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Genetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT)
protein has been widely planted worldwide. The development of a rapid method for
detecting PAT protein is of great importance to food supervision. In this study, a simple
label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein
was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification
molecules and electrochemically active substances. Under optimum conditions, the limits
of detection of the sensor for soybean A2704-12 and maize BT-176 were 0.02% and
0.03%, respectively. The sensor could detect crops containing PAT protein and had no
cross-reaction with other proteins. After storage at 4°C for 33 days, the sensor still retained
82.5% of the original signal, with a relative standard deviation (RSD) of 0.92%. The
recoveries of the sensor for soybean A2704-12 and maize BT-176 were 85%–108% and
98%–113%, respectively. The developed PAT-target immunosensor with high sensitivity,
specificity, and satisfactory reproducibility and accuracy will be a useful tool in the trace
screening of GM crops. Moreover, this design concept can be extended to other proteins
by simply changing the antibody.
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1 INTRODUCTION

In recent years, the cultivation area of genetically modified (GM) crops has rapidly expanded and
reached 1.904 billion hectares (James, 2019). Herbicide-resistant crops are one of the most important
and widest-planted GM crops (Mathur et al., 2017) and include soybean, maize, cotton, and
rapeseed. Phosphinothricin acetyltransferase (PAT) protein is encoded by the bar or the pat gene and
makes crops resistant to the herbicide glyphosate (Hérouet et al., 2005). In China, GM crops and
products are strictly subject to mandatory labeling by GM organic management; however,
unauthorized GM crops or products still appear in the field and markets from time to time
(Yue et al., 2019). Thus, it is necessary to find an effective and rapid method to strengthen the
detection and supervision of GM crops and products.

At present, increasingly precise instruments and methods are being applied to detect GM crops,
including polymerase chain reaction (PCR) assays and real-time immune-PCR (IPCR) (Liu et al.,
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2016; Geoffrey et al., 2018). As a DNA-based method, PCR can
qualitatively and quantitatively analyze ingredients in GM crops.
However, PCR methods depend on thermal cycler, which are
complicated and time consuming, and fail to detect exogenous
proteins (Grel et al., 2011). Methods based on protein-specific
expression, such as enzyme-linked immunosorbent assay
(ELISA), the test strip, and Western blot (Wang et al., 2015;
Albright et al., 2016; Zeng et al., 2020), have also been applied to
GM crops. While these methods are fast, they fail to sensitively
and quantitatively detect the protein in GM crops. In addition,
some new effective and rapid detection methods, including
surface plasmon resonance, loop-mediated isothermal
amplification (LAMP), and electrochemical immunosensors,
are also being used for GM crop detection (Ming et al., 2015;
Shen et al., 2016; Lu et al., 2018).

To construct a sensitive, selective, and stable immunosensor,
many strategies have been used. Nanomaterials with a large
surface area and good conductivity have been utilized as a
substrate and to improve electron transfer capability (Lv et al.,
2018). Functional molecules with active groups have been used to
increase the effective binding sites. To date, various nanomaterials
have been used to enhance the detection signal of immunosensor,
such as gold nanoparticles (Choosang et al., 2021), quantum and
carbon dots (Yang et al., 2020; Qin et al., 2019), and metal oxide
nanomaterials (Dekany and Sebok and Daniel, 2015). Thionine (Thi)
is a cationic phenothiazine dye that is usually used as an
electrochemical indicator. As a functional monomer with two
amino groups, it has exceptional electrochemical stability with
good electron transfer ability (García-Mendiola et al., 2020).
Because of these properties, Thi is widely used in the field of
electrochemistry (Fan et al., 2019; Wang et al., 2020).

In this study, gold nanoparticles (AuNPs) were modified onto the
electrode surface by electrodeposition to increase the electron
transfer. Additionally, Thi was connected to the surface via Au–S
bonds to dramatically enhance the electrochemical signal and was
also used for conjunction with the monoclonal antibody (mAb).
Based on this method, a label-free electrochemical immunosensor for

PAT protein was constructed with high sensitivity, specificity, and
reproducibility. Furthermore, this simple concept provides a useful
approach for the detection of transgenic proteins and can also be
applied in other field by changing the recognition elements.

2 MATERIALS AND METHODS

2.1 Materials and Apparatus
The mAb against the PAT protein was purchased from Artron
(Jinan, China). Glutaraldehyde, chloroauric acid, bovine serum
albumin (BSA), and Thi were purchased from Sigma (St. Louis,
MO, USA). Seed powder standards of GM crops (5%, 100%, and
1%) used for the immunosensor test were obtained from ERM
(Geel, Belgium), AOCS (Urbana, IL, USA), and the Ministry of
Agriculture (Beijing, China), as listed in Supplementary Table
S1. All chemicals and solvents were of analytical grade.

