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Convergence with respect to the size of the k-points sampling grid of the Brillouin zone is
the main bottleneck in the calculation of optical spectra of periodic crystals via the Bethe-
Salpeter equation (BSE). We tackle this challenge by proposing a double grid approach to
k-sampling compatible with the effective Lanczos-based Haydock iterative solution. Our
method relies on a coarse k-grid that drives the computational cost, while a dense k-grid is
responsible for capturing excitonic effects, albeit in an approximated way. Importantly, the
fine k-grid requires minimal extra computation due to the simplicity of our approach, which
also makes the latter straightforward to implement. We performed tests on bulk Si, bulk
GaAs and monolayer MoS2, all of which produced spectra in good agreement with data
reported elsewhere. This framework has the potential of enabling the calculation of optical
spectra in semiconducting systems where the efficiency of the Haydock scheme alone is
not enough to achieve a computationally tractable solution of the BSE, e.g., large-scale
systems with very stringent k-sampling requirements for achieving convergence.

Keywords: theoretical spectroscopy, optical properties, Bethe-Salpeter equation (BSE), excitonic effects,
semiconductors

1 INTRODUCTION

Many-body perturbation theory (MBPT) offers the right framework for treating neutral excitations
via Green’s function methods (Onida et al., 2002; Marini et al., 2009; Martin et al., 2016; Reining,
2018; Golze et al., 2019). This requires solving the Bethe-Salpeter equation (BSE) (Salpeter and Bethe,
1951; Hedin, 1965; Hedin and Lundqvist, 1971), which relies on a two-particle propagator to account
for the presence of electron-hole pairs (i.e., excitons). The description of excitonic effects is crucial to
compute optical spectra in extended systems, particularly in semi-conductors and insulators, for
whichmethods based on the Random Phase Approximation (RPA) or time-dependent (TD-) density
functional theory (DFT) with (semi-)local exchange-correlation functionals tend not to agree with
experimental results (Onida et al., 2002; Martin et al., 2016). Calculations within the BSE framework
are generally much more cumbersome and computationally demanding than DFT ones, and it is
rather easy to reach the limits of what can be practically computed. Hence, the need for convergence
studies is a key aspect of every MBPT calculation to alleviate the computational burden as much as
possible while, at the same time, trying to ensure an accurate description of the system at hand. In
general, electronic structure calculations in periodic systems treated with plane waves require
convergence with respect to the size of this basis set as well as the sampling of the Brillouin zone (BZ).
In particular, MBPT methods also require the inclusion of unoccupied states in the form of an, in
principle, infinite summation that needs to be truncated to the minimum value that nonetheless

Edited by:
Marc Dvorak,

Aalto University, Finland

Reviewed by:
Andre Schleife,

University of Illinois at Urbana-
Champaign, United States

Christian Vorwerk,
University of Chicago, United States

*Correspondence:
Myrta Grüning

M.gruening@qub.ac.uk

†Also at European Theoretical
Spectroscopy Facility (ETSF)

Specialty section:
This article was submitted to

Theoretical and Computational
Chemistry,

a section of the journal
Frontiers in Chemistry

Received: 24 August 2021
Accepted: 09 December 2021
Published: 20 January 2022

Citation:
Alliati IM, Sangalli D and Grüning M

(2022) Double k-Grid Method for
Solving the Bethe-Salpeter Equation

via Lanczos Approaches.
Front. Chem. 9:763946.

doi: 10.3389/fchem.2021.763946

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 7639461

ORIGINAL RESEARCH
published: 20 January 2022

doi: 10.3389/fchem.2021.763946

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.763946&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/articles/10.3389/fchem.2021.763946/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.763946/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.763946/full
http://creativecommons.org/licenses/by/4.0/
mailto:M.gruening@qub.ac.uk
https://doi.org/10.3389/fchem.2021.763946
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.763946


captures the physics at play. Furthermore, the solution of the BSE
requires far denser k-sampling than DFT calculations to achieve
an accurate description of excitons. This is because the excitonic
wave-functions are usually quite spread out, with a periodicity
well beyond the unit cell, and in order to expand them in a basis of
transitions {vck} (electron-hole space), very dense k-grids are
required. Moreover, BSE methods do not exploit symmetry so
they are solved in the full BZ. The cubic scaling of the number of
k-points in bulk systems from one grid to the next makes matters
even worse (the quadratic scaling in 2D systems is more
manageable). Such k-grid requirements may still be feasible
for small systems, with few atoms per unit cell and few
valence electrons per atom. However, medium to large size
unit cells of atoms with many valence electrons (e.g.,
transition metals) become prohibitively costly as the number
of k-points increases, and the solution of the BSE in a very dense
grid (e.g., 60 × 60 × 60) is simply out of reach. For all these
reasons, the issue of k-point convergence is critical for the
solution of the BSE and represents the bottleneck in its
computational implementation. Therefore, the introduction of
alternative numerical methods and approximations that can
effectively deal with k-point convergence in the BSE is of
utmost importance.

