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The development of novel dithienylethene-based fluorescence switches in the

aggregated state, and the solid state is highly desirable for potential application in

the fields of optoelectronics and photopharmacology. In this contribution, three novel

triphenylethene-functionalized dithienylethenes (1–3) have been designed and prepared

by appending triphenylethene moieties at one end of dithienylethene unit. Their chemical

structures are confirmed by 1H NMR, 13C NMR, and HRMS (ESI). They display good

photochromic behaviors with excellent fatigue resistance upon irradiation with UV or

visible light in Tetrahydrofuran (THF) solution. Before irradiation with UV light, they

exhibit Aggregation Induced Emission (AIE) properties and luminescence behaviors in

the solid state. Moreover, upon alternating irradiation with UV/visible light, they display

effective fluorescent switching behaviors in the aggregated state and the solid state.

The experimental results have been validated by the Density Functional Theory (DFT)

calculations. Thus, they can be utilized as novel fluorescence switches integrated in

smart, solid-state optoelectronic materials and photopharmacology.

Keywords: dithienylethene, fluorescence switch, aggregation-induced emission, photochromism, triphenylethene

INTRODUCTION

In recent years, fluorescence switches have received increasing attention due to their potential
applications in super-resolution fluorescence microscopies and optical data storage (Irie
et al., 2002; Qiang et al., 2018; Yu et al., 2018). Generally, the elaboration of switch
systems combining photochromic unit and fluorescence groups can be modulated with
optical stimulations through intramolecular energy/electron transfer (Raymo and Tomasulo,
2005). Dithienylethene (DTE), a family of classic P-type-photochromic compounds, can be
reversibly transformed between ring-open and ring-closed isomers by photoirradiation, which
is appealing for optical switching of fluorescence on account of high thermal stability,
rapid response, and fatigue resistance (Irie, 2000; Irie et al., 2000, 2014; Tian and Yang,
2004; Zhang et al., 2014; Pu et al., 2016; Yao et al., 2016; Lubbe et al., 2017; Zhang
and Tian, 2018; Li et al., 2019a; Li Z. et al., 2020). In recent years, great progress has
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GRAPHICAL ABSTRACT | They displayed effective fluorescent switching behaviors in the aggregated state and solid state.

been made in the fluorescence switches-based dithienylethene
unit (Myles et al., 2010; Fukaminato et al., 2011; Uno et al.,
2011; Li et al., 2014; Yao et al., 2016). However, most normal
fluorophores suffer from fluorescence weakening or quenching
at high concentration or in the aggregated state, which is
known as “aggregation-caused quenching” (ACQ) caused by the
strong intermolecular π–π interaction or hydrogen bonding
between neighboring fluorophores (Cui et al., 2016; Ma et al.,
2018; Zhou et al., 2020), thus limiting applications of these
photoswitches in the optoelectronics and photopharmacology
in the future. Therefore, it will be highly desirable to
develop the aggregated/solid-state fluorescence switches for
potential applications.

Fortunately, Tang’s group discovered a novel class of
fluorophores with aggregation-induced emission (AIE) in 2001
(Luo et al., 2001), which is opposite to the conventional ACQ
phenomenon. This interesting phenomenon provides a new
direction to design organic fluorescent materials with more
widely and greater practical applications in the aggregated
state or the solid state (Ding et al., 2013; Mei et al., 2014;
Liang et al., 2015; Li et al., 2017; Li H. et al., 2020; Li X.
et al., 2020; Tian et al., 2020; Zang et al., 2021). To the
best of our knowledge, the most simplest approach to achieve
the aggregated/solid-state fluorescence switches is combining
the photochromic reaction of DTE and fluorescence of solid
emitters (such as naphthalimide (Wang et al., 2006; Jiang
et al., 2007, 2009), perylene bisimide (Fukaminato et al., 2011;
Berberich et al., 2012; Li et al., 2014), tetraphenylethene (Li
et al., 2013; Dong et al., 2016; Ma et al., 2020), and cyano-
substituted ethylene (Lim et al., 2004, 2005; Wang et al., 2018)
to afford high-contrast fluorescence switches in the aggregated
or solid state. Recently, our group has developed a novel,
solid-state fluorescence switch triggered by blue light (460–
470 nm) and NIR light (7,600–770 nm), in which carbazole
and BF2bdk moieties are suspended on both sides of the
dithienylethene unit (Li et al., 2019c). However, we still know very
little about such aggregated/solid-state fluorescence switches.