All the electrochemical measurements used a three-electrode
system on a computer-controlled CHI 660E electrochemical
workstation (Chenhua, Shanghai, China). A glassy carbon
electrode (GCE, d � 3 mm) was used as the working electrode,
and the auxiliary and reference electrodes employed a platinum
and Ag/AgCl electrode, respectively. The micromorphology of
the materials coated on the GCE was verified by a scanning
electron microscope (SEM, Hitachi, Japan).

2.2 Preparation of the Phosphinothricin
Acetyltransferase Electrochemical
Immunosensor
Prior to modification, the GCE was polished with 1 μm, 0.3 µm, and
0.05 µm aluminum powder sequentially on polishing paper, with
sonication in double-distilled water between each polishing step. The
cleaned GCE was immersed in HAuCl4 solution (1%) and
electrodeposited on a cyclic voltammeter (CV) with measurements
from−0.2 to +0.6 V (Zhang et al., 2011). A second layer was formed
by dropping Thi solution (1.0 mg/ml, 5 μl) onto the surface of GCE

Scheme 1 | Schematic diagram of the electrochemical immunosensor based on gold nanoparticles (AuNPs)/thionine (Thi) for the sensitive and rapid detection of
phosphinothricin acetyltransferase (PAT) protein in genetically modified (GM) crops.

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 7705842

Yang et al. A Label-Free Immunosensor for PAT

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


and storing it at 4°C overnight. Afterward, the PAT-mAb was
dropped onto the GCE and incubated at 37°C for 40min to form
the third layer. Finally, 5 μl of PBS (0.01M, pH 7.4) containing 5%
BSA was dropped onto the electrode to block remaining active sites.
Eachmodified process was followed by washing with double-distilled
water. The prepared electrode was stored at 4°C for subsequent use.
The process of immunosensor preparation is illustrated in Scheme 1.

2.3 Electrochemical Measurements
The electrochemical measurement depends on the current changes
before and after the antigen–antibody reaction. When the
antigen–antibody immune complex is formed, the electron
transfer is hindered and the peak current response is reduced.

Differential pulse voltammetry (DPV) measurements were
recorded from 0 to +0.4 V at a scan rate of 50mV/s in 0.1M
PBS solution (pH 7.4) containing 5mM [Fe(CN)6]

3−/4− and 0.1M
KCl to detect the PAT protein. The amplitude, pulse width, sampling
width, and quiet time were 0.05 V, 0.06 s, 0.02 s, and 2 s, respectively.
The assembly process of the immunosensor was characterized step-
by-step using CV measurements with [Fe(CN)6]

3−/4− as the redox
probe. All experimental measurements were performed at room
temperature.

2.4 Sample Analysis
The PAT protein was extracted from different crop seed powder
standards using PBS buffer (0.01 M, pH 7.4) at a mass volume

FIGURE 1 |Characterization of the electrochemical immunosensor. (A) The stepwise assembly process of the immunosensor was detected by cyclic voltammeter
measurements. (B) The scanning electron microscope (SEM) image of gold nanoparticles (AuNPs) deposited on the electrode surface.

FIGURE 2 | Condition optimization of Thi. (A) Optimization of time. (B) Optimization of Thi concentration.
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FIGURE 3 | Sensitivity of the immunosensor. (A)Differential pulse voltammetry (DPV) peak current for different concentrations of soybean A2704-12. (B)DPV peak
current for different concentrations of maize BT-176. (C) Calibration curve of the immunosensor toward soybean A2704-12 (n � 3). (D) Calibration curve of the
immunosensor toward maize BT-176 (n � 3).

FIGURE 4 | Specificity and stability of the developed immunosensor. (A) The specificity of the sensors. (B) The stability of the sensors by cyclic voltammeter (CV)
measurements.
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ratio of 1:3. After adding the PBS into the seed powder, the
mixture was shaken at room temperature for 5 min and
centrifuged at 6,000 rpm for 5 min to remove the pellet. Crop
supernatants were stored at 4°C for follow-up tests. Crop
supernatants with different transgenic contents were diluted
with corresponding blank crop supernatants. Five microliters
of different samples were dropped onto the prepared working
electrode incubation at 37°C for 40 min.

