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Rapid glucose testing is very important in the care of diabetes. Monitoring of blood glucose
is the most critical indicator of disease control in diabetic patients. The invention and
popularity of electrochemical sensors have made glucose detection fast and inexpensive.
The first generation of glucose sensors had limitations in terms of sensitivity and selectivity.
In order to overcome these problems, scientists have used a range of new materials to
produce new glucose electrochemical sensors with higher sensitivity, selectivity and lower
cost. A variety of different electrochemical sensors including enzymatic electrochemical
sensors and enzyme-free electrochemical sensors have been extensively investigated. We
discussed the development process of electrochemical glucose sensors in this review. We
focused on describing the benefits of carbon materials in nanomaterials, specially
graphene for sensors. In addition, we discussed the limitations of the sensors and
challenges in future research.
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INTRODUCTION

Blood glucose a very important indicator in medical care due to the close relationship between the
level of sugar in the blood and many diseases, such as cardiovascular disease, type II diabetes and
obesity. Among them, diabetes is an important chronic disease faced by modern people (Klonoff
et al., 2018; Zhu et al., 2020). It has a very high number of patients in both developed and developing
countries. Since diabetes leads to metabolic disorders, there is a close link between it and many other
diseases, such as kidney disease, nerve damage and heart disease (Chen et al., 2017; Pandey et al.,
2017). The monitoring of blood glucose is a very important part of the diagnosis and treatment of
diabetes. Therefore, how to quickly test blood glucose is a very important topic in medicine (Pleus
et al., 2018).

Electrochemical sensors are the most commonly used method in glucose testing and have been
successfully commercialized (Long et al., 2018; Karimi-Maleh et al., 2020; Zhang et al., 2020; Zheng
et al., 2020). Electrochemical glucose sensors include enzymatic and non-enzymatic sensors. Among
them, non-enzymatic electrochemical sensors are based on the direct electrochemical oxidation of
glucose on the electrode surface (Hwang et al., 2018; Ding et al., 2019; Li et al., 2019; Karimi-Maleh
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et al., 2021). Enzymatic electrochemical sensors are based on the
specific reaction between glucose oxidase and glucose to generate
a detection signal (Sehit and Altintas, 2020). For both enzymatic
and non-enzymatic electrochemical sensors, the use of suitable
nanomaterials in the assembly process can improve the sensitivity
of the sensor (Batool et al., 2019; Fan et al., 2021).

In this review, we first discussed the differences between
enzymatic and non-enzymatic sensors and compare the two
technologies. Then, we introduced the current state-of-the-art
in carbon nanomaterials, special graphene for glucose sensors
with challenges and opportunities.

GENERATIONS OF ELECTROCHEMICAL
GLUCOSE SENSORS

The glucose sensor consists of a modified electrode that
selectively catalyzes the oxidation of glucose on the electrode
surface and a transducer that converts the chemical signal of the
reaction into an electrical signal that is displayed by an
instrument (Zhang et al., 2021). Various types of glucose
sensors can be constructed by applying different modified
electrodes. According to the presence of glucose oxidase
(GOx) in the modified electrode, glucose sensors can be
divided into two categories: GOx sensors and non-enzymatic
glucose (NEG) sensors.

GOx sensors are formed by immobilizing GOx on the surface
of a modified electrode in combination with an electrochemical
device (Baghayeri et al., 2017; Hou et al., 2018; Mano, 2019;
German et al., 2020; Suzuki et al., 2020; Lipińska et al., 2021; Wu
et al., 2021). The first enzyme-based modified electrode was
developed by Clark and Lyons in 1962 (Clark and Lyons,
1962). The first enzyme-based modified electrode was
prepared by Updike and Hicks in 1967 as an electrochemical
glucose sensor for the quantitative determination of glucose in
serum (Updike and Hicks, 1967). Since then, GOx sensors have
been extensively studied and different types of GOx sensors have
been fabricated (Chen et al., 2013). According to the different
electron acceptors, there are three generations of GOx sensors.

