gas–solid reaction, such as CoP
nanoneedle (Wang et al., 2016c), CoP film (450°C) (Hellstern
et al., 2016), porous Ni2P (500°C) (Wang et al., 2016d), FeP
nanorods (500°C) (Xiong et al., 2016), and Ni-P porous
nanoplates (300°C) (Yu et al., 2016). The low-energy
consumption preparations of nickel phosphides with special
nanostructures are rarely reported and hard to control,
restraining the practical applications of nickel phosphides in
electrocatalysis.

The special microstructures of nanowire clusters play a
significant role in promoting catalytic activity because of their
abundant edge active sites and facilitated charge (including
electrons and ions) transfer path (Sivanantham et al., 2016;
Tang et al., 2016). In this work, we report a facile one-pot
synthesis of Ni2P nanowire clusters using the hydrothermal
method and the as-prepared Ni2P nanowires exhibit enhanced
electrocatalytic activity for both HER and OER.

EXPERIMENTAL SECTION

Preparation of Ni2P nanowires
In a typical experiment, 2 mmol Ni(CH3COO)2·4H2O, 9 mmol
red phosphorus, and 1 mmol hexadecyl trimethyl ammonium
Bromide (CTAB) were dissolved in 60 ml pure water. Then, the
above solution was transferred into a 100 ml Teflon-lined
stainless autoclave, and heated at 195°C for 30 h. After cooling
to room temperature, the collected precipitate was filtered and
washed with water and ethanol, and then dried overnight.

Materials Characterization
X-ray diffraction (XRD) patterns of the samples were analyzed
by Philips X’Pert PRO (Cu Kα, λ � 0.1542 nm). The
microstructures of the samples were examined by scanning
electron microscope (SEM, FEI Quanta 200) and the refined
microstructures were probed by transmission electron
microscopy (TEM, Philips, Tecnai G20). X-ray photoelectron
spectroscopy (XPS) spectra were collected on a Kratos AXIS
Ultra DLD-600W XPS (a monochromatic Al Kα (1,486.6 eV) as
X-ray source).

Electrochemical Measurement
For the preparation of the working electrode, 5 mg electrocatalyst
and 1 mg Ketjen black were dispersed in 968 μL of water/ethanol
(volume ratio 4:1) mixture with addition of 32 μL Nafion solution
(5 wt%). After ultrasonic dispersion for 30 min, 4 μL of the slurry
was drop-cast onto a glassy carbon (GC) electrode with a
diameter of 5 mm. The HER and OER tests were carried out
by electrochemical workstation (CHI760E, Shanghai Chenhua)
and Pine Modulated Speed Rotator with Pt silk as the counter
electrode and Ag/AgCl as reference electrode. The polarization
curves for HER and OER were obtained at a scan rate of 5 mV s−1

under a rotation rate of 1,600 rpm in N2-saturated 1 M KOH
solution. Electrochemical impedance spectroscopy (EIS) test was
performed from a frequency range of 10 kHz to 0.01 Hz at a
voltage of −0.4 V (vs. RHE) for HER.

RESULTS AND DISCUSSION

The crystal structure of the as-prepared Ni2P was examined by
XRD (Figure 1). The diffraction peaks are observed at 30.5, 31.8,
35.3, 40.7, 44.6, 47.4, 54.2, 55.0, 66.4, 72.7, and 74.8°,
corresponding to planes (110), (101), (200), (111), (201),
(210), (300), (211), (310), (311), and (400). The sample
collected at 30 h can be indexed to the hexagonal phase of
Ni2P (JCPDS 74-1,385) with P-62m space group (the inset in
Figure 1 in the atomic structure). There is no superfluous peak,
indicating the successful synthesis of pure Ni2P.