Consequently, it is urgently necessary to develop novel DTE-
based fluorescence switches in the aggregated state and the
solid state for the practical application requirements. In addition
to the tetraphenylethene (TPE), the more readily available
triphenylethene (TriPE) is also a typical aggregation-induced-
emission active group. Herein, we have developed three novel
triphenylethene-functionalized dithienylethenes (1–3), as shown
in Scheme 1. And their photochromism, AIE properties, and
fluorescent switching behaviors in the aggregated state and the
solid state have been thoroughly investigated.

MATERIALS AND METHODS

Materials
Manipulation is carried out under a nitrogen atmosphere,
using standard Schlenk techniques unless otherwise stated.
THF was distilled under nitrogen from sodium-benzophenone.
The intermediates 4 (Lucas et al., 2003) and 5 (Dong et al.,
2016) are prepared by reported literature methods. All other
starting materials are obtained commercially as analytical-
grade and used without further purification. The cyclization
and cycloreversion quantum yields of dithienylethenes 1–3
are determined by comparing the reaction yield with the
known yield of the compound 2-bis(2-methyl-5-phenyl-3-
thienyl)perfluorocyclopentene (Irie et al., 2000).

Instruments
1H and 13C NMR spectra are collected on German BRUKER
AVANCE III 400 MHz (all the chemical shifts are relative to
TMS). High-resolution mass spectra are obtained on SCIEX X-
500R QTOF (ESI mode). All the absorption spectra are collected
on a SHIMADZU UV-2600 UV-Vis spectrophotometer. In the
photochromic experiments, UV light irradiation (254 nm) is
carried out, using a ZF5UV lamp; and visible light is irradiated,
using an LZG 220V 500W tungsten lamp (λ > 402 nm) with
cut-off filters.
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SCHEME 1 | Synthetic route and photochromism of dithienylethenes 1–3.

Synthesis of Dithienylethenes 1–3
To a solution of 5 (548mg, 1 mmol) in anhydrous THF (10ml),
n-BuLi (0.4ml of 2.5M solution in hexane, 1 mmol) is slowly
added under N2 in an ice bath and stirred for 1 h at 0◦C. Then
B(OBu)3 (0.41ml, 1.5 mmol) is added to the above solution
and stirred for 6 h at room temperature. Then, the resultant
reddish solution is added dropwise to a solution, containing
bromobenzene (156mg, 1mmol), Pd(PPh3)4 (25mg, 0.02mmol)
in THF (10ml) and Na2CO3 (2M, 10ml) at 60◦C. The mixture
is refluxed for 16 h under N2. The reaction solution is cooled to
room temperature and extracted with ethyl acetate (3 × 20ml),
and the combined organic layer is washed with the saturated
brine (2 × 20ml). The organic layer is dried over Na2SO4,
filtered and concentrated under reduced pressure. The residue
is purified by column chromatography (silica gel: 200–300, PE)
to afford dithienylethene 1 as a light yellow solid (Yield: 66%).
1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.6Hz, 2H), 7.35
(t, J = 7.6Hz, 2H), 7.23 (br, 6H), 7.11–7.08 (m, 5H), 7.03–
7.01 (m, 3H), 6.96–6.93 (m, 3H), 6.28 (s, 1H), 2.73 (t, J =

6.3Hz, 2H), 2.54 (d, J = 6.4Hz, 2H), 1.98–1.94 (m, 2H), 1.92
(s, 3H), 1.78 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 143.69,
143.28, 142.93, 141.76, 139.98, 139.42, 136.66, 135.65, 134.95,
134.7, 134.57, 134.21, 134.04, 133.99, 131.24, 130.97, 130.94,
130.8, 128.73, 128.2, 127.56, 127.44, 126.97, 126.89, 126.75,
126.13, 125.29, 124.04, 38.36, 38.31, 22.86, 14.56, 14.16.HRMS
(ESI-TOF) m/z: [M + H]+Calcd. for C41H35S

+

2 591.218;
found 591.2152.