Albeit with the limitations described above, there are currently
several approaches to solve the BSE. These are, in order of
decreasing computational cost, inversion, full diagonalisation
and Lanczos approaches, and will be described below. A first
distinction would be based on whether the equation is solved in
its Dyson-like form or re-cast as a two-particle Hamiltonian in
transition space. The first approach requires the inversion of the
BSE kernel matrix which, depending on the size of the matrix, can
become impracticable. In such cases one would turn to the
Hamiltonian formulation of the problem [see, for example,
Onida et al. (2002)]. In the latter, the two-particle
Hamiltonian is diagonalised to obtain the eigen-values
(excitonic energies) and eigen-vectors (excitonic wave-
functions). If the BSE matrix of a given system is still too big
for full diagonalisation, one can resort to Lanczos (1950)
approaches which are usually a cost-effective option for sparse
matrices (Cini, 2007). These algorithms have been widely used for
the calculation of response functions, both at the TD-DFT (Rocca
et al., 2008; Ge et al., 2014) and BSE (Rocca et al., 2012) levels. In
the latter, Lanczos approaches eliminate the need for inverting the
BSE kernel or fully diagonalising the two-particle Hamiltonian.
Rather, the latter is re-expressed as a tri-diagonal matrix based on
recursive relations, which leads to an iterative solution of the
problem that is computationally cheaper than full
diagonalisation. Unfortunately, while previously described
solvers produce the full set of both excitonic energies and
wavefunctions of the system at hand, Lanczos schemes lead to
a partial solution of the problem. For instance, Haydock’s
implementation (Haydock, 1980) of the Lanczos approach
provides only the full set of the eigen-values of the two-
particle Hamiltonian (i.e., one obtains the full spectrum but
not the excitonic wave-functions). Despite the numerical
advantages of Lanczos solvers, a given system could still be
too big for computing optical spectra. As the diagonalisation

itself ceases to be a problem with Lanczos schemes, the bottleneck
now shifts to the previous step of computing and storing the BSE
kernel, which can render the calculation impracticable depending
on the size of the electron-hole (e-h) basis. Nothing too extreme
would be required to reach this condition, e.g., a magnetic system
with around 100 electrons per unit cell, slow convergence with
respect to bands and a 6 × 6 × 6 k-grid would certainly be beyond
reach. At this point, there is little alternative for solving the BSE
and computing optical spectra, which is the challenge we intend
to tackle in this manuscript.

The work presented here concentrates on improving the
convergence of optical response spectra calculations within the
BSE with respect to the number of k-points. This issue has been
the target of many research efforts over the years. Rohlfing et al.
introduced a scheme to interpolate the BSE matrix in the BZ
(Rohlfing and Louie, 1998). Their strategy is based on a double
grid approach by which the kernel matrix elements are properly
calculated on a coarse k-grid and approximated on a fine k-grid.
As a function of q, the k-point difference between two transitions
in e-h space, the BSE kernel is sharply peaked at the origin and a
regular interpolation in the BZ would fail. However, expressing
these matrix elements as aq−2 + bq−1 + c results in the coefficients
varying slowly in the BZ. These coefficients are then interpolated
by virtue of knowing them exactly in the coarse k-grid. Their
approximation also considers the varying phases of the single-
particle states in the BZ, which requires knowledge of the
wavefunctions in the fine k-grid. This crucial point becomes a
drawback when one is limited by memory and disk storage rather
than computation, which is increasingly the case nowadays. More
recently, Fuchs et al. proposed the use of hybrid k-meshes in the
form of a coarse k-grid for the whole BZ and a denser k-grid
around the Γ-point only (Fuchs et al., 2008). Even though the
kernel matrix elements are properly calculated on both grids, this
method allows to refine k-sampling only where is needed,
resulting in fewer k-points in total. The downside of using
non-uniform grids becomes apparent in the calculation of the
electron-hole attraction term of the BSE kernel, as knowledge of
the screening at q-points not included in the hybrid grid itself will
be needed. This complication requires additional computation
(or at least an interpolation) if one intends to use the RPA
screening, as is the case in this work. Kammerlander et al.
applied double grid techniques to solving the BSE by inversion
(Kammerlander et al., 2012). In the latter, the BSE is solved on the
coarse k-grid while the fine k-grid is used compute the
independent particle part of the two-particle response
function. This technique, which also benefits from Wannier
interpolation of the Kohn-Sham (KS) orbitals, has proven
successful in accurately reproducing the spectra of several
materials. However, as it ultimately relies on matrix inversion,
its application is limited to small systems, i.e., systems which
could be computed by the inversion solver in the coarse grid,
albeit underconverged. Finally, an interesting generalisation of
the method in Rohlfing and Louie (1998) has been proposed by
Gillet et al. (2016), where the interpolation of the BSE kernel
matrix element at a given fine-grid k-point considers eight
coarse-grid k-points around it. Importantly, this method is
compatible with Haydock’s solution scheme to the BSE.
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Moreover, substantial savings in memory requirements and disk
storage are achieved by interpolating kernel matrix elements on
the fly. Nevertheless, this method still requires knowledge of the
KS orbitals in the fine grid. Depending on the number of bands
and density of the fine grid, this can entail prohibitive memory
requirements.

In this work, we also propose a double grid approach,
including a coarse k-grid where the BSE kernel is properly
calculated and a fine, denser k-grid where the corresponding
matrix elements are approximated. At variance with
Kammerlander et al. (2012), we propose an approximation
that is compatible with the computationally cheapest solution
to the BSE, namely Lanczos-based iterative solvers. Crucially, this
allows us to target materials for which optical spectra cannot be
currently computed, i.e., relatively big systems that can only be
solved by Lanczos approaches and in k-grids that fall short of a
converged solution. Another distinctive feature of the method
presented here is its simplicity. It is far easier to implement than
previous attempts (Rohlfing and Louie, 1998; Fuchs et al., 2008).
Importantly, the introduction of the fine k-grid requires minimal
extra computation and memory with respect to the coarse k-grid.
In particular, knowledge of the wavefunctions in the fine k-grid is
not needed, nor is the calculation of the RPA screening in any
extra k-point. Therefore, the computational cost remains roughly
at the level of the coarse k-grid, while an approximate description
of broad excitons is achieved by virtue of adding a fine k-grid. The
remainder of the manuscript is structured as follows. Section 2
describes the proposed double grid approach in detail while
Section 3 reports the results obtained for a variety of
semiconductors. Section 4 presents the gains in computational
cost that our implementation achieves. It also outlines a
comparative assessment of particular choices made within the
method and discusses the limitations of the approach.