The first generation GOx sensor uses oxygen as the electron
acceptor. GOx reduces oxygen to hydrogen peroxide in the
presence of glucose and determines the glucose concentration
by measuring the decrease in oxygen concentration or the
increase in hydrogen peroxide concentration during the
reaction (Abellán-Llobregat et al., 2017; Campbell et al., 2017;
Bagdžiūnas and Palinauskas, 2020). However, the first generation
sensors are susceptible to the oxygen concentration in the
detection environment and have poor anti-interference
property (Okuda-Shimazaki et al., 2020; Walker and Dick,
2021). At a high potential level some coexisting species such
as ascorbic acid and uric acids are electroactive, reducing the
selectivity and accuracy of the sensors (Choi et al., 2019; Lee et al.,
2019). This problem can be minimized by using a permselective
membrane, reducing the access of the interferent to the surface of
the sensor transducer.

The second-generation GOx sensor uses an electron transfer
mediator instead of oxygen as the electron acceptor, which can

overcoming the oxygen limitation of the first-generation GOx
sensor (Lin et al., 2019; Yadav et al., 2019). The electron
mediators are small, soluble redox-active molecules such as
ferrocene derivatives, ferricyanides, conductive organic salts
and quinones. These molecules can perform rapid and
reversible redox reactions. They accelerate the shuttling of
electrons between the active site of the enzyme and the
electrode surface, increasing the rate of enzymatic reactions
(Mahajan et al., 2018). However, the electron mediator can
easily diffuse out of the enzyme layer into the substrate
solution, which affects the stability of the sensor.

The third generation GOx sensor does not require oxygen
molecules or electron transfer mediator molecules as electron
acceptors compared with the previous two generations of GOx
sensors (Mehmeti et al., 2017; Çakıroğlu and Özacar, 2017;
Dahiya et al., 2020). They are made by immobilizing the
enzyme directly on the modified electrode, so that the active
site of the enzyme is in close proximity to the electrode for direct
electron transfer. This can improve the sensitivity and selectivity
of the glucose sensor. The materials used to immobilize the
enzyme are often organic conductive composite membranes,
organic conductive polymer membranes, metallic nanoparticles
or non-metallic nanoparticles (Meng et al., 2018; Xie et al., 2018;
Ding et al., 2019; Li et al., 2019; Wang et al., 2019; Shahhoseini
et al., 2019). However, the electron transfer rate of third
generation GOx sensors is still limited. GOx sensors have
good selectivity and sensitivity, but there are still some
problems, such as the complex immobilization process of
enzymes, which is prone to deactivation and denaturation.
The amount of enzymes immobilized each time cannot be
accurately controlled (Liu et al., 2017; Khalaf et al., 2020). In
addition, the use of enzymes is limited by external conditions
such as temperature, pH and humidity (Xu et al., 2017;
Parashuram et al., 2019). Therefore, the development of
enzyme-free glucose (NEG) sensors is particularly important.
Moreover, the biosensor performance also depends on the
enzymatic layer thickness with high layer thickness resulting
in signal dampening or loss.

The modified electrode surface of NEG does not contain GOx.
Depending on the electrochemical detection method, NEG
electrochemical sensors can be divided into three categories:
potentiometric, voltammetric, and current sensors (Yang et al.,
2017; Zheng et al., 2018).

NOBEL METAL-MODIFIED GLUCOSE
SENSOR

Several metals, especially noble metals, have been studied as a
base material for the electrodes of non-enzymatic glucose sensors.
As a result, a deeper understanding of the glucose direct oxidation
mechanism was achieved, showing that the mechanism depends
directly on the metallic catalyst used in the electrode (Zhong et al.,
2017; Wang et al., 2019). Moreover, advances in material science
led to the development of several metal alloys and hybrid
materials, allowing for improved properties when compared to
noble metals and metal oxides alone.
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Pt metal is one of the earliest and most widely used electrode
materials in glucose sensor because of its good catalytic activity
for the oxidation of many compounds, especially glucose.
However, Cl− and other interferences in the solution can
strongly adsorb on the Pt electrode surface, occupying the
active site and reducing the catalytic activity, which seriously
hinders the application of Pt in glucose sensors.