Dithienylethene 2 is synthesized by an analogous method to
dithienylethene 1 as a yellow solid (yield: 71%). 1H NMR (400
MHz, CDCl3) δ 7.61–7.56 (m, 3H), 7.24 (br, 6H), 7.12–7.07 (m,
5H), 7.01 (br, 4H), 6.95–6.93 (m, 2H), 6.26 (s, 1H), 2.73 (t, J =
7.2Hz, 2H), 2.56 (t, J = 7.2Hz, 2H), 1.99–1.91 (m, 2H), 1.94 (s,
3H), 1.78 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 143.84, 143.39,
143.08, 142.09, 140.29, 138.09, 137.81, 137.29, 136.06, 135.80,
135.44, 134.99, 134.23, 134.13, 133.77, 131.38, 131.09, 130.97,

128.92, 128.39, 127.75, 127.64, 127.18, 126.95, 126.35, 125.94,
125.9, 125.67, 125.39, 38.49, 38.45, 23.01, 14.77, 14.31.HRMS
(ESI-TOF) m/z: [M + H]+Calcd. for C42H34F3S

+

2 659.2054;
found 659.2031.

Dithienylethene3 is synthesized by an analogous method to
dithienylethene 1 as a yellow solid (yield: 63%). 1H NMR (400
MHz, CDCl3) δ 7.42 (d, J = 8.7Hz, 2H), 7.25 (br, 5H), 7.12–
7.08 (m, 5H), 7.02 (br, 3H), 6.95–6.88 (m, 4H), 6.82 (s, 1H),
6.28 (s, 1H), 3.83 (s, 3H), 2.72 (t, J = 7.2Hz, 2H), 2.55 (t, J
= 7.1Hz, 2H), 1.98–1.92 (m, 2H), 1.90 (s, 3H), 1.77 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 158.69, 143.66, 143.26, 142.89,
141.65, 139.85, 139.26, 136.47, 135.6, 134.98, 134.46, 134.03,
133.99, 133.12, 131.25, 131, 130.95, 130.8, 128.2, 127.55, 127.43,
126.97, 126.75, 126.52, 126.11, 122.89, 114.09, 55.34, 38.34, 38.26,
22.8, 14.5, 14.18. HRMS (ESI-TOF) m/z: [M + H]+Calcd. for
C42H37OS

+

2 621.2286; found 621.2279.

RESULTS AND DISCUSSIONS

Photochromic Properties in Solution
Firstly, photochromic properties of the triphenylethene-
functionalized dithienylethene 1–3 are investigated upon
alternating irradiation with 254 nm UV light and visible light
(>402 nm) in THF, which undergo photoisomerization between
the open form and the closed form (Scheme 1). As depicted in
Figure 1A, the absorption maximum of ring-open isomer 1 (o)

in THF is observed at 260 nm (ε = 6.58 × 104 M−1cm−1) as a
result of a π–π∗ transition (Li et al., 2008). Upon irradiation
with 254 nm UV light, a new absorption band at 540 nm (ε =

0.81 × 104 M−1cm−1) appears along with an obvious color
change from colorless to pink as a result of the formation
of the corresponding ring-closed isomer 1 (c) (Scheme 1).
Moreover, an obvious isosbestic point that appears at 323 nm is
observed, which indicates a clean photochemical transformation
between the open isomer 1 (o) and closed isomer1 (c)because
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FIGURE 1 | Absorption spectral changes of dithienylethenes 1–3 with 254 nm UV and >402 nm Vis light irradiation in THF (2 × 10−5 mol/L), (A) spectral changes for

1 (0–395 s for cyclization, irradiation interval: 5 s; 0–650 s for cycloreversion, irradiation interval: 10 s); (B) spectral changes for 2 (0–110 s for cyclization, irradiation

interval: 5 s; 0–195 s for cycloreversion, irradiation interval: 10 s); (C) spectral changes for 3 (0–85 s for cyclization, irradiation interval: 5 s; 0–125 s for cycloreversion,

irradiation interval: 10 s); (D) the optical response rate monitored at the maximum absorption wavelength in the visible region for ring-closed isomers 1c–3c.