The nanostructures of obtained Ni2P nanowires were
characterized by SEM and TEM. Figures 2A,B reveal that the
Ni2P sample is composed of uniform nanowire clusters with
lengths of about 10 μm and diameters of about 100 nm.
Meanwhile, the orientation of most nanowires is in the same
direction as in Figure 2A, and there are numerous hump-like
particles on the surface of the nanowires in Figure 2B, exposing a
large number of active sites during the electrocatalysis process. A

FIGURE 1 | XRD pattern of the as-synthesized Ni2P nanowires.
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TEM image in Figure 2C shows uniform nanowires of the Ni2P
sample, and the inside of the nanowires reveals a large number of
nanosized holes from the highly magnified TEM image in
Figure 2D.

Figures 3A,B show the core-level XPS spectra of Ni and P
elements of Ni2P, respectively. As presented, the peaks located at
853.4, 856.3, and 861.9 eV are associated with Ni 2p3/2. The peak
at 853.6 eV revealed that Ni species in Ni2P have a very small
positive charge, while the peak at 129.7 eV for P 2p indicates Ni2P
has a very small negative charge (Wan et al., 2017). In addition,
the peaks at 856.3 and 861.9 eV in Ni 2p3/2 and the peak at
133.3 eV in P 2p are likely to be ascribed to nickel phosphate
formed on the surface of Ni2P due to the exposure of the sample
to air (Xiao et al., 2016).

In order to explore the formation mechanism of Ni2P
nanowires, a series of samples that underwent different
reaction times were collected. The SEM images of the sample
collected at 3 h in Figures 4A,D show the surface of a block has a
uniform arrangement of projections with a length of about
200 nm and a diameter of about 40 nm. The sample obtained
at 7 h shows a larger cavity than that at 3 h as shown in Figures
4B,E. Figures 4C,F reveal that the sample obtained at 30 h is
composed of nanowire clusters with the same orientation and
length of about 10 μm and a diameter of about 100 nm. Taking
red phosphorus as the phosphorus source and nickel acetate as
the nickel source during hydrothermal reaction, the Ni2P
nanowires were successfully synthesized. At first, red
phosphorus is difficult to dissolve in deionized water. With the

FIGURE 2 | (A, B) The SEM images of Ni2P nanowires; (C, D) The TEM images of Ni2P nanowires.

FIGURE 3 | XPS spectra (A) Ni 2p, (B) P 2p regions for Ni2P nanowires.
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hydrothermal process (process 1), red phosphorus was gradually
decomposed to generate phosphine, and then the phosphine
reacted with nickel ions in solution and nucleation occurs at
the surface of the block. Following this (process 2), the block of
red phosphorus was gradually consumed, and the nanowires
gradually increase. Finally (process 3), the Ni2P nanowires
were formed, accompanied with red phosphorus and nickel
ions depleting.

Figure 5A shows the linear sweep voltammogram (LSV) curve
of Ni2P nanowire catalysts at 5 mV s−1 after 20 cycles of cyclic
voltammogram (50 mV s−1) activation. For comparative analysis,
the LSV curves of the samples, i.e., Ni2P nanowires, Ni(OH)2
flower-like nanostructures, and NiO flower-like nanostructures
(SEM images as shown in Supplementary Figure S1), were also
measured at 5 mV s−1 with the same mass loadings of
0.175 mg cm−2. The polarization curves of Ni2P nanowires
exhibit a remarkable electrocatalytic activity for HER with a
small onset potential and overpotential (η) to reach a current
density of 10 mA cm−2. The ranking of the overpotentials for

those catalysts is: Ni2P nanowires (320 mV) < Ni2P nanowires
(458 mV) < Ni(OH)2 nanoflowers (512 mV) < NiO nanoflowers
(535 mV). It is clear that Ni2P nanowires exhibit the highest
electrocatalytic activity toward HER. The Tafel slope for the Ni2P
nanowires catalyst was about 73 mV dec−1 (Figure 5B), much
smaller than those of the NiO nanowires (157 mV dec−1), flower-
like Ni(OH)2 (234 mV dec−1), and flower-like NiO (213 mV
dec−1), which further confirmed the superior electrocatalytic
HER kinetics of Ni2P nanowires.

