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A4K14-citropin 1.1 is a structurally optimized derivative derived from amphibians’

skin secreta peptide Citropin, which exhibits broad biological activities. However, the

application of A4K14-citropin 1.1 as a cancer therapeutic is restricted by its structural

flexibility. In this study, a series of all-hydrocarbon stapled peptides derivatives of

A4K14-citropin 1.1 were designed and synthesized, and their chemical and biological

characteristics were also investigated. Among them, A4K14-citropin 1.1-Sp1 and

A4K14-citropin 1.1-Sp4 displayed improved helicity levels, greater protease stability, and

increased antitumor activity compared with the original peptide, which establishes them

as promising lead compounds for novel cancer therapeutics development. These results

revealed the important influence of all-hydrocarbon stapling side chain on the secondary

structure, hydrolase stability, and biological activity of A4K14-citropin 1.1.

Keywords: A4K14-citropin 1.1, all-hydrocarbon stapled peptides, anti-tumor activity, peptidomimetic, animal toxin

INTRODUCTION

Malignant tumors are one of leading causes of death worldwide investigated by the World Health
Organization (WHO) (Murray and Lopez, 2013). There weremore than 12million cancer cases and
7 million cancer deaths occurring in both male and female individuals in 2008 worldwide; the same
numbers reached 15 and 8.8 million, respectively, in 2015 (Torre et al., 2011). Cancer has, therefore,
become a major public health issue and a leading cause of human mortality (Kobayashi et al., 2002;
Ross and Small, 2002; Tong et al., 2018). While small-molecule anticancer drugs have achieved
a certain effect, the application of chemotherapy is restricted by a large number of side effects,
for example, liver, kidney, and gastrointestinal toxicity; hair loss; diarrhea; breathing troubles;
and respiratory difficulties (Lee et al., 2013). Because of their interesting chemical structures and
extensive biological activity, peptides have attracted a significant amount of attention (Henninot
et al., 2018).

The antimicrobial peptide (AMP) belongs to the membrane-active peptides family
that exhibits antibacterial, antitumor, antiviral, and other biological activities due to
its cell membrane perforating ability that destroys the structure of the cell membrane
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and then causes intracellular material leaking out and ultimate
cell death (Lohner, 2017). Citropin (GLFDVIKKVASVIGGL),
obtained from amphibians’ skin secreta, is an α-helix
containing 16-residue AMP. A previous study showed
that Citropin exhibits broad biological activities such as
antibacterial, antitumor, and neuronal nitric oxide synthase
(nNOS) inhibition. In a structure activity relationships
(SAR) study, Bowie and his team found that replacement
of Asp4 and Gly14 with Ala and Lys (termed A4K14-
citropin 1.1) resulted in a more stable α-helix than Citropin
on the C-terminal section, and it led to better biological
activities (Doyle et al., 2003). Hence, A4K14-citropin 1.1
(GLFAVIKKVASVIKGL) has become a potential antitumor
leading compound. However, linear peptides hardly retain
their native conformation and binding capability owing
to their poor structural reinforcement, and they cannot
resist proteolytic degradation and cross the cell membrane,
which were closely related to AMP’s biological activity
because of their cell-membrane hole-punching mechanism
(Marr et al., 2006; Mourtada et al., 2019). Therefore, a linear
peptide itself is a poor therapeutic candidate.

It was reported that increased helicity, hydrophobicity, and
penetrating ability of AMP within a certain range could improve
their biological activity (Pouny et al., 1992; Dathe et al., 1997;
Wieprecht et al., 1997; Dathe and Wieprecht, 1999; Avrahami
and Shai, 2002; Shang et al., 2012). For these reasons, we
believe that synthetic methods reinforcing their native α-helix
conformation, thereby restoring binding affinity, is an effective
strategy for AMP optimization. Among these methods, peptide
stapling is one of the most established ones for generating α-
helices. The macrocyclization process could improve structural
rigidity and reinforce the desired α-helical conformation of the
peptide, resulting in enhanced protease resistance and improved
cell-penetrating ability (Cui et al., 2013; Mortensen et al., 2019;
Kannan et al., 2020; Li et al., 2020). Besides, the aliphatic side
chain could effectively improve the structural hydrophobicity of
peptides. All-hydrocarbon stapled peptides, which involve the
ring-closing metathesis of olefin-bearing amino acids developed
by Verdine et al., have made the greatest influence on this
field so far (Schafmeister et al., 2000). The literature is replete
with reports that an all-hydrocarbon stapled strategy is an
effective method for peptidomimetics development (Bird et al.,
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2010; Chapuis et al., 2012; Walensky and Bird, 2014; Liu
et al., 2020). In the work reported herein, various derivatives
using all-hydrocarbon peptide-stapled strategy were designed
and synthesized to increase the cell permeability, membrane
aggregation, protease stability, structural hydrophobicity, and
antitumor activity of A4K14-citropin 1.1.