2 METHODS

2.1 Haydock Solution of the BSE
Optical absorption spectra are represented by the imaginary part
of the macroscopic dielectric function Im[ϵM], which is
obtained by taking the long wavelength limit of an expression
involving the microscopic dielectric function ϵ (q, ω)—where q
represents the transferred momenta while ω is the frequency. For
neutral excitations, ϵ (q, ω) is defined in terms of the polarisation
or density-density response function χ, which is in turn calculated
within the RPA, i.e., as a Dyson-like equation being the non-
interacting polarisation χ0 a product of non-interacting one-
particle Green’s functions that describe the propagation of one
electron or one hole. However, optical spectra of extended
systems require the inclusion of excitonic effects, which will
ultimately lead us to a two-particle Green’s function that
describes the dynamics of an electron-hole pair (vck) (we only
consider vertical transitions at point k in the BZ between an
occupied band v and an empty band c). This is achieved by
defining the macroscopic dielectric function via an interacting
polarisation �χ, i.e., ϵM(q,ω) ≡ 1 − v(q)�χG�0,G′�0(q,ω). This

interacting polarisation is obtained in terms of an electron-
hole (e-h) Green’s function �L as in Eq. 1,

lim
q→0

�χG�0,G′�0 q,ω( ) � −i ∑
nmk

∑
n′m′k′

lim
q→0

ρnmk* q,G � 0( )ρn′m′k′(q,G′ � 0)[ ]�L
nmk
n′m′k′

ω( ).

(1)

In Eq. 1, ρnmk (q,G) � 〈nk|ei(q+G)·r|mk−q〉 are the oscillator
strengths. For simplicity, unpolarised electrons are assumed in
the discussion, however we stress that the method is not limited to
non-magnetic systems. The Bethe-Salpeter equation is then the
Dyson-like equation for �L,

�L
nmk
n′m′k′

ω( ) � L0
nmk ω( ) δnn′δmm′δkk′ + i ∑

vck1

Ξ
nmk
vck1

�L
vck1
n′m′k′

ω( )⎡⎢⎣ ⎤⎥⎦, (2)

where the matrix Ξ is the so called BSE kernel,

Ξ
nmk
vck1

� W
nmk
vck1

− 2 �V
nmk
vck1

, (3)

W
nmk
vck1

� 1
ΩNq

∑
G,G′

ρnvk q � k − k1,G( )ρpmck1
q � k − k1,G′( )

ϵ−1G,G′v q + G′( ), (4)

�V
nmk
vck1

� 1
ΩNq

∑
G≠0

ρnmk q � 0,G( )ρpvck1 q � 0,G( )v G( ). (5)

The BSE kernel is written as shown in Eq. 3 and its two
contributions, namely the e-h attractionW and the e-h exchange
�V, can be calculated as in Eqs. 4, 5. The solution of this Dyson-
like equation would require to invert the BSE kernel, which can
be prohibitively costly as explained in Section 1. Hence, the
problem is re-cast in terms of a two-particle Hamiltonian in e-h
space,

H2p

nmk
n′m′k′

� Enmk δnn′δmm′δkk′ + fnk − fmk( ) Ξ
nmk
n′m′k′

, (6)

where Enmk is the energy of the vertical transition from band n to
band m at point k according to either the KS or quasi-particle
(QP) energies.

Diagonalising this matrix would provide the excitonic eigen-
values and eigen-vectors required to compute optical spectra,
however in this work, we focus on Lanczos-based methods. In
particular, Haydock’s algorithm (Haydock, 1980; Benedict et al.,
1998; Benedict and Shirley, 1999) consists on an iterative method
based on a set of recursive relations, namely,

an � 〈Vn|H2p|Vn〉, (7)

bn+1 � ‖ H2p − an( )|Vn〉 − bn|Vn−1〉‖, (8)

|Vn+1〉 � 1
bn+1

H2p − an( )|Vn〉 − bn|Vn−1〉[ ], (9)

with n being the iteration index. This set of equations corresponds
to Hermitian Hamiltonians [the pseudo-Hermitian case has a
slightly more complicated form (Grüning et al., 2011)]. Eqs. 7–9
allow for the calculation of the factors a and b, and the so called
Haydock vector for the next iteration |Vn+1〉. The initial Haydock
vector is calculated as |V0〉 � |P〉

‖P‖ being |P〉 the vector defined as
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|P〉 � ∑
vck

lim
q→0

1
|q|ρ

p
vck q,G � 0( )|vck〉. (10)

On each iteration n, the optical spectrum is calculated
according to,

ϵ n( )
M ω( ) � 1 − ‖P‖2 1

ω − a1( ) − b22

ω−a2( )−b2
3
...

, (11)

until the difference between spectra of successive iterations is
below an acceptable threshold.

2.2 Double Grid Approach
First, we consider a coarse k-grid where no approximations are
applied, i.e., the BSE kernel is computed for all vertical transitions
involving k-points in this grid, which requires knowledge of the KS
orbitals and energies (potentially corrected to QP energies) at each of
these k-points. The solution of the BSE in this grid would typically be
computationally manageable but produce underconverged optical
spectra. Thus, a much denser fine k-grid will be added to the system.
We will denote k-points belonging to the fine grid with the letter κ,
while those in the coarse grid will be labelled K. Moreover, κ-points
will be grouped in domains centred around theK-points in such way
thatDom (KI) will be composed by the κ-points that are closer toKI

than to any other K-point. The number of k-points in this fine grid
would ordinarily be too large for the BSE to be solved in full, and
hence, approximations will be introduced for the fine grid. The two-
particle Hamiltonian in Eq. 6 can be thought of as a shift (the
diagonal matrix containing the energies of each transition) plus a
rotation (the BSE kernel). The approximation proposed implies that
the diagonal matrix is calculated in the fine grid, for which
knowledge of the KS energies of each band at every κ-point in
the fine grid is required. The BSE kernel, however, will not be
calculated in full but rather, every matrix element involving at least
one transition in the fine grid will be approximated according to
some rules for kernel extension. This allows the method to dispense
with the KS orbitals in the fine grid, which has a great impact on
memory requirements.

