AUTHOR=Hartman Joshua D. , Mathews Amanda , Harper James K. TITLE=Fast and Accurate Electric Field Gradient Calculations in Molecular Solids With Density Functional Theory JOURNAL=Frontiers in Chemistry VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2021.751711 DOI=10.3389/fchem.2021.751711 ISSN=2296-2646 ABSTRACT=
Modern approaches for calculating electric field gradient (EFF) tensors in molecular solids rely upon plane-wave calculations employing periodic boundary conditions (PBC). In practice, models employing PBCs are limited to generalized gradient approximation (GGA) density functionals. Hybrid density functionals applied in the context of gauge-including atomic orbital (GIAO) calculations have been shown to substantially improve the accuracy of predicted NMR parameters. Here we propose an efficient method that effectively combines the benefits of both periodic calculations and single-molecule techniques for predicting electric field gradient tensors in molecular solids. Periodic calculations using plane-wave basis sets were used to model the crystalline environment. We then introduce a molecular correction to the periodic result obtained from a single-molecule calculation performed with a hybrid density functional. Single-molecule calculations performed using hybrid density functionals were found to significantly improve the agreement of predicted 17O quadrupolar coupling constants (