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Two metal-organic frameworks (MOFs), [Dy(BDC)(NO3)(DMF)2]n (1, H2BDC � terephthalic
acid) and [Dy(BDC)(NO3)]n (1a), were synthesized. The structures of MOFs 1 and 1a are
easy to be reversibly transformed into each other by the desorption or adsorption of
coordination solvent molecules. Accordingly, their magnetic properties can also be
changed reversibly, which realizes our goals of manipulating on/off single-molecule
magnet behaviour. MOF 1 behaves as a single-molecule magnet either with or without
DC field. Contrarily, no slow magnetic relaxation was observed in 1a both under zero field
and applied field.
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INTRODUCTION

Molecule-based magnetic materials are increasingly favoured by researchers for their potential
applications in information storage, quantum computers and spintronics (Sessoli et al., 1993;
Wernsdorfer and Sessoli, 1999; Wang et al., 2010; Kirk et al., 2013; Woodruff et al., 2013; Pei et al.,
2018; Yu et al., 2019). Among them, the magnetic switch based on single-molecule magnets (SMMs)
or single-chain magnets (SCMs) is one of the hot topics in this field (Hoshino et al., 2012; Fetoh et al.,
2016; Dickie et al., 2017; Shao et al., 2018; Cador et al., 2019; Ma et al., 2020). Constructing SMMs or
SCMs whose structure can change reversibly is an effective way to obtain magnetic switches. As is
well known, most SMMs and SCMs are low-dimensional coordination compounds (Ishikawa et al.,
2003; Woodruff et al., 2013), and their structures often produce an irreversible collapse when
manipulating the magnetic properties by tuning molecular structures. Until now, there are only a few
reports on magnetic switches based on SMMs or SCMs induced by reversible structural
transformation (Suzuki et al., 2013; Zhang et al., 2015; Wu et al., 2017; Xin et al., 2019; Hojorat
et al., 2020; Zhu et al., 2020; Hu et al., 2021).

Contrary to the low-dimensional SMM or SCM systems, metal-organic frameworks (MOFs)
usually exhibit higher structural stability, which is more conducive to the realization of reversible
structural change (Yaghi et al., 2003; Kitagawa et al., 2004; Guo et al., 2006; Aulakh et al., 2015). This
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advantage allows them to be efficient platforms for developing
magnetic switchingmaterials. However, it is difficult for most 3D-
MOFs to show slow magnetic relaxation because there are
frequently existing exchange interactions and magnetic order
(Miyasaka et al., 2006; Bernot et al., 2009). For lanthanide
MOFs, the exchange interaction between lanthanide ions is
generally weak due to the effective shielding of unpaired
electrons in the 4f orbital of the lanthanide ions (Aulakh et al.,
2015; Liu et al., 2015; Liu et al., 2016; Iwami et al., 2017; Castells-
Gil et al., 2018). Furthermore, 4f ions contain various
coordination geometries, most from six-to nine-coordination,
which contribute to the design and adjustment of the
structures (Ruiz-Martínez et al., 2008; Song et al., 2012;
Aulakh et al., 2015; Guo et al., 2017; Li et al., 2017; Wang
et al., 2018). In addition, the quantum tunneling effect can be
effectively suppressed by the weak couplings, especially weak
ferromagnetic couplings, thereby improving energy barriers,
in lanthanide MOFs (Woodruff et al., 2013; Das et al., 2018; Ji
et al., 2019). Therefore, lanthanide ions are well suited for
constructing MOFs with SMM behaviour, in particular for
those with magnetic switching effects. For example, Li and co-
workers reported the switching of SMM behaviour in Dy-MOF
system by changing the coordination geometry of the Dy(III)
ions (Zhou et al., 2013). It should be noted that most of these
MOFs show antiferromagnetic coupling between the adjacent
4f ions (Baldovi et al., 2014; Yi et al., 2015; Huang et al., 2018;
Zhang et al., 2018). On account of the above, the design and
synthesis of 4f ion-based MOFs which exhibit weak
ferromagnetic coupling between metal centers is a good
choice for obtaining magnetic switches.

Herein we report a Ln-MOF, [Dy(BDC)(NO3)(DMF)2]n (1),
obtained from the reaction of terephthalic acid (H2BDC) with
Dy(NO3)3·6H2O, which shows slow relaxation behaviour. Since
there are no free solvent molecules in this complex, it is a good
platform to study the effect of changes in coordination geometry
on slow relaxation behaviour. Interestingly, the magnetic
interaction between the 4f metal centers shows a transition
from ferromagnetic coupling to antiferromagnetic coupling
and the slow magnetic relaxation phenomenon also disappears
with the loss of coordination DMF solvent molecules in this
complex.