The way in which the BSE kernel is extended from the coarse
to the fine grid has been carefully considered as it has significant
impact on the results. The best agreement with experimental
spectra was achieved with an approach we refer to as diagonal
kernel extension (DKE). Let us consider one k-point in the coarse
grid,KI. There will be a group of κ-points in the fine grid that map
to it, namely those in the domain Dom (KI). We will label those
with a second numerical sub-index as κI1, κI2, κI3, . . . , κIi , . . ..
Given that the fine grid contains the coarse grid, we have that
κI1 � KI, while κIi with i ≠ 1 are other fine grid points close to KI.
Having established the nomenclature in this way, then DKE
would imply the definition

Ξ
nmκIi
n′m′κIi′′

≡ Ξ
nmKI
n′m′KI′

δii′, (12)

where the R.H.S is known and calculated exactly while the L.H.S is
the unknown matrix element we are trying to approximate (see

Supplementary Material for a visual representation of Eq. 12).
Thus, Eq. 12 is only exact for the k-point that belongs both the
coarse and the fine grids (i � i′ � 1), and approximated otherwise.
Even though the BSE kernel is not, in general, a diagonally-
dominant matrix, it is true that the diagonal matrix elements
usually have values orders of magnitude higher than those of
immediately close off-diagonal elements. The DKE approach
preserves this character when extending the kernel from the
coarse grid to the fine grid. Essentially, each matrix element of
the coarse grid BSE kernel expands into a block in the fine grid
matrix. The DKE method ensures that each block is strictly
diagonal, which is very relevant when expanding one of the
diagonal matrix elements of the coarse grid matrix. In Section
4.2, the DKE is compared with a possible alternative kernel
extension.

Finally, let us discuss how this double grid method fits
within the Haydock algorithm. It is apparent from Eqs. 7–9
that this scheme relies mainly on the matrix vector
multiplication H2p|Vn〉, so we will focus on how this is
adapted to account for the fine grid. The two-particle
Hamiltonian has already been described above, i.e., the
BSE kernel is approximated by DKE (Eq. 12) and the
diagonal part needs no approximation as the KS (or QP)
energies are known in the fine grid. All there is left is then to
define how the Haydock vectors |Vn〉 are extended to the fine
grid and initialised. The initial Haydock vector |V0〉 is
calculated in the coarse grid according to Eq. 10. Each
component is associated to one transition vck and thus,
when moving from the coarse to the fine grid, the number
of components will increase according to the ratio between
the number of κ-points and K-points. From Eq. 10, it is clear
that the KS orbitals at the κ-points would be required to
properly initialise the Haydock vector in the fine grid. As
these orbitals are not available in our method, those
components will be initialised as being equal to the
corresponding transition in the coarse grid. In other words,

|P〉FG � ∑
vcKI

lim
q→0

1
|q|ρ

p
vcKI

q,G � 0( ) ∑
κIi ∈

Dom KI( )

|vcκIi〉, (13)

where FG denotes the fine grid. It is apparent that |P〉FG has
many more components than |P〉, due to each coarse grid
transition (at KI) being replicated into many transitions at all
the κ-points in the domain of KI. The recursive relations in
Eqs. 7–9 would formally require the multiplication of the fine
grid (full) BSE kernel times Haydock vectors of the size of |
P〉FG. In our implementation, we calculate the matrix-vector
multiplication without storing the BSE kernel on the fine grid.
Let us divide a given Haydock vector |V〉 in fragments
according to the κ-point of each transition. Formally, this
would mean projecting |V〉 over the different transitions (i.e,
the abstract vectors |vcκIi〉 that form the new/extended basis of
e-h space) and then grouping components by their κ-point as
fragments. These fragments are convenient for the matrix
vector multiplication. In fact, this operation can be
expressed as
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rnmκIi
� ∑

n′m′κIi′′

Ξ
nmκIi
n′m′κIi′′

cn′m′κIi′′
, (14)

where cvcκIi � 〈vcκIi|V〉 are the components of the vector to be
multiplied and r are, analogously, the coefficients of the
resulting vector. Applying the DKE to the BSE matrix (Eq.
12), we obtain

rnmκIi
� ∑

n′m′KI′

∑
i′ ∈

Dom KI′( )
Ξ

nmKI
n′m′KI′

δi,i′ cn′m′κIi′′
� ∑

n′m′KI′

Ξ
nmKI
n′m′KI′

cn′m′κIi′
,

(15)

where matrix elements in the R.H.S are those of the coarse-grid
BSE kernel and the resulting summation runs over the K-points
in the coarse grid only. Computationally, this means adding a
loop over the κ-points in the domain of each K.

3 RESULTS

The double grid method proposed here to calculate optical
spectra via the BSE has been implemented in the Haydock
solver of the Yambo code (Marini et al., 2009; Sangalli et al.,
2019) and tested on a variety of semiconductors. In this section,
we present the resulting optical spectra of each material. We note
that the spectra produced by this approach represented a sharp
improvement with respect to the coarse grid solution, while
requiring only a marginal increase in computational cost.
Although Gamma-centred k-grids were used throughout this
study, our method can also be used with shifted grids (see an
example in Supplementary Material).