Au electrode is very active in the catalytic oxidation of glucose
and have good biocompatibility, making them an excellent
electrode material. However, the adsorption of Au electrodes
to glucose is much less than that of Pt electrodes and is also
susceptible to interference by Cl−, which affects its catalytic
activity and stability (Toghill and Compton, 2010).

The catalytic oxidation of glucose by Pd as an electrode has a
high activity. In addition, Pd is cheaper than other noble metals.
However, Pd nanoparticles are very prone to polymerization and
the catalytic activity can only be maintained for a few minutes. In
order to improve the stability of Pd, many modification methods
have been investigated.

Metallic Ni electrodes have a very high sensitivity up to
36 6 mA mM/cm2, while Ni electrodes are not interfered with
by Cl− and have good stability. However, many organic small
molecules can be oxidized on the Ni electrode surface, resulting in
poor selectivity of the metal Ni electrode for glucose and a narrow
linear range for glucose detection (Fleischmann et al., 1971). To
address these drawbacks of pure Ni electrodes, scientists have
investigated the application of nanostructured Ni with high
specific surface area and its oxidants in NEG sensors.

Metallic Cu electrodes are easy to prepare and inexpensive,
which have been widely studied and used for NEG sensors in
recent years. However, the strong adsorption of Cl− on the surface
of Cu electrode interferes with the detection of glucose. In
addition, the electrode has a narrow detection range for
glucose. Meher et al. (Meher and Rao, 2013) prepared
sandwich structured CuO electrodes by homogeneous
deposition under the action of microwave. This electrode has a
high specific surface area and pore volume, which in turn
improves the sensitivity of the sensor. The response time for
the detection of glucose was only 0.7 s and the detection limit was
1 μM. Meanwhile, its stability is very good, with a sensitivity loss
of only 1.3% after 1 month of use. However, it has a narrow linear
range of 0–3 mM.

CARBON MATERIALS-MODIFIED
GLUCOSE SENSOR

Carbon materials, including fullerenes, diamond, carbon
nanotubes, graphene, and carbon nanofibers, have been widely
used as electrode materials for NEG sensors due to their excellent
electrical conductivity and electrochemical inertness. Among
them, graphene is most widely used.

Graphene is a planar hexagonal lattice material formed by sp2-
hybridized carbon atoms connected by covalent bonds. Its unique
electronic structure characteristics and physicochemical
properties make it show unique advantages in electrochemical
detection and electroanalysis. It can be used to prepare

electrochemical sensors for bioanalysis and environmental
detection with high sensitivity, good selectivity, fast current
response, wide detection range and low detection limit. The
high electrical conductivity of graphene and the large number
of boundary points, structural defects and functional groups in its
structure provide rich sites for adsorption and electrochemical
reactions. This can accelerate electron transfer and enable direct
electrochemical reaction and biosensing. Meanwhile,
compositionally and structurally rich graphene derivatives
offer the possibility to further tune their electrochemical
properties. Graphene with different structural features, such as
graphene nanoblankets, nanosheets, flake crystals, nanofibers,
nanoribbons and quantum dots, have been successively
applied to electrochemical investigations.

However, single graphene cannot meet all the requirements
for electrochemical detection. The curling, agglomeration,
stacking between layers and its dispersion in solvent of
graphene itself limit its application in electrochemistry.
Therefore, it is necessary to further improve the
electrochemical properties and enhance the electrochemical
effects of graphene by compounding it with other functional
nanomaterials such as inorganic and organic components.

There are many electrochemical sensing methods based on
graphene nanocomposites, and the most commonly used ones are
electrochemical impedance method/cyclic voltammetry and
chrono-current method. Among them, electrochemical
impedance spectroscopy is a powerful tool to study the nature
of electron transfer on the electrode surface. The Nyquist plot of
the impedance spectrum consists of two parts: the semicircular
part in the high frequency region corresponds to the electron
transfer limitation process. The linear part in the low-frequency
region corresponds to the diffusion process. The electron transfer
impedance is equal to the diameter of the semicircle. The electron
transfer impedance can be obtained from the size of the semicircle
diameter of different modified electrodes, and thus the
modification of the electrode surface and the electrical
properties of different electrode modification materials. Cyclic
voltammetry is used to compare the differences in peak current
and peak potential between electrodes with different material
modifications and different test conditions. This is combined with
the scan rate, pH, and concentration of the test substance to
obtain visual data for electrochemical performance analysis. The
relationship between current and time can be characterized by the
chrono-current method when different concentrations of the test
substance are added continuously to the test electrolyte. It can
obtain specific experimental data such as linear detection range,
detection limit and sensitivity from the chrono-current curve.