To further understand the reason for the excellent
electrocatalytic HER activity of Ni2P nanowires, EIS analysis
was carried out (Figure 6). The charge transfer resistance under
high frequency of Ni2P nanowire is low, which further implies its
higher conductivity. The lower charge transfer resistance and
higher diffusion of electrolyte ions indicate good electronic
conductivity and high OH− ion transfer speed in the interface
of active materials/electrolyte. The aforesaid electrochemical
performances reveal that Ni2P nanowire clusters are an efficient
and sturdy electrocatalyst for HER in strongly basic media.

FIGURE 4 | SEM images of obtained samples from different reaction times: (A, D) 3 h; (B, D) 7 h; (C, F) 30 h.

FIGURE 5 | (A) LSV curves of Ni2P nanowires, NiO nanowires, Ni(OH)2 flower-like at 5 mV s−1 in 1 M KOH from −0.7–0 V vs. RHE. (B) Tafel plots of the HER
activity.
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Figure 7A shows the linear sweep voltammograms (LSV)
curve of Ni2P nanowire catalyst at 5 mV s−1 after 20 cycles of
cyclic voltammogram (at the scan rate of 50 mV s−1) activation.
For comparative analysis, the LSV curves of NiO nanowires,
Ni(OH)2 flower-like, and NiO flower-like catalysts were also
measured at 5 mV s−1 with the same mass loadings of
0.175 mg cm−2. The polarization curves of Ni2P nanowires
exhibit a higher current density and more negative OER
overpotential of 280 mV than those of NiO nanowires
(310 mV), Ni(OH)2 flower-like (370 mV), and NiO flower-like
(390 mV). In order to further study the polarization property, the

LSV curves of Ni2P nanowires at different scan rates were displayed
in Figure 7B. It indicates that the polarization curves have no
difference in addition to the intensity of the oxidation peaks. This
oxidation peak is also reversible for Ni2P nanowires as observed
from the cyclic voltammogram (Supplementary Figure S2). The
Tafel slope for the Ni2P nanowires catalyst was about 46mV dec−1

(Figure 7C), much smaller than those of the NiO nanowires
(52.6 mV dec−1), flower-like Ni(OH)2 (145 mV dec−1), and
flower-like NiO (107mV dec−1), which further confirmed the
superior electrocatalytic OER kinetics of Ni2P nanowires. The
stability of the Ni2P nanowires for OER was tested in
amperometric i-t curve at 1.7 V (vs. RHE) for 12 h (Figure 7D),
indicating its good durability.

CONCLUSION

In summary, we firstly synthesized Ni2P nanowires using a facile
one-step hydrothermal approach. The as-synthesized Ni2P is
composed of nanowire clusters with a uniform length of about
10 μm and a diameter of about 40 nm. There are a large number
of nanoparticles on the surface of the nanowires, providing a large
number of active sites during the electrocatalysis process. The
overpotential of Ni2P nanowires is 320 mV and clearly
demonstrates the Tafel slope of 73 mV dec−1 for HER.
Meanwhile, the Ni2P nanowires show excellent electrocatalytic
OER activity with overpotential of 1.51 V (vs. RHE) and Tafel
slope of 46 mV dec−1. This work provides good guidance for the
rational design of nickel phosphides with unique nanostructures
for highly efficient overall water splitting.

FIGURE 6 | Electrochemical impedance spectrum of Ni2P nanowires.

FIGURE 7 | (A) LSV curves of Ni2P nanowires, NiO nanowires, Ni(OH)2 flower-like at 5 mV s−1 in 1 MKOH. (B) LSV curves of Ni2P nanowires at different scan rates.
(C) Tafel plots of the OER activity. (D) The stability of the Ni2P nanowires tested in amperometric i-t curve at 1.7 V vs. RHE.
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