3 RESULTS

3.1 Characterization of the Modified
Process
The stepwise assembly process of the immunosensor was detected
by CV in PBS (0.1 M, pH 7.4) containing 5 mM [Fe(CN)6]

3−/4−

and 0.1 M KCl at a scan rate of 50 mV/s, as shown in Figure 1A.
The bare GCE had a low-level peak current value, while the
electrodeposited AuNPs could largely increase the surface area of
electrode and promote electron transfer. When the Thi was
bound to the electrode surface, the peak current increased
significantly. As the antibody and BSA hindered the electron
transport, the current gradually decreased when the antibody and
BSA were coupled to the electrode. Finally, the peak current
continued to decrease followed by incubation with PAT. The
change in current on the electrode surface was obvious, indicating
that the immunosensor had been successfully modified.
Furthermore, the enhancement of the current by AuNPs/Thi
was sufficient.

AuNPs, as a low-dimensional functional material, has been
reported to increase the surface area of sensors and the
immobilization of antibodies (Zhang et al., 2011). Modification

with AuNPs promoted the electron transfer between the oxidized
compound and the sensors (Lu et al., 2018). In this study, AuNPs
were electrodeposited onto the surface of GCE to promote the
electronic transmission and amplify the sensor signals. The
surface morphology of the modified electrode was investigated
using SEM. As shown in Figure 1B, AuNPs formed a uniform
film on the surface, which increased the surface area and greatly
improved the loading capacity of the GCE.

3.2 Optimization of the Thionine Conditions
To obtain the best sensor response, the concentration and
incubation time of Thi were optimized. As displayed in
Figure 2A, with the increase in incubation time, the
current signal gradually enhanced, and 4°C incubation
overnight resulted in a maximum current response. Since
there were no significant differences between 40 min and
1 h, the data overlapped in the figure. The influence of Thi
concentration on current response is presented in Figure 2B.
The peak current increased with the increase in Thi
concentration. When the Thi concentration was higher
than 1.0 mg/ml, the peak current decreased. This may be
due to excessive Thi accumulation hindering the electron
transfer on the electrode surface. Therefore, 1.0 mg/ml of
Thi and an overnight incubation were selected as the
optimal conditions for further testing.

3.3 Performance analysis of
Phosphinothricin Acetyltransferase
Immunosensor
3.3.1 Sensitivity of the Immunosensor
Under the optimal experimental parameters, the sensitivity of
the developed PAT-targeted immunosensor was evaluated by
DPV measurements. The current responses with different
concentrations of soybean A2704-12 and maize BT-176 are
shown in Figures 3A, B (from top to bottom, the
concentrations of PAT in PBS buffer were in the range of
0.05%–1.5%). The peak current decreased as the
concentration of GM crops increased, which was due to the
hindrance of electron transfer with the increase of PAT
protein on the electrode surface. The corresponding
calibration curves for soybean A2704-12 and maize BT-176
are shown in Figures 3C, D. The linear regression equations
were ΔI � 22.424x + 10.708 (R2 � 0.9936) and
ΔI � 13.873x + 5.7094 (R2 � 0.9933), where ΔI was the

TABLE 1 | Recoveries of different genetically modified content detected by the
immunosensor (n � 3).

Sample Added (%) Detected (‾x ± SD, %) Recovery (‾x ± RSD, %)

BT-176 0.05 0.0498 ± 0.0072 99.6 ± 14.4
0.1 0.1075 ± 0.0055 107.5 ± 5.1
0.5 0.5648 ± 0.0294 113.0 ± 5.2
1 0.9844 ± 0.1024 98.4 ± 10.4

A2704-12 0.05 0.0429 ± 0.0058 85.8 ± 13.5
0.1 0.0955 ± 0.0108 95.5 ± 11.3
0.5 0.5392 ± 0.0766 107.8 ± 14.2
1 0.9651 ± 0.0820 96.5 ± 8.5

TABLE 2 | Performance comparison with different detection methods of genetically modified crops.

Method Material Detection target LOD Time Reference

LAMP — P35S; cp4epsps; pat; Cry1Ab/Ac 0.5% 1 h Takabatake et al. (2018)
Real-time PCR — P35S and NOS 0.005% 2 h Junichi et al. (2019)
Immunochromatographic strip AuNPs CP4-EPSPS 0.05% 5–10 min Zeng et al. (2020)
Label-free ECL immunosensor Carbon nanospheres BT-Cry1Ab 0.02% 1 h Gao et al. (2017)
ECL Carbon nanoparticles PAT/bar 0.02% 1 h Gao et al. (2018)
Biosensor (RPA-LFS) — MON810 0.1% 25 min Zhang et al. (2021)
Label-free immunosensor AuNPs/Thi PAT 0.02%/0.03% 40 min This study

Note. LAMP, loop-mediated isothermal amplification; PCR, polymerase chain reaction; ECL, electrochemiluminescence; AuNPs, gold nanoparticles; Thi, thionine; PAT, phosphinothricin
acetyltransferase.
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current signal (μA) change and x was the PAT concentration.
The limit of detection was 0.02% for A2704-12 and 0.03% for
BT-176 samples (S/N � 3), which was the sensitivity of the
developed immunosensor.

