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There is a need to satisfy the high color purity requirement of display technology with a
simply fabricated process. Herein, solution-processed blue thermally activated delayed
fluorescence organic light-emitting diodes (OLEDs) with a narrow spectrumwith a full width
at half maximum (FWHM) of 32 nm and y color coordinate below 0.2 are demonstrated by
employing a molecule containing boron and nitrogen atoms (TBN-TPA) as the guest
emitter in the emissive layer. The opposite resonance positions of B-N atoms of TBN-TPA
endows a multi-resonance effect, leading to high color purity.
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INTRODUCTION

Solution-processed organic light-emitting diodes (s-OLEDs) are regarded as one of the most
fascinating and competitive technologies for large-area and low-cost display panels and solid-state
lighting sources (Müller et al., 2003; So et al., 2008; Zhu et al., 2011; Sasabe and Kido, 2013; Zheng et al.,
2013; Xu et al., 2017a; Xu et al., 2019; Wang et al., 2020; Xu et al., 2021). Modern electronic products can
be easily manufactured by ink-jet printing or ‘roll-to-roll’ coating methods, akin to how newspapers are
produced. However, the current state-of-the-art OLEDs rely on physical vapor deposition, which leads to
high manufacturing costs and energy consumption (Kololuoma et al., 2004; Mauthner et al., 2008;
Sandström et al., 2012; Xu et al., 2016). The invention and application of thermally activated delayed
fluorescence (TADF) compounds as the emitters without precious metals (e.g., iridium, platinum,
rhenium, etc.), further facilitate more cost-effective OLED technology (Uoyama et al., 2012; Huang et al.,
2018; Xu et al., 2018). Blue color plays an important role as one of the three primary colors of OLEDs. A
novel concept for multi-resonance TADF (MR-TADF) was proposed by Hatakeyama et al. in 2016. The
reported TADF emitters show particular HOMO and LUMO distributions due to the rigid framework of
boron and nitrogen (B-N) atoms’ array, leading to the MR effect. This MR effect enhances the oscillating
strength between S1 and S0, generating a narrow full-width-at-half-maximum (FWHM) of 28 nm, showing
unexpected high color purity in TADF species (Hatakeyama et al., 2016). Then highly efficient blue MR-
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TADFmolecules were developed, showing an extremely high external
quantum efficiency (EQE) of up to 34.4% and a narrow FWHM of
14 nm (Kondo et al., 2019). However, blue MR-TADFmaterials with
high color purity are rarely applied in s-OLED. Therefore, it is
attractive to investigate blue MR-TADF materials aiming for a
solution process.

In this paper, solution-processed blue TADF OLEDs with a
narrow bandwidth have been demonstrated by applying a
molecule TBN-TPA (Liang et al., 2018) containing boron and
nitrogen (B-N) atoms. Our results provided new understanding
of the electroluminescence of blue MR-TADF emitter, which
would be beneficial to the development of solution-processed
OLED technology for high-performance displays.

EXPERIMENT DETAILS

The chemical structures of TBN-TPA and the energy level diagram of
the device are exhibited in Figures 1A,B, respectively. TBN-TPA was
synthesized according to the literature (Liang et al., 2018). 1,3-bis(9H-
carbazol-9-yl)benzene (mCP), 8-hydroxyquinolinolatolithium (Liq),
bis [2-(diphenyl-phosphino)phenyl]ether oxide (DPEPO), 1,3,5-tri
[(3-pyridyl)-phen-3-yl] benzene (TmPyPB), and 8-hydroxyquino
-linolatolithium (Liq) were purchased from Xi’an Polymer Light
Technology Corporation and used as received.

All the devices were fabricated on the glass substrate patterned
with the conducting indium-tin-oxide (ITO) anode with a sheet
resistance lower than 20Ω/square. Acetone and ethanol were
consecutively used to clean the ITO substrates in an ultrasonic
bath. The substrates were further dried with N2 flow. After
20min of ultraviolet light-ozone treatment, a modified PEDOT:
PSS (m-PEDOT:PSS) was spin-coated onto the ITO surface at
4,000 rpm (Xiang et al., 2019). Afterward, the substrate was baked
at 120°C for 10min in a glove box. TBN-TPA andmCP, respectively
as the guest and host of the emissivematerial layer (EML), sufficiently
dissolved in chlorobenzene solvent. Later, the corresponding EML
was spin coated at 1,000 rpm and then accompanied with a 50°C
baking process for 10min. The corresponding functional materials
and aluminum cathode were vacuum deposited step by step under
10−5 mbar. The actual device area defined by the crossover of the ITO
anode and the Al cathode was 2mm × 2.2 mm.