3.1 Si Bulk
It is notoriously difficult to converge the optical spectrum of bulk
Si with respect to k-points since a very dense k-sampling is
required to properly describe its excitons. The starting point for
our Si calculations is a severely under-converged 8 × 8 × 8 k-point
grid. The spectrum produced by this coarse grid alone shows
numerous spurious peaks (Figure 1), which reveals a high degree
of artificial localisation of the excitons imposed by the 8 × 8 × 8 k-
grid. We then took the latter as the coarse grid for the double grid
method and added a fine grid of κ-points to it. Supplementary
Figure S1 shows that a fine (double) grid of 24 × 24 × 24 κ-points
on top of this coarse grid immediately suppresses this artificial
localisation. Denser double grids improve upon this result
(Supplementary Figure S2). Ultimately, the spectrum
obtained with a 60 × 60 × 60 fine κ-grid on top of an 8 × 8 ×
8 coarse K-grid is in close agreement with experiments
(Figure 1). The comparison here is done with experimental
data at 10 K available in the literature for Si bulk (Jellison and
Modine, 1983).

3.2 GaAs Bulk
As in the case of Si, GaAs also requires very dense k-sampling for
its optical response to be converged. The coarse grid in this case is
an under-converged 10 × 10 × 10 Gamma-centred k-point grid.
Indeed, the spectrum produced by this coarse grid alone also
presents various spurious peaks, revealing a high degree of
artificial localisation of its excitons (Figure 2). Supplementary
Figure S3 shows that adding a fine (double) κ-grid of 20 × 20 × 20
does not solve the problem fully. However, the spectra with 40 ×
40 × 40 or 60 × 60 × 60 κ-grids match the experimental data
relatively well (Supplementary Figure S4 and Figure 2,

FIGURE 1 | Optical absorption spectra of bulk Si. BSE spectra
calculated using the double-grid approach described in this work are
assessed against the experimental spectrum at 10 K from Jellison andModine
(1983). Spectra are calculated on an 8 × 8 × 8 coarse k-grid and a
denser fine k-grid, indicated by Nκ. NK � 83 corresponds to a standard
calculation on an 8 × 8 × 8 k-grid while Nκ � 603 corresponds to a double-grid
calculation with a 60 × 60 × 60 fine grid. We consider all e−h pairs from the top
four valence bands to the four bottom conduction bands. All k-grids are
Gamma-centred.

FIGURE 2 | Optical absorption spectra of bulk GaAs. BSE spectra
calculated using the double-grid approach described in this work are
assessed against the experimental spectrum at 22 K from Lautenschlager
et al. (1987). Spectra are calculated on a 10 × 10 × 10 coarse k-grid and
a denser fine k-grid, indicated by Nκ. NK � 103 corresponds to a standard
calculation on a 10 × 10 × 10 k-grid while Nκ � 603 corresponds to a double-
grid calculation with a 60 × 60 × 60 fine grid. We consider all e−h pairs from the
top four valence bands to the four bottom conduction bands. All k-grids are
Gamma-centred.
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respectively). In particular, the latter grid appears to capture the
splitting of the first exciton present in the experimental data,
although a denser coarse grid would be required as a better
starting point to fully reproduce this feature. Indeed, this result
still seems to suffer from slight artificial localisation, e.g., at
3.5 eV. The comparison is drawn to available experimental
data for GaAs at 22 K (Lautenschlager et al., 1987).

3.3 MoS2 Monolayer
The convergence of the absorption spectrum of monolayer MoS2
with the k-grid within BSE has been discussed in the appendix of
Molina-Sánchez et al. (2013). The latter study reports a converged
spectrum using a very dense k-point grid and clarifies that when
spin-orbit coupling is not considered, the first excitonic peak
should not show any splitting. In fact, other works which used an
under-converged k-grid, mistakenly showed a splitting of the first
excitonic peak in collinear spin-polarised calculations with no
spin-orbit coupling accounted for.

Here, we aim to reproduce the spectra in Molina-Sánchez
et al. (2013) via the double-grid method (i.e., at a fraction of the
computational cost). Our results follow a similar trend to the
spectrum thereby reported. In the work of Molina-Sanchez
et al., spectra with 12 × 12 × 1 or 18 × 18 × 1 (single grids) show
splitting of the first peak while (single) k-grids of 24 × 24 × 1 or
30 × 30 × 1 solve the issue. Our result with a 12 × 12 × 1 single
grid is equivalent to that of Molina-Sánchez et al. (2013) (except
for a rigid shift in energy), i.e., it shows undue splitting (Figure 3).
Adding a double grid of 24 × 24 × 1 κ-points also results in undue
splitting while 48 × 48 × 1 appears to eliminate it (Supplementary
Figures S5, S6, respectively). A double grid of 60 × 60 × 1 further
improves upon this result (Figure 3). Importantly, the quality of
the double grid spectrum with a double grid of 60 × 60 × 1 κ-

points is not far from what was achieved in Molina-Sánchez
et al. (2013) with a 30 × 30 × 1 single grid. The double grid
approach correctly captures the physics at play despite
representing roughly the computational cost of a 12 × 12 × 1
regular BSE Haydock calculation (see Section 4).

4 DISCUSSION

4.1 Computational Cost
As described above, Lanczos approaches to the BSE eliminate the
need to invert the BSE kernel or fully diagonalise the two-particle
Hamiltonian, which would become the bottleneck of the
calculation whenever required. Instead, Lanczos solvers replace
these highly demanding tasks by very efficient and
computationally inexpensive iterative schemes. This numerical
advantage means that the solution step itself does not drive the
computational cost any longer, but rather, computing and storing
the BSE matrix now becomes the bottleneck of the calculation.
The method proposed in this work addresses this issue directly.
First, the KS orbitals in the fine grid need not be available, i.e., not
stored nor loaded into memory. Moreover, the kernel matrix
elements in the fine grid, and consequently, the corresponding
oscillator strengths, need not be calculated. As a result, the size of
the BSE kernel matrix will effectively be that of the coarse grid.
For instance, if we consider a coarse grid of 10 × 10 × 10 and a fine
grid of 60 × 60 × 60 then there would be 1000 K-points and
216 000 κ-points. The full BSE kernel would have
(200 ×Nc ×Nb)2 more matrix elements than the
approximated one. Depending on the number of bands

FIGURE 3 |Optical absorption spectra of monolayer MoS2. BSE spectra
calculated using the double-grid approach described in this work. Spectra are
calculated on a 12 × 12 × 1 coarse k-grid and a denser fine k-grid, indicated
by Nκ. NK � 122 corresponds to a standard calculation on a 12 × 12 ×
1 k-grid whileNκ � 602 corresponds to a double-grid calculation with a 60 × 60
× 1 fine grid. We consider all e−h pairs from the top three valence bands to the
five bottom conduction bands. All k-grids are Gamma-centred.