Hossain and Slaughter (2020) proposed a hybrid glucose
biosensor with high sensitivity and selectivity using both
multi-walled carbon nanotubes (MWCNTs) and graphene.
Chemically derived graphene and MWCNTs functionalized
with carboxylic groups were synthesized using a one-step
solvothermal technique to produce a suspension containing
both materials. This suspension was then drop casted on a Au
electrode forming a thin film onto which PtNPs were
electrochemically deposited. Finally, GOx was immobilised on
the nanostructured electrode and coated with Nf.
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Noble metal nanoparticles (NPs) have a great specific surface
area, considerable electrical conductivity and reactivity. The
sufficient number of surface active sites endows them with
excellent electroanalytical and electrocatalytic properties.
Combining them with enzymes can act as excellent wires or
electron channels to accelerate the electron exchange between the
electrode and the redox protein/enzyme interface. Also, as a
biocompatible material, it can provide a microenvironment
similar to its nature for the immobilization of biomolecules
such as proteins and enzymes. This maintains their enzymatic
and electrochemical activity and allows more free orientation of
protein and enzyme molecules. This can reduce the insulating
nature of the protein shell or enzyme 3D structure in direct
electron transfer. Immobilization of NPs on the surface of the
substrate electrode is a very important step in the preparation of
composite electrocatalytic systems based on NPs. Graphene can
be used as a conductive carrier for the deposition of
electrocatalytic NPs.

Niu et al. (Shan et al., 2010) found that the electrocatalytic
activity of graphene composite with AuNPs for H2O2 and O2

increased significantly and showed a wide linear response range,
high sensitivity and good reproducibility. Li et al. (Zhou et al.,
2010) and Ramaprabhu et al. (Baby et al., 2010) further adsorbed
GOD on graphene-AuNP composite electrode to prepare glucose
biosensor. The results confirmed the effective retention of
bioactivity of GOD in graphene-AuNPs composites. Cyclic
voltammograms showed a fast and sensitive response to
glucose with typical catalytic oxidation and showed good
reproducibility, low detection limits and long-term stability.
This excellent property can be attributed to the synergistic
effect of graphene with AuNPs and the biocompatibility of the
composite. In addition, it can be attributed to the fact that AuNPs
prevent the restacking of graphene layers, leading to an increased
specific surface area and enhanced sensing performance.

PdNPs are efficient catalysts for chemical conversions such as
C-C bond formation, hydrogenation, hydrodehydrogenation,
carboxylation and oxidation. It shows excellent sensitivity and
selectivity for glucose oxidation. Zhang et al. (Lu et al., 2011)
prepared an enzyme-free electrochemical biosensor using
graphene-PdNP hybrid material modified electrode and used it
for glucose detection. Nafion-graphene was first assembled on the
electrode and chemisorbed Pd2+, followed by in situ formation of
PdNPs on the electrode by reduction of Pd2+ by hydrazine
hydrate. In alkaline medium, this graphene-PdNP hybrid
modified electrode has very high electrochemical activity for
the electrocatalytic oxidation of glucose. It can quantify the
glucose concentration in a wide linear range of 10 μΜ-5 mM.
The experimental results also showed that the sensor has good
reproducibility and long-term stability. It exhibited high
selectivity without any interference in the presence of other
substances. Similarly, Jiang et al. (Zeng et al., 2011) covalently
functionalized graphene with chitosan (CS) to improve its
biocompatibility and hydrophilicity. They then further
modified PdNPs using an in situ reduction method. the CS
maintained its structure intact on graphene and the PdNPs
were densely modified on graphene without agglomeration. A
novel glucose biosensor was prepared by covalently immobilizing

GOD on the obtained nanocomposite coating-modified glassy
carbon electrode. Due to the synergistic effect of PdNPs and
graphene, the electrode showed excellent electrocatalytic activity
towards H2O2 and promoted a high loading of the enzyme.