EXPERIMENTAL

Synthesis of [Dy(BDC)(NO3)(DMF)2]n (1)
A mixture of H2BDC (23 mg, 0.137 mmol) and Dy(NO3)3·6H2O
(62.56 mg, 0.137 mmol) in 1.25 ml EtOH/DMF (V:V � 1:4)
solution was sealed in a 15 ml Schlenk glass tube. To
remove air, the Schlenk tube with reaction solution was
purged and backfilled with argon gas three times, then
heated in an oven at 100°C for 36 h. After the temperature
was gradually reduced to room temperature, the colourless
bulk crystals were obtained, and the yield was about 36%
calculated based on Dy(III) ion. Anal. calcd. for
C14H18DyN3O9: C, 31.44%; H, 3.39%; N,7.86%. Found: C,
31.52%; H, 3.45%; N, 7.79%.

Synthesis of [Dy(BDC)(NO3)]n (1a)
The collected crystals of complex 1 were washed with ethanol,
and dried in air. After then, the crystals were heated in an oven at
170°C for 24 h, complex 1a was obtained. Anal. calcd. for
C8H4DyNO7: C, 24.73%; H, 1.04%; N,3.60%. Found: C,
24.70%; H, 1.10%; N, 3.68%.

Synthesis of [Dy0.1215Y0.8785(BDC)(NO3)
(DMF)2]n (1@Y)
The colourless bulk crystals of complex 1@Y were obtained
following the procedure described for complex 1 except
that Dy(NO3)3·6H2O was replaced by Dy(NO3)3·6H2O and
Y(NO3)3·6H2O in a 1:10M ratio. The accurate ratio of Dy/Y is
1:7.23 in the magnetically diluted complex 1@Y, which was
determined by X-ray fluorescence spectrometry (Supplementary
Figure S1). Elemental Anal. Calcd. for C14H18Dy0.1215Y0.8785N3O9:
C, 35.76%; H, 3.86%; N, 8.94%. Found: C, 35.30%; H,3.89%;
N, 8.63%.

X-Ray Data Collection and Structure
Refinement
The diffraction data for 1 were collected on a Bruker Smart CCD
area-detector diffractometer using Mo-Kα radiation (λ �
0.71073 Å) in the ω-scan mode at 296 K. The diffraction data
were treated using SAINT, and absorption corrections were
applied by using SADABS. All the non-hydrogen atoms were
located by Patterson’s method using the SHELXS program of the
SHELXTL package and by subsequent Fourier syntheses
(Sheldrick, 2008). The hydrogen atoms were determined
theoretically and treated using a riding model. The hydrogen
atoms were refined with isotropic thermal parameters. All non-
hydrogen atoms were refined by full-matrix least-squares on F2

with anisotropic thermal parameters. All the calculations were
performed by the SHELXTL-2014 program (Sheldrick, 2015).
The details for the structural analyses of complex 1 are shown in
Supplementary Table S1. The selected bond distances and angles
for complex 1 are listed in Supplementary Table S2. The CCDC
number of complex 1 is 2059079.

RESULTS AND DISCUSSION

Synthesis and Characterization
Infrared (IR) spectra were recorded as KBr pellets under vacuum
condition. Complex 1a was immersed in DMF solvent for 3 days,
it changed to complex 1-back. To study the stability of the
framework and the loss of coordinated DMF molecules, the
data at variable temperatures were collected for complex 1 and
1-back. The temperature-dependent IR spectra of complex 1 and
1-back were shown in Supplementary Figures S2, S3,
respectively. The bands at 1,623 and 1,038 cm−1 are assigned
to the C�O stretching vibration (]CO) and the CH3 rocking region
(rCH3) of DMF molecules, respectively (Freire and Alves, 2015;
Ohashi and Takeshita, 2021). The peaks of 1,623 and 1,038 cm−1

are disappeared when the temperature reached 175°C, which is
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due to the losing of DMF molecules. Except for some slight
differences, such as a decomposed component of the ]CO band at
1,686 cm−1 (extremely small), the IR spectra of complex 1 and 1-
back are almost the same (Supplementary Figure S4). The slight
differences in IR spectra may be due to the perturbation of high
temperature in the coordination environment. In addition, the
temperature-dependent IR spectrum of complex 1-back is also
consistent with that of complex 1. The results of IR spectra
support that complex 1a can uptake DMF molecules and
transform back to complex 1. The thermogravimetric analyses
were performed in N2 atmosphere at a heating rate of 10°C min−1