TABLE 1 | Photochromic parameters of dithienylethenes 1–3 in THF (2 × 10−5 M) and emission data in the aggregated and powder states.

Compounds λmaxa (nm) (ε × 104, M−1cm−1) λmax b (nm) (ε × 104, M−1cm−1) φo-cc φ c-od λ eme (nm) λemf (nm)

(Open) (PSS)

1 260 (6.58) 540 (0.81) 0.13 0.0074 495 493

2 268 (2.51) 552 (0.63) 0.25 0.0079 491 487

3 262 (5.03) 538 (0.69) 0.34 0.0084 494 490

aAbsorption maxima of ring-open isomers.
bAbsorption maxima of ring-closed isomers.
cThe cyclization quantum yields (φc−o).
dThe cycloreversion quantum yields (φo−c).
eEmission maxima of ring-open isomers in the aggregated state.
fEmission maxima of ring-open isomers in the powder state, respectively.

isosbestic point generally means the coexistence of both open
and closed forms. Upon irradiation with >402 nm visible
light, the pink closed isomer 1 (c) performs a cycloreversion
reaction to form the initial colorless open isomer. Particularly,
good reversibility for photochromism can be observed upon
alternating photoirradiation into the ring-open and ring-closed

isomers of dithienylethene 1 (Supplementary Figure 1). The
cyclization and cycloreversion quantum yields of 1 in THF are.13
(φo−c) and 0.0074 (φc−o) (Table 1), respectively.

Similar photochromic behaviors are observed when THF
solutions of 2 and 3 are exposed to 254 nm UV light and
>402 nm visible light, respectively, as illustrated in Figures 1B,C,
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FIGURE 2 | Fluorescence spectra of dithienylethenes 1–3 in different H2O/THF (v/v)-mixed solutions (2 × 10−5 mol/L) (A,C,E); the dependence of the fluorescence

emission intensity on the water fraction (fw ) (Insert: photographs of dithienylethenes 1–3 in 0% and 90% water solutions under 365 nm UV light (B,D,F), (A,B) for

dithienylethene 1; (C,D) for dithienylethene 2; (E,F) for dithienylethene 3.

Supplementary Figures 2, 3. Moreover, their optical response
rates into luene are sequenced in the following order in 3 >

2 > 1 (Figure 1D), implying that 3 and 2 can achieve the
photo stationary state more efficiently than analog 1 without
substitution. The data from Table 1 revealed that different
substituent groups have a slight effect on their photochromic
properties, mainly including the absorption maximum and
quantum yields of cyclization and cycloreversion reactions. For
dithienylethene 2 with the trifluoromethyl group, the maximum
absorption wavelengths of ring-open isomer [268 nm for 2

(o)] and ring-closed isomer [552 nm for 2 (c)] display a

distinct bathochromic shift compared with those of 1a without
substitution and 3with the OCH3 group, which can be attributed
to the fact that the –CF3 group can reduce the HOMO–LUMO
energy gap for the open and closed isomers. As expected, their
cyclization quantum yields (φo−c) are much higher than their
respective cycloreversion quantum yields (φc−o), which is in
accordance with other reported photochromic dithienylethenes
(Li et al., 2019b,d,e). Moreover, φo−c and φc−o of dithienylethene
3, with the OCH3 group, are higher compared with those of 1
and 2, for example, φo−c = 0.34, φc−o = 0.0084 for 3, φo−c

= 0.13, φc−o = 0.0074 for 1, φo−c = 0.25, φc−o = 0.0079
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FIGURE 3 | Fluorescence spectra changes of dithienylethene 1 in the mixtures of H2O/THF (fw = 90%) (2 × 10−5 mol/L) upon alternating irradiation with UV light

(0–300 s for the fluorescent-off state, irradiation interval: 30 s) at 254 nm and visible light at >402 nm (0–450 s for the fluorescent-on state, irradiation interval: 50), (A)

(Inset) Corresponding fluorescent color changes upon photoirradiation in the powder state; reversible fluorescence switching for 1 in the mixtures of H2O/THF (fw =

90%) (2 × 10−5 mol/L), measured at 495 nm upon alternating irradiation with UV light at 254 nm and visible light at >402 nm (B).