FIGURE 4 | CPU time in seconds required to calculate and store the
BSE kernel, and solve it via Haydock’s iterative scheme as a function of the
number of k-points. Brown circles represent fullBSE calculations. The data for
48 × 48 × 1 and 60 × 60 × 1 k-grids have been estimated via a quadratic
fitting. The diamonds denote double-grid BSE calculations. Lines connect
double-grid calculations using the same coarse-grid. All calculations were
carried out in one processor for comparability purposes. The data plotted here
corresponds to monolayer MoS2. We consider all e−h pairs from the top three
valence bands to the five bottom conduction bands.
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required for convergence, the steps of computing and storing that
many matrix elements may draw the line between what is feasible
and what is not, not only in terms of processing power, but also
due to memory and disk-storage limitations.

Let us consider monolayer MoS2 to address how the
computational cost compares between our double grid
approach with a given fine κ-grid and the regular (full) BSE
calculation using that same fine grid as the only (single) k-grid.
Figure 4 shows the combined time required to calculate the BSE
kernel and solve the eigen-problem via Haydock’s scheme as a
function of k-points used in the calculations. For comparability
purposes, all the calculations shown in Figure 4 have been
carried out with just one processor. For the full solution of the
problem (brown circles) the number of k-points has quadratic
scaling from one k-grid to another (as it does for any 2D
material) and the CPU time scales quadratically with the
total number of k-points. This latter dependence stems from
the size of the e-h basis set and the number of matrix elements of
the BSE kernel, i.e., (Nk ×Nc ×Nb)2. The computational cost of
the double grid approach proposed in this work (green-blue
diamonds connected by lines) increases only slightly with the
size of the fine-grid, when the same coarse grid is used. Since the
BSE kernel is calculated only in the coarse-grid, this increase is
due to the Haydock solver, which now has to process larger
Haydock vectors. Nonetheless, it is apparent that the increased
CPU time due to Haydock is minor and far more manageable
than the scaling of the full BSE problem. Overall, fine grid has
little impact on the CPU time required by the method we
propose. In fact, Figure 4 clearly shows that the
computational cost of the double grid method is roughly
driven by the coarse grid.

4.2 Kernel Extension to Fine Grid
The kernel extension is the key approximation used in the
double-grid approach. The DKE in Section 2 was selected for
its simplicity and low computational cost. There are other
possible kernel extensions. In particular, we also considered a
kernel extension with similar characteristics, that we refer to as
full kernel extension (FKE). First, let us define the FKE approach
formally: FKE implies that each matrix element of the coarse grid
BSE kernel is expanded into an all-ones block times the original
matrix element, which leads to

Ξ
nmκIi
n′m′κIi′′

≡ Ξ
nmKI
n′m′KI′

∀ i, i′ (16)

(see Supplementary Material for a visual representation of Eq.
16). As a result, the way in which the fine-grid matrix vector
multiplication is carried out also differs from DKE. In FKE, this
operation is performed as

rnmκIi
� ∑

n′m′KI′

Ξ
nmKI
n′m′KI′

∑
i′ ∈

Dom KI′( )
cn′m′κIi′′

. (17)

Eqs. 16, 17 of FKE are analogous to Eqs. 12, 15 of DKE,
respectively.

In terms of the spectra produced by either kernel extensions,
the comparison consistently favours DKE over FKE in all the
materials tested in this work. The difference may be less
noticeable in systems with weaker excitonic effects. A
comparison for the materials in Section 3 is shown in
Figure 5. In the case of Silicon (Figure 5A), it is apparent
that DKE is better than FKE at suppressing the artificial
localisation found around 3.6 eV. For GaAs (Figure 5B), DKE
also shows an improvement with respect to FKE when dealing
with the artificial localisation at around 3.1 eV. Finally,
monolayer MoS2 (Figure 5C) also follows the trend found in
this work, i.e., DKE is consistently better than FKE. In this case in
particular, the difference between both approaches is very stark.
In fact, the FKE approach shows little to no improvement with
respect to the 12 × 12 × 1 single k-grid as far as the first exciton is
concerned (cf. Figure 3).

In order to explain the better performance of DKE over
FKE, we will discuss the properties of the BSE kernel and the
two-particle Hamiltonian matrices, which are related by Eq.
6. In general, the kernel matrix elements Ξ nmk

n′m′k′
are sharply

peaked at q � 0 (Rohlfing and Louie, 1998; Rohlfing and
Louie, 2000), i.e., for k � k9. This does not mean that every
matrix element with q � 0 will have a higher value than the
remaining matrix elements. In fact, that is only true for the
diagonal elements Ξ nmk