from 30°C to 800°C for complex 1 and 1-back (Supplementary
Figure S5). There is no weight loss before 140°C for complex 1
and 1-back. For complex 1, it reveals a weight loss of 27.31%
between 140°C and 295°C, which corresponds to the loss of two
coordination DMF molecules (27.33%). Then it shows a
continued weight loss in the temperature range of 295–800°C,
which is due to the collapse of the framework. For complex 1-
back, there is a weight loss of 26.87% between 140°C and 295°C,
which is slightly lower than the loss of two coordination DMF
molecules (27.33%). A continued weight loss in the temperature
range of 295–800°C is also due to the collapse of the framework.
The results of thermogravimetric analysis for complex 1-back are
consistent with those for complex 1. The recorded experimental
PXRD pattern of 1 and 1@Y agree well with the simulated pattern
from single-crystal X-ray diffraction data of 1,which confirms the
phase purity for the microcrystal of 1 and 1@Y (Supplementary
Figure S6). There are some slight differences between the
experimental PXRD pattern of complex 1a and that of
complex 1, which means that the framework of complex 1a is
slightly deformed after high-temperature treatment.

Crystal Structure
The result of X-ray single-crystal diffraction indicates that
complex 1 belongs to the monoclinic space group C2/c. There
are one Dy(III) ion, one BDC2− ligand, one nitrate ion and two
DMF molecules in the asymmetric unit of 1. The Dy(III) ion is
eight-coordinated, in which four BDC2− ligands provide four
oxygen atoms, one nitrate provides two oxygen atoms, and two
DMF molecules provide two oxygen atoms for coordination. The
Dy(III) center adopts a snub disphenoid (JSD-8) coordination
geometry (Figure 1A), which was analyzed by the SHAPE 2.1
software, and the calculated results are listed in Supplementary
Tables S3, S4 (Llunell et al., 2013). All bond lengths and bond
angles are within the normal range. Each ligand BDC2− catches
four metal Dy(III) ions (Figure 1B). In this way, the adjacent
Dy(III) ions are linked together, forming a one-dimensional
chain along the c axis (Supplementary Figure S7). These
chains are further bridged by the ligand BDC2−, giving rise to
a three-dimensional network structure. Interestingly, there are no
free solvent molecules in the three-dimensional channel because
the coordinated DMF solvent molecules are filled into the pores
(Figure 2). In order to realize the function of the magnetic switch,
we studied the influence of the presence or absence of DMF
molecules in the framework. After heating 24 h in an oven at
170°C, the coordinated DMF solvent molecules were removed.
Not only the DMF molecules are absent in the pores, but also the
number of coordination atoms around the Dy(III) center has
changed. This means that the magnetic properties of complex 1a
are different from those of complex 1. Complex 1a has been
putted into DMF solvent for the purpose of proving the structural
reversibility. Complex 1-back was obtained by putting complex
1a into DMF solvent for 3 days. As expected, the recorded
experimental PXRD patterns of 1-back is consistent with the
simulated pattern of complex 1. These results further indicate that
complex 1 can transform to complex 1a by heating and then
comeback to complex 1 by putting complex 1a into DMF solvent.

FIGURE 1 | (A) Coordination geometries of Dy(III) ion; (B) Coordiantion
modes of BDC2- ligands of 1. Color code: C, black; N, blue; O, red; Dy, yellow.

FIGURE 2 | The framework of complex 1.
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Magnetic Properties
Variable temperature susceptibility measurements were carried
out in a temperature range of 1.8–300 K under a DC field of
1.0 kOe. The plot of χMT versus T for a [Dy(BDC)(NO3)(DMF)2]
unit is shown in Figure 3. The product χMT of complex 1 is
14.18 cm3 K mol−1 at room temperature, which is in agreement
with the theoretical value of 14.167 cm3 Kmol−1 for single Dy(III)
ions (S � 5/2, L � 5, J � 15/2, g � 4/3). Upon cooling, the χMT value
of complex 1 gradually decreases and reaches a minimum of
11.51 cm3 Kmol−1 at 25 K. This phenomenon could be ascribed
to the depopulation of Stark sublevels of Dy(III) ion. As the
temperature continues to decrease, the χMT value increases
rapidly and reaches a maximum of 14.54 cm3 Kmol−1 at 1.8 K,
which indicates the presence of ferromagnetic coupling between
Dy(III) ions (Aulakh et al., 2015). For complex 1a, the value of
χMT is 14.19 cm3 K mol−1 at 300 K, which is closed to the
theoretical value for one Dy(III) ion. Upon cooling, the χMT
value decreases slowly in the high-temperature region, then
decreases rapidly and reaches 9.19 cm3 K mol−1 at 1.8 K, which
is owing to the depopulation of Stark sublevels and/or the
antiferromagnetic coupling between adjacent Dy(III) ions.