FIGURE 4 | Fluorescence spectra changes of dithienylethenes 1–3 in the solid state upon alternating irradiation with UV light at 365 nm and visible light at >402 nm,

(A) spectral changes for 1 (0–800 s for the fluorescent-off state, irradiation interval: 40 s; 0–1,200 s for the fluorescent-on state, irradiation interval: 60 s); (B) spectral

changes for 2 (0–560 s for the fluorescent-off state, irradiation interval: 40 s; 0–960 s for the fluorescent-on state, irradiation interval: 60 s); (C) spectral changes for 3

(0–480 s for the fluorescent-off state, irradiation interval: 40 s; 0–720 s for the fluorescent-on state, irradiation interval: 60 s); (D) fluorescence emission spectra of

ring-open isomers 1o−3o in the solid state. (Inset) Corresponding fluorescent color changes upon photoirradiation in the powder state.
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FIGURE 5 | Optimized ground-state geometry of dithienylethenes 1–3 based on DFT calculations at the B3LYP/6-31G* level by using the Gaussian 09 program, (A)

ring-open isomer 1 (o); (B) ring-closed isomer 1 (c); (C) ring-open isomer 2 (o); (D) ring-closed isomer 2 (c); (E) ring-open isomer 3 (o); (F) ring-closed isomer 3 (c).

for 2. Accordingly, 2 and 3 display much better photochromic
properties than 1 without substitution.

AIE Properties of Dithienylethenes 1–3
Subsequently, the AIE properties of these triphenylethene-
functionalized dithienylethenes (1–3) are explored before
irradiation with UV light at 254 nm. As illustrated in Figure 2A,
the open form 1 (o) displays almost no emission in pure THF
solution, meaning the three phenyl rings o nTriPE moieties can
effectively dissipate the excited-state energy via intramolecular
rotations. The emission spectra remain almost constant when
the water fraction (fw) gradually increased from 0 to 70%. As fw
further increases, the fluorescent emission intensity at 495 nm
is enhanced and reaches its maximum when fwis 90%, which
is accompanied by green fluorescence (Figure 2B). We think
the main reason for this phenomenon is that the propeller-
shaped triphenylethene moieties with non-planarity prevent
intermolecular π-π stacking interactions in the aggregate state,
and thus blocking the non-radiative decay channels. Similar
fluorescence enhancement for dithienylethenes 2 and 3 is
observed with the water fraction increased from 0 to 90%
(Figures 2C–F). In addition, the maximum emission wavelength
of dithienylethenes 1−3 are at 495, 491, and 494 nm, respectively,
which indicates that various substituents seem to slightly impact
the emission of triPE moieties, which may be due to the longer
distance between the substituent group and the TriPE fragment.
Therefore, these results imply that all the dithienylethenes display
obvious AIE properties in the mixture of THF/H2O.

As shown in Figure 1, the broad absorption peaks for the
closed form 1(c)−3(c) are at the regions of 417–650, 440–68, and

435–662 nm, respectively. Meanwhile, the maximum emission
wavelength of these dithienylethenes is at 495, 491, and 494 nm
in the mixtures of H2O/THF (fw = 90%), respectively (Figure 2),
which are overlapped with the absorption peaks for closed
isomers. Thus, the emission may be quenched for the energy
transfer from the excited TriPE segment to the ring-closed
dithienylethene skeleton (Kawai et al., 2001; Wong et al., 2017).
As we speculated, upon irradiation with 254 nm UV light, the
emission intensity at 495 nm for 1 in the mixtures of H2O/THF
(fw = 90%) gradually decreases, which is accompanied by
obvious fading of the green fluorescence due to the formation
of the corresponding closed isomer (Figure 3A). The original
emission could be restored upon irradiation with >402 nm
visible light. Furthermore, good fatigue resistance in the mixtures
of H2O/THF (fw = 90%) is also observed from the view
of the fluorescence-switching cycle (Figure 3B). Thus, these
compounds display an excellent fluorescent-switching behavior
when irradiated with UV/Vis light in the aggregated state.