3.3.2 Selectivity and Stability of the Immunosensor
To estimate the selectivity of the immunosensor, common GM
crops containing different GM proteins were tested. GM crops at
contents of 5%, i.e., maize BT-176 (BT-Cry1Ac/PAT), maize
MIR604 (BT-Cry3A), maize MON89034 (BT-Cry1A105/
Cry2Ab), maize MON88017 (CP4-EPSPS/Cry3Bb1), soybean
RRS (CP4-EPSPS), cotton MON88913 (CP4-EPSPS), and
sugar beet H7-1 (CP4-EPSPS), were investigated. Additionally,
the GM crops at contents of 1% including maize MON810 (BT-
Cry1Ab), maize BT-11 (BT-Cry1Ab/PAT), soybean A2704-12
(PAT), and rapeseed T45 (PAT) were also examined. A blank
signal was obtained from corresponding non-GM crops. As
shown in Figure 4A, the peak current change in crops
containing PAT protein was significantly higher than the
others. The results indicated that the sensor could detect crops
containing PAT protein, and the detection ability was not affected
by other proteins such as CP4-EPSPS, BT-Cry1Ab, BT-Cry3A,
and BT-Cry1A105/Cry2Ab.

The stability of the developed sensor was evaluated. The
constructed immunosensor still maintained 82.5% of the initial
current value after storage at 4°C for 33 days. The sensor was then
successively scanned under continuous CV for 15 cycles after
storage for 33 days (Figure 4B), and the relative standard
deviation (RSD) of the response was 0.92%. Thus, the
constructed immunosensor demonstrated acceptable stability
and satisfactory repeatability.

3.3.3 Recovery Experiment
The accuracy of the constructed immunosensor was evaluated
using BT-176 and A2704-12 standards with five different
concentrations (0.05%, 0.1%, 0.5%, and 1%). Each concentration
had three parallel tests, and the results are shown in Table 1. The
average recoveries of the maize and soybean samples were
98%–113% and 85%–108%, respectively. The RSDs were all less
than 15.0%, which further confirmed that the electrochemical
sensor was suitable for the detection of PAT protein and had
good accuracy.

4 DISCUSSION

According to previous reports, the immunosensor based on
AuNPs/Thi/CMWCNTs (carboxylated multiwalled carbon
nanotubes) for measuring interleukin-6 (IL-6) has been
developed with high sensitivity (Wang et al., 2020). To the
best of our knowledge, the AuNPs/Thi-modified
electrochemical immunosensor for ultrasensitive detection of
PAT protein has not been reported before. A brief summary
of the different methods for the detection of GM crops is
presented in Table 2. Each detection method has its own

significance and value for the final determination of food
quality and safety (Nazir et al., 2019). PCR (Cao et al.,
2018) and real-time PCR methods (Yao et al., 2018) are
used for detecting GM crops at nucleic acid levels.
Immunochromatographic strip (ICS) testing can rapidly detect
the targets with high specificity but generally low sensitivity. The
previously reported electrochemiluminescence (ECL) method
showed high sensitivity (Zhang et al., 2020); however, the
materials used to modify the electrode were unfriendly to the
environment and human health (Li et al., 2021). The main
advantages of this study were as follows: 1) AuNPs were
electrodeposited on the electrode surface without complicated
procedures. 2) AuNPs and Thi were connected by an Au–S bond,
which benefited the long-term stability and sensitivity of sensors
(Xu et al., 2015). This simple modification scheme can enhance
the conductivity of electrodes and enlarge the surface area to
provide more binding sites.

5 CONCLUSION

In this study, a simple label-free electrochemical immunosensor
for the ultrasensitive detection of PAT protein in GM crops was
successfully constructed using AuNPs and Thi as signal
amplification molecules. Using the label-free strategy, PAT
protein could be detected based on the current changes
caused by the immunoreaction on the electrode surface.
Under optimal conditions, the limits of detection for
soybean A2704-12 and maize BT-176 were as low as 0.02%
and 0.03%, respectively. Following storage at 4°C for 33 days,
the sensor still maintained 82.5% of the initial signal, with an
RSD of 0.92%, exhibiting high selectivity, acceptable stability,
high sensitivity, and good reproducibility. This method can
provide an effective tool for the trace detection of GM crops.
Moreover, research is ongoing for more targets to realize high-
throughput analysis.
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