The field-dependence magnetizations of 1 and 1a were
measured in the whole field (0–7 T) at the temperature from
1.8 to 10 K (Supplementary Figures S8, S9). For complex 1, the
magnetizationM reaches a saturated value (5.73 μB) at 7 T, which
is larger than the observed value (5.23 μB) for one anisotropic
Dy(III) ion (Tang et al., 2006). This phenomenon indicates that
there is also a strong magnetic anisotropy in complex 1. Besides,
the non-superposition of the M vs. H/T curves provides further
evidence for the presence of strong magnetic anisotropy in this
system (the inset of Supplementary Figure S8). For complex 1a,
the value of M is still not saturated at 7 T.

AC Magnetic Measurements
The alternating current (AC) magnetic susceptibility of
complexes 1, 1a and 1-back were measured to investigate their
dynamic magnetic behaviour. For complex 1, the AC magnetic

susceptibility measurements were done under a zero DC field and
1 kOe DC field. Obvious out-of-phase signals were observed in
both cases, indicating that complex 1 exhibits SMM behaviour
(Supplementary Figure S10). However, no out-of-phase signal
was observed both under zero field and 1 kOe DC field, indicating
that complex 1a does not show SMM behaviour (Supplementary
Figure S11). Interestingly, complex 1-back exhibits an obvious
out-of-phase signal (Supplementary Figure S12). The literatures
demonstrate that subtle modification of solvent, auxiliary ligand,
coordination environment and inter-molecular interaction have a
significant impact on themagnetic dynamics of lanthanide single-
molecule magnets (Zhang et al., 2016; Zhang et al., 2019; Kong
et al., 2020). Compared with complex 1, the coordination
environment may be slightly different in complex 1-back
which has undergone the process of removing and absorbing
DMF molecules, resulting in a difference of the magnetic
relaxation (Figure 4). For complex 1, SMM behaviour
disappears by removing the coordinated DMF molecules, and
appears when recovering DMF molecules. In short, reversible
switching of SMM behaviour is realized by desorption/adsorption
of coordinated DMFmolecules. In the whole tested DC field, only
one relaxation process was observed for complex 1. In order to
study the slow relaxation behaviour, both zero field and 1.0 kOe
were chosen to test the dynamic magnetization due to the longest
relaxation time (Supplementary Figures S13, S14). In the given
fields and temperature ranges, the variable-frequency χM″ is
shown in Figure 5 for 1. The Cole-Cole plots are fitted
through the Debye model using CCFIT software (Guo et al.,
2011). The extracted α values are listed in Supplementary Tables
S5, S6. In zero DC field, the effective energy barrier is 37.01 (3) K
with τ0 � 1.98 × 10–7 s by fitting with the Arrhenius formula. The
ln (τ) vs. T−1 curve indicates possible multiple slow relaxation
processes, which is described in Eq. 1. The best resulting
parameters are τQTM � 0 s, C � 143.95 K−1.59 s−1, n � 1.59,
τ0 � 9.82 × 10–8 s and Ueff � 43.02K. However, in 1 kOe DC field,
the ln(τ) vs. T−1 curve is replaced by a straight line, which indicates
that it only has the Orbach process. The effective energy

FIGURE 3 | The plots of χMT versus T for 1 and 1a under an applied field
of 1 kOe.