Fluorescent-Switching Behaviors in the
Solid State
For many applications, especially those that facilitate device
integration, the fluorescence switch is ideal for being able to
trigger effectively on solid or solid supports (Cheng et al.,
2015; Lehr et al., 2015). Next, we further investigate the
fluorescent-switching behaviors of these dithienylethenes in
the powder state. As displayed in Figure 4A, Table 1, 1 (o)

in the powder state emits strong green fluorescence at λem

= 493 nm, which implies a negligible hypochromatic shift,
compared to that in the aggregated state (495 nm). Furthermore,
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FIGURE 6 | Frontier molecular orbital profiles of dithienylethenes 1–3 based on DFT calculations at the B3LYP/6-31G* level by using the Gaussian 09 program, (A)

ring-open isomer 1 (o); (B) ring-closed isomer 1 (c); (C) ring-open isomer 2 (o); (D) ring-closed isomer 2 (c); (E) ring-open isomer 3 (o); (F) ring-closed isomer 3 (c).

3 with OCH3 group displays the strongest emission intensity
than those of its analogs 1 and 2. Similar to that, for the
aggregated state, dithienylethene 1 exhibits the efficient- and
reversible-fluorescence “on–off” process in the powder state
upon alternating irradiation with 365 nm UV light and visible
light at >402 nm. Similar fluorescent-switching behaviors are
also observed when the powder state of 2 and 3 is exposed
to 254 nm UV light and >402 nm visible light, respectively,
as illustrated in Figures 4B–D. Thus, they can be utilized as
a novel fluorescence switch integrated with smart, solid-state
optoelectronic materials.

Theoretical Calculations
To further gain an insight into the relationships between the
electronic properties and photoreactivity of 1–3, their ground-
state geometry and electron density are calculated by density
functional theory (DFT) in Gaussian 09 B3LYP/6-31G∗ level
(Ditchfield, 1971; Becke, 1993; Frisch et al., 2009). As illustrated
in Figure 5A, the energy-minimized structure of 1 (o) displays
a classical antiparallel conformation, in which triphenylethene
moieties attached to the adjacent thiophene group show a
propeller configuration. Moreover, the HOMO orbital energy
of 1 (o) is localized around the triPE and DTE moieties, while
its LUMO is mainly distributed over the triPE group due to its

poor planarity (Figure 6A). Thus, the results further confirm its
AIE properties and luminescence behaviors in the solid state
in the experiments, which is mainly because the propeller-
shaped triphenylethene moieties with non-planarity can block
intermolecular π–π stacking interactions in the aggregate state
and the solid state. In addition to the triPE group, the closed
isomer 1 (c) presents an almost planar conjugated structure
(Figure 5B), in which the HOMO is mainly distributed in the
DTE center while its LUMO is nearly on the whole molecular
skeleton (Figure 6B). As expected, compared with 1 (o) (3.7 eV),
1 (c) displayed a narrower energy band gap (2.44 eV) due
to the extended π-conjugation. For the CF3/OCH3-substituted
dithienylethenes 2 and 3, analogically optimized structures and
electron distributions for open and closed forms are observed
(Figures 5C–F, 6C–F). Thus, the DFT calculations further
validate the above experimental results.

CONCLUSIONS

In summary, we successfully have developed three novel
triphenylethene-functionalized dithienylethenes by introducing
triphenylethene moieties at the termini of dithienylethene unit,
in which the triPE group functions as an AIE active fragment.
They display good photochromic behaviors with excellent
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fatigue resistance upon irradiation with UV (254 nm) or visible
light (>402 nm) in THF solution. And it has been found
out that different substituent groups have a slight effect on
their photochromic properties, mainly including the absorption
maximum and quantum yields of cyclization and cycloreversion
reactions. Moreover, these compounds exhibit AIE properties
and luminescence behaviors in the solid state before irradiation
with UV light. Upon alternating irradiation with UV/visible
light, they display effective fluorescent-switching behaviors in the
aggregated state and the solid state. The experimental results have
been validated by the DFT calculations. Thus, they can be utilized
as novel fluorescence switches for potential application in the
fields of optoelectronics and photopharmacology.
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