n′m′k′
, while the q � 0 elements coupling

different sets of bands (Ξ nmk
n′m′k′

) are closer in value to all other

q ≠ 0 matrix elements. This is again exemplified with
monolayer MoS2 in Figure 6. The latter shows the module
of every matrix element between a given transition (v � 13, c �
14 and k1 � (−0.166, −0.166, 0)) and every other transition in
the e-h space, i.e., one row of the BSE kernel matrix. This data
is plotted as a function of the magnitude ‖q‖/‖q‖max sgn (qx),
where q � k−k1. Figure 6A shows the BSE kernel as obtained
with a single grid of 6 × 6 × 1 k-points, where we can see that
the diagonal matrix element (the selected transition with
itself) is an order of magnitude higher than all other
matrix elements (many of which also have q � 0). The fine
grid of 12 × 12 × 1 k-points better captures the build-up to the
peak of the graph as it has many more k-points around the
selected one (Figure 6B). Unfortunately, the double grid
approach proposed here cannot capture this feature
because it is meant not to imply any extra computation or
storage of matrix elements at fine grid κ-points. However, the
reader should bear in mind that while this feature is missing
in our approximated BSE kernel, the benefits of this double
grid approach reside in exactly knowing the transition
energies at the fine grid κ-points (see Supplementary Material
for detailed discussion). At this point, what we expect from the
approximated kernel is not to introduce unphysical matrix
elements, and in this regard DKE performs much better than
FKE. Figure 6C shows how the BSE kernel matrix elements
approximated by DKE still represent a function of q that is
sharply peaked at the origin. Conversely, the FKE approach
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means that manymatrix elements inDom (k1), and consequently at
q ≠ 0, will take the value of the peak. We know that such behaviour
as a function of q would not arise should more k-points be included
(Figure 6B). Hence, we believe DKE constitutes a better
approximation of the BSE kernel than FKE. Further arguments
in favour of the DKE over the FKE are presented in Supplementary
Material.

4.3 Limitations of the Approach
The double-grid approach presented in Sec. IIB is based on two
approximations: the DKE (Eq. 12) and the approximation of the
starting Haydock vector (Eq. 13). The DKE has been extensively
analysed in Sec. IVB. From the analysis, it emerges that the

predominance of the matrix elements with q ≈ 0 is crucial to the
success of the approximation. This is consistent with the spatial de-
localisation of the exciton overmany unit cells. Conversely, when the
exciton is localised on few unit cells—as it is the case for instance in
wide-gap insulators—the approximation may break down because
of the significant contribution to the BSE kernel of matrix elements
with q ≠ 0. We verified this is the case, for example, for bulk
hexagonal boron nitride (h-BN). The breakdown of the approach for
these cases is, however, not critical. In fact, excitons that are localised
on few unit cells can be described accurately with a modest k-point
sampling and the double-grid is not needed.

The approximation for the starting Haydock vector (Eq. 13)
implies the assumption that (within the length gauge and dipole

FIGURE 5 |Optical absorption spectra of bulk Si (A), GaAs (B) and MoS2 monolayer (C). Comparison of spectra obtained by diagonal kernel extension (DKE) and
full kernel extension (FKE). For Si and GaAs the coarse k-grid was 8 × 8 × 8 and 10 × 10 × 10 respectively and the fine k-grid, 60 × 60 × 60. For the MoS2 monolayer, the
coarse k-grid was 12 × 12 × 1 and the fine k-grid, 60 × 60 × 1.

FIGURE 6 | Module of the BSE Kernel matrix element between one transition (vck1) and every other transition in the e-h space (nmk). The data plotted here
corresponds to MoS2 considering all e-h pairs from the top three valence bands to the five bottom conduction bands. (A) shows the matrix elements considering only a
single grid of 6 × 6 × 1 k-points. The DKE and FKE ((C,D), respectively) matrix elements are obtained from a 6 × 6 × 1 coarse K-grid and a 12 × 12 × 1 double κ-grid. The
fine grid data (B) is simply what DKE and FKE try to approximate, i.e., the kernel matrix elements obtained with one single grid of 12 × 12 × 1 k-points.
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approximation) the dipole matrix elements in the fine grid can be
approximated by those in the coarse grid, namely,

〈nκIi| r̂ |mκIi〉≈〈nKI| r̂ |mKI〉, (18)

for κIi ∈ Dom(KI), where r̂ is the position operator. This
assumption can be verified at the level of the independent
particle approximation (IPA) by comparing the IPA spectrum
obtained with the double-grid approach (which we call Haydock-
IP) with the IPA spectrum calculated on the fine grid. In fact, in the
independent particle case, Eq. 18 is the only approximation
introduced by the double grid. For the systems considered in
Section 3, we verified that indeed the IPA spectra obtained within
the double-grid approach agree well with the IPA calculated on the
corresponding fine grid (Figure 7). It is also interesting to note that
this particular approximation is valid for h-BN, which singles out
the BSE kernel (q ≈ 0) approximation as the only factor hindering
the application of the double-grid method to this material. In
particular, GaAs shows a minor discrepancy in the IPA spectra
around 2.1 eV (Figure 7), a region of the spectrum where k-point
convergence is markedly difficult. This is due to the steep
dispersion of the conduction band of GaAs around the Gamma
point, where the optical gap occurs [see, for example,
(Lautenschlager et al., 1987)]. As a result, the approximation of
the oscillator strengths around Gamma by the corresponding
matrix element at Gamma (Eq. 18) is a rather poor one, which
translates into an unphysical feature around 2.1 eV in the BSE
spectrum as well (Figure 2).

There are also instances in which the approximation in Eq. 18
breaks down substantially. As an example, Figure 7 shows this

breakdown for the optical absorption of bulk black-phosphorous
(BP) along the armchair direction (Tran et al., 2014). The IPA
spectrum obtained within the double-grid approach has strong
peaks around 0.3 eV which are not present in the reference
calculation. The appearance of this artefact can be understood
considering that the dipole matrix elements (Eq. 18) are calculated
as 〈nKI| v̂ |mKI〉

EnmKI
, where v̂ is the velocity operator. BPhas aminimumKS

band-gap of about 0.2 eV (0.1 eV at the DFT level) and thus the
corresponding dipole matrix element is large. Within the double-grid
approach, all fine-grid k-points in the domain of the k-point
corresponding to the minimum KS band-gap use the same value
which largely overestimates the actual dipole matrix element. Notably,
carrying out the calculations in the primitive rather than in the
conventional unit cell (Figure 7), improves the agreement with the
reference IPA fine-grid spectrum, suggesting that in this case the
coarse grid does a better job at sampling the Brillouin zone around the
k-point corresponding to the minimum KS band-gap. Nevertheless,
this Haydock-IP spectrum still presents artificial features between 0.5
and 1.0 eV, preventing the application of the double-grid method
presented in this work to BP.