Graphene compounded with metal oxide/semiconductor NPs
has gained widespread attention because of its excellent
electrocatalytic, electrochemical sensing and electrochemical
energy conversion properties. The large surface area and high
electrical conductivity of graphene itself make it an ideal two-
dimensional catalyst carrier for loading metal oxide/
semiconductor NPs and provides properties such as selective
catalysis or sensing.

Mao et al. (2021) investigated the use of reduced graphene
oxide (rGO) to increase the sensitivity and selectivity of a zinc
oxide (ZnO) nanorod based biosensor. In this case, a polyethylene
terephthalate (PET) substrate was used to hydrothermally
synthetise the ZnO nanorods. Then, electrodeposited rGO was
used to coat the ZnO/PET working electrode and AuNPs were
dispersed on the surface leading to the production of ZnO/rGO/
Au/PET. Finally, the GOx was physically adsorbed on the surface
of the electrode leading to the fabrication of a GOx/Rgo/ZnO/Au/
PET glucose biosensor with a sensitivity of 56.32 μA mM/cm2

and a linear range from 0.1 to 12 mM.
Graphene can be synergistically optimized not only by

nanocomposites with inorganic materials, but also by organic
materials for modification or functionalization. They provide a
novel and efficient platform for immobilizing redox enzymes,
achieving direct electrochemistry, and applying to the design and
preparation of third-generation electrochemical sensors. Nafion
is a perfluorinated sulfonate ionomer cross-linked polymer. Due
to the advantages of simple preparation, excellent electrical
conductivity, high chemical stability and biocompatibility, it
has been widely used as a protective and selective coating
material as well as a carrier for enzyme immobilization in
biosensors. Moreover, Nafion films are negatively charged and
some foreign substances into AA, UA and p-vinylaminophen are
easily excluded during detection. Chen et al. (2010) modified
GCE after immobilization of GOD on graphene/Nafion films and
used it as an electrochemiluminescence sensor for glucose
detection. It was shown that GOD maintained good bioactivity
after immobilization on the composite film. The sensor showed a
linear response of 2–100 μM for glucose with a detection limit of
1 μM. Al-Sagur et al. (2017) synthesised a multifunctional
conducting polyacrylic acid (PAA) hydrogel (MFH) integrated
with reduced graphene oxide (rGO), vinyl substituted polyaniline
(VS-PANI), and lutetium phthalocyanine (LuPc2) to create a
three dimensional (3D) robust matrix for GOx immobilization
and glucose measurement.

CONCLUSION AND FUTURE
PERSPECTIVES

Enzymatic-based glucose biosensors seem to correspond to the
ideal model for glucose biosensing. However, many challenges
such as short operational lifetime, temperature, and pH range, are
limiting their performance requiring the use of more advanced
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materials and fabrication techniques. Contrary to enzymatic
sensors, non-enzymatic glucose sensing presents higher
stability, selectivity, less complex manufacturing procedures,
and clinical uses.

Compounding graphene with nanomaterials is an effective
way to enhance functionality, and these graphene composite
based biosensors show excellent sensitivity and selectivity for
glucose detection. However, the development of graphene-based
materials and devices is still in its infancy, and there is a need to
continue to expand the scientific research of these materials and
devices in the field of electroanalysis and electrocatalysis in the
future. First, novel methods should be developed for the
controlled synthesis and processing of graphene. Second,
because graphene in composites is highly susceptible to
complex interactions with other molecules leading to
agglomeration, suitable methods should also be found to
control the morphology and size of other functional
nanomaterials on the graphene surface. In addition, the

physical and chemical properties of the graphene surface, the
interactions between chemicals and biomolecules at the interface
and graphene should be studied in more depth. For example, the
adsorption mechanism of molecules on graphene, the orientation
of biomolecules on graphene Yao the interaction between
graphene and biomolecules and the mechanism of its effect on
the electron transport properties of graphene These studies can
provide a deeper understanding of the electrochemical properties
of graphene and its composites, which can facilitate the
application of graphene in glucose sensors.
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