FIGURE 4 | Both 0 Oe and 1.0 kOe field measurement performed on
polycrystalline sample of complex 1 (□), 1a (○) and 1-back (Δ), respectively.
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barrier Ueff is equal to 47.27 K with τ0 � 9.62 × 10–8 s. It can be
seen from Supplementary Table S7 that the quantum tunnelling
effect (QTM) cannot be suppressed by antiferromagnetic coupling
between neighbouring Dy(III) ions. However, ferromagnetic
coupling between neighbouring Dy(III) ions may effectively
suppress QTM. In this work, the QTM is also not observed,
which proves the conclusion that the ferromagnetic interaction
can suppress QTM. In order to further prove this conclusion, the
alternating current (AC) magnetic susceptibility of
diamagnetically diluted sample 1@Y was measurement under
zero DC field (Supplementary Figure S15). In the low-
temperature region, the peak values of the χM″ vs. ] curves
does not move with increasing temperature, which indicates
that there is an obvious QTM process in complex 1@Y. The
Cole-Cole plots of 1@Y are fitted by the Debye model using
CCFIT software (Supplementary Figure S16, Supplementary
Table S8). The ln(τ) vs. T−1 curve indicates possible multiple
slow relaxation processes, so the data are fitted using the Eq. 1
which includes QTM, Orbach and Raman processes
(Supplementary Figure S17). The best resulting parameters are
τQTM � 420.37 s, C � 3.32 K−5.71 s−1, n � 5.71, τ0 � 1.37 × 10–8 s
and Ueff � 41.00 K. The fitting result proves that there is a QTM
process in complex 1@Y. These results further prove that the
ferromagnetic interaction leads to the disappearance of the
quantum tunneling process in complex 1.

τ−1 � τ−1QTM + CTn + τ−10 exp(−Ueff

kBT
) (1)

ab initio calculations

Jdip � −μ
2
Bg1Zg2Z
r3

(cos θ − 3 cosφ1 cosφ2) (2)

To gain further insights into the magnetic coupling between
neighbouring Dy(III) ions for complex 1, CASSCF calculations
based on X-ray single-crystal structure were performed using
MOLCAS 8.4 program (Aquilante et al., 2016) and
SINGLE_ANISO programs (Chibotaru et al., 2008a; Chibotaru
et al., 2008b; Ungur et al., 2009). A Dy(III) ion was randomly
selected from complex 1, and the principal magnetic axe of this
ground Dy(III) ion was calculated (Supplementary Figure S18).
The calculated energy levels (cm−1) and g (gx, gy, gz) tensors of the
minimum KDs of the Dy (III) motif for complex 1 are shown in
Supplementary Table S9. The calculated values of the correlative
tensors in the ground state (mJ � ±15/2) are 0.002 (gx), 0.002 (gy)
and 19.893 (gz), respectively. The results show a strong axial
anisotropy in the ground state for complex 1, which leads to a
slow magnetic relaxation behaviour in a zero field for complex 1.
For complex 1, the mJ values of the ground states are mostly
composed of ±15/2, and the predominant mJ values of the first
excited states are ±13/2 (Supplementary Table S10). The
calculated energy of the first excited states is 192.4 cm−1. The
value of the experimental energy barrier (47.27 K) is much
smaller than the calculated value, suggesting that such a
relaxation does not reach the first excited state due to fast
under-barrier relaxation which is induced by anharmonic
phonons (Lunghi et al., 2017; Kong et al., 2020)
(Supplementary Figure S19; Supplementary Table S10). The
principal magnetic axes of Dy(III) ions are parallel to each other
based on the structure and symmetry of complex 1

FIGURE 5 | Frequency-dependent of the out-of-phase (χ″) under zero DC-field (A) and under 1,000 Oe (B) of complex 1; Cole−Cole curves under zero DC-field (C)
and under 1,000 Oe (D) of complex 1. Solid lines represent the best fit with Debye model. Plot of ln (τ/s) versus T−1 under zero DC-field (E) and under 1,000 Oe (F) for
complex 1, where the red solid line represents the fitted results using the Arrhenius formula and the green solid line represents the fitted results using Eq. 1.
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(Supplementary Figure S20). According to Eq. 2, the calculated
value of Jdip is 0.48 cm

−1. The calculation details are presented
in the Supplementary Material. The small Jdip value proves that
the magnetic interaction between neighboring Dy(III) ions is
too weak to influence the intrinsic magnetic properties of
complex 1.

CONCLUSION

MOF 1 was obtained based on Dy(III) ions, H2BCD and DMF,
which shows slow magnetic relaxation behaviour. Removing
the coordinated DMF molecules from MOF 1 by heating,
MOF 1a can be obtained. MOF 1a can be back to MOF 1
by being immersed into DMF solvent, which has been proved
by FT-IR, TGA, SXRD, PXRD and magnetic property. We
have proved that MOFs based on Dy(III) ions achieved
reversible on/off switching of SMM behaviour induced by
coordination DMF solvent molecules. This phenomenon
demonstrates that MOFs could be powerful platforms for
studying both the structural transformation and magnetic
properties.
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