Further to note is that using Eq. 18 the extension from the
coarse to the full grid is done for the position dipoles, i.e. within the
length gauge. This implies that, to ensure gauge invariance (Sangalli
et al., 2017), 〈nκIi| v̂ |mκIi〉 � 〈nKI| v̂ |mKI〉(EnmκIi

/EnmKI). An
alternative choice could be instead to assume
〈nκIi| v̂ |mκIi〉 � 〈nKI| v̂ |mKI〉, i.e. to perform the extension of
the velocity matrix elements and accordingly obtain
〈nκIi| r̂ |mκIi〉 � 〈nKI| r̂ |mKI〉(EnmKI/EnmκIi

). Preliminary
results show that such choicemay in fact lead to better results for BP.

FIGURE 7 | Optical absorption spectra at the IP level calculated with the double grid method (labelled Haydock-IP) and via a full calculation on a fine grid
(labelled IP), for all materials considered in this study. In all cases, the fine grid in the double-grid Haydock-IP calculation is of the same dimensions as the fine grid
used in full for the IP calculation. The coarse grids and double/fine grids used for each material are listed below. Si: 8 × 8 × 8 and 60 × 60 × 60, GaAs: 10 × 10 × 10
and 40 × 40 × 40, MoS2: 12 × 12 × 1 and 60 × 60 × 1, h-BN: 12 × 12 × 4 and 24 × 24 × 8, BP(c): 14 × 10 × 4 and 42 × 30 × 12, BP(p): 5 × 5 × 6 and 30 × 30 × 36.
All k-grids are Gamma-centred.
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4.4 Workflow Implementation
Based on this discussion, we can propose a workflow to assess
whether a given material satisfies these approximations and
could thus be described well by the double-grid method
presented here. Firstly, a full fine grid IP calculation must
be converged with respect to k-points. Alternatively one could
choose the densest k-grid that can be treated at the IP level,
where limitations usually reside on memory. Let us take an
example where this first step of the procedure returns a 60 × 60
× 60 k-grid. The next stage would be to find an appropriate
coarse k-grid, i.e., one that satisfies the approximation in Eq.
18. This would entail running several double-grid calculations
at the IPA level (Haydock-IP) with varying coarse grid and
with a fine grid of 60 × 60 × 60. By matching the Haydock-IP
spectrum to the full 60 × 60 × 60 fine-grid IP spectrum, a sound
coarse grid can be chosen by means of a fairly inexpensive
procedure (e.g., 8 × 8 × 8). The next step in the workflow would
necessarily involve BSE calculations as the approximation on
the BSE kernel cannot be tested at the IPA level. With the
chosen coarse grid, successive double-grid BSE calculations
with varying fine grids should be carried out in order to
converge the dimensions of the latter. It is worth
mentioning that all these calculations have roughly the
same computational cost and requirements, at the level of
the coarse-grid 8 × 8 × 8 BSE calculation. It should be
highlighted that convergence of the fine-grid in the double-
grid method does not guarantee the validity of the DKE
approximation. At this point, one should turn to available
data, either experimental or theoretical, in order to assess the
validity of the results on physical grounds.

5 CONCLUSION

In this work, we presented a double grid approach to the problem
of k-point sampling in the solution of the BSE equation for the
calculation of optical spectra of semiconductors. This responds to
the fact that very dense k-point grids are required for BSE
calculations to be fully converged due to the large periodicity of
excitonic wavefunctions, usually reaching several supercells. This
sampling requirement is the bottleneck in BSE calculations and, for
a wide variety of solids, this imposes a computational burden that
renders the calculation prohibitively costly. We tackled this
challenge by applying a double grid approach to the
computationally cheapest among the BSE solvers, i.e., the
Lanczos-based Haydock scheme, thus maximising the size and
range of materials for which this method could be useful. Our
double grid approach is based on combining a coarse k-grid where
both KS eigen-values and eigen-vectors are known with a fine k-
grid where only KS energies are required, which eases memory and
disk storage requirements. With this strategy, the coarse k-grid
drives the computational cost while the k-fine grid tries to capture
the physics of spread out excitons in an approximated way without
requiring significant extra computation.

This scheme was implemented in the Yambo code (see
Supplementary Material for availability) and tested for

bulk Si, bulk GaAs and monolayer MoS2, all of which are
known to require very dense k-point grids to achieve
convergence. The results are satisfactory in all cases,
reproducing data reported elsewhere with a relatively low
computational cost close to that of the coarse grid alone.
There is a slight increase in the CPU time required by the
Haydock step, however this scales very favourably with
increasingly dense k-meshes, at variance with regular non-
double grid approaches. Different ways to extend the BSE
kernel calculated in the coarse grid to the fine grid are
discussed and compared, determining that the so-called
diagonal kernel extension is the preferred method.

The approximations introduced with the double-grid
approach have been discussed, together with the limits they
impose to its validity. On the one hand, the diagonal kernel
extension limits the applicability of this approach to systems
with excitons delocalised over many unit cells. On the other
hand, the latter are precisely the main target of the double-grid
approach, given that spatially localised excitons are usually well
described by a relatively coarse k-grids. Further, we discussed
how the validity of the approximation on the dipole matrix
elements can be verified and controlled with inexpensive
calculations at the level of the independent particle
approximation.

In light of the promising results achieved by the double grid
approach presented in this work, considering its simplicity and
taking into account its compatibility with the very efficient
Lanczos based BSE solution schemes (i.e., Haydock), we hope
our work will facilitate the calculation of optical spectra in
semiconductors that could not be computationally afforded
to date.
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