In this study, the OLEDs using the conventional mCP host
were fabricated while TBN-TPA with the B-N core-structure
containing a peripheral electron-donating carbazole unit was
applied as the blue guest. The structure of the devices is ITO/
m-PEDOT:PSS/TBN-TPA (5 wt%, 10 wt%, and 20 wt%): mCP/
DPEPO (10 nm)/TmPyPB (50 nm)/Liq (1 nm)/Al (100 nm). The
energy level diagram of the device is shown in Figure 1B.
m-PEDOT:PSS acts as the hole injection layer (HIL) (Xiang
et al., 2019). DPEPO serves as the exciton blocking layer with
a high triplet energy level over 3.0 eV, which helps to confine the
excitons in the emitting layer (Xu et al., 2017b). Liq and TmPyPB
are used as the electron injection layer (EIL) and electron
transporting layer (ETL), respectively.

The current density-voltage-luminance (J-V-L), the current
efficiency-luminance -power efficiency (CE-L-PE) characteristics,
the color coordinates, and the electroluminescence (EL) spectra
of the devices were measured and recorded by a computer-
controlled Keithley 2,400 Source Meter Unit and Photo
Research PR735 spectrometer. All measurements were carried
out at room temperature in ambient air.

RESULTS AND DISCUSSION

The devices A, B, and C were fabricated and tested in one flow
doping with different TBN-TPA concentrations i.e., 5 wt%, 10 wt
%, and 20 wt%, respectively. The J-V-L and CE-L-PE
characteristics are shown in Figures 2A,B, respectively. The
device performances of the blue TADF OLEDs with different
doping concentrations of TBN-TPA are summarized in Table 1.

The turn-on voltage of the s-OLEDwith TBN-TPA depended on
the increasing concentration of TBN-TPA. Under the same voltage,
the s-OLED with higher concentrations of TBN-TPA as emitter
showed lower current density (shown in Figure 2A). In contrast, the
current efficiency (CE), power efficiency (PE), and EQE increased as
the doping concentration increased, shown in Figure 2B and
Table 1. The device with 20 wt% TBN-TPA depicted the
maximum EQEs of 1.08% with narrow FWHM of 32 nm. The
performances of OLEDs with solution-processed TBN-TPA as blue
TADF emitter are much lower than those of the devices with
physical vapor deposition, which may be ascribed to the

FIGURE 1 | (A) The chemical structure of TBN-TPA. (B) Energy level diagrams of the devices.
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unsatisfactory film quality fabricated by spin-coating (Liang et al.,
2018; Tang et al., 2020). Solution-processed organic thin films are
generally of a lower quality than those fabricated by physical vapor
deposition. More morphological defects could be induced and thus
deteriorate charge transport properties and radiative decays in the
solution-processed devices. Therefore, it is reasonable that solution-

processed OLEDs generally exhibit lower EQEs compared with that
of vapor deposition OLEDs using the same emitter despite the
simple fabrication processing (Diao et al., 2014). Therefore, more
effort should be devoted to device engineering.

The EL spectrum and the chromaticity coordinates of the
devices with TBN-TPA are shown in Figures 3A,B. The two

FIGURE 2 | (A) Current density-voltage-luminance and (B) current efficiency-luminance-power efficiency characteristics of the devices.

TABLE 1 | The EL characteristics of blue TADF OLEDs.

Device Processing/
Host

Von
a

[V]
ELpeak
[nm]

CEmax
b

[cd A−1]
FWHMc

[nm]
PEmax

d

[lm W−1]
EQEmax

e

[%]
CIEf

[x, y]

A Solution/mCP 4.5 464 0.55 32 0.25 0.66 0.19,
0.14

B Solution/mCP 4.8 464 0.91 32 0.41 1.03 0.19,
0.15

C Solution/mCP 5.0 464 1.08 32 0.49 1.08 0.19,
0.19

aThe turn-on voltage recorded at a brightness of 1 cd m−2.
bMaximum value 2 of current efficiency.
cFull-width-at-half-maximum of the EL spectrum.
dPower efficiency.
eExternal quantum efficiency.
fCommission Internationale de l’Eclairage (CIE) coordinates.

FIGURE 3 | (A) The normalized EL spectra of devices and (B) the chromaticity coordinates of devices.
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peaks of the normalized EL spectra of the devices could be
determined, which originated from the blue TADF emitter
TBN-TPA and host mCP, respectively, peaking at 464 and
396 nm (shown in Figure 3A). This is attributed to the
inefficient host-guest energy transfer. As for the chromaticity
coordinates of the devices, the CIE (x,y) coordinates were
slightly changed with the y value below 0.2 in Figure 3B. As
the concentration of TBN-TPA increased from 5 to 20%, the
residual emission of the host mCP was gradually quenched by
TBN-TPA, which resulted in relatively higher EQEs, shown in
Table 1. Meanwhile, there exists some interfacial exciplex which
accounts for the emission band in the region of 600–700 nm.

CONCLUSION

In summary, we succeeded in employing blue TADF dye with the
narrow bandwidth in solution-processed OLED as the emitter to
realize high color purity. This technical route shows high value in
the development of solution-processed OLED display technology.
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