EXPERIMENTAL SECTION

General Information
Trifluoracetic acid (TFA), N,N-diisopropylethylamine
(DIPEA), O-(6-chloro-1-hydrocibenzotrizol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HCTU),
dichloroethane, first-generation Grubbs’ reagent, phenol,
triisopropylsilane (TIPS), and diethyl ether were purchased
from Acros, TCI, Adamas. All Fmoc-protected amino acids
were bought from GL Biochem Shanghai Co. Ltd. Rink amide
resin (loading 0.15 mmol/g) was purchased from Tianjin
Nankai Hecheng S&T Co., Ltd. Dichloromethane (DCM),
dichloroethane (DCE), N,N-dimethylformamide (DMF), and
acetonitrile used were bought from Sinopharm Chemical
Reagent Co. Ltd. Peptides were analyzed and purified by reverse
phase high-performance liquid chromatography (HPLC) (RP-
HPLC, Shimadzu) using C18 column. The solvent systems were
buffer A (0.1% TFA in CH3CN) and buffer B (0.1% TFA in water).
High-resolution mass spectra (HR-MS) were measured on a
Waters Xevo G2 QTOF mass spectrometer. Circular dichroism
data were recorded using a JASCO J-820 spectropolarimeter
(JASCO Corp., Ltd).

General Procedures for the Fmoc
Solid-Phase Peptide Synthesis
Peptides were synthesized with Fmoc solid-phase peptide
synthesis (SPPS) on rink amide resin (initial loading = 0.15
mmol) manually. Fmoc deprotection was realized using 20%
piperidine in DMF for 10min at room temperature. Amino acids
(0.45 mmol) coupling was carried out by HCTU (0.45 mmol)
and DIPEA (1.35 mmol) in DMF solution for 30min at room
temperature. Olefin metathesis reaction was realized using first
generation Grubbs’ reagent (0.45 mmol) in dry dichloroethane
solution for 4 h at room temperature. Peptides cleavage was
carried out by B cocktail (TFA/TIPS/phenol/H2O = 88:5:5:2,
v/v/v/v) for 2 h at room temperature. Then, the cleavage cocktail
was collected, and the chilled diethyl ether was added. The
resulting crude peptide was analyzed and purified by RP-HPLC.

A4K14-Citropin1.1

169mg, 67% yield. HR-MS m/z calcd. for C81H142N20O18

1,683.0811; found [M+2H]2+ = 842.5535; [M+3H]3+

= 562.3758.
A4K14-Citropin1.1-Sp1

161mg, 63% yield. HR-MS m/z calcd. for C83H142N20O18

1,707.0811; found [M+2H]2+ = 855.0585; [M+3H]3+

= 570.0455.
A4K14-Citropin1.1-Sp2

161mg, 62% yield. HR-MS m/z calcd. for C85H146N20O18

1,735.1124; found [M+2H]2+ = 869.0642; [M+3H]3+

= 579.7188.

A4K14-Citropin1.1-Sp3

186mg, 71% yield. HR-MS m/z calcd. for C86H148N20O18

1,749.1280; found [M+2H]2+ = 876.0834; [M+3H]3+

= 584.4036.
A4K14-Citropin1.1-Sp4

170mg, 66% yield. HR-MS m/z calcd. for C84H144N20O18

1,721.0967; found [M+2H]2+ = 862.0619; [M+3H]3+

= 575.0512.
A4K14-Citropin1.1-Sp5

166mg, 62% yield. HR-MS m/z calcd. for C90H156N20O17

1,789.1957; found [M+2H]2+ = 896.1107; [M+3H]3+

= 597.7472.
A4K14-Citropin1.1-Sp6

166mg, 63% yield. HR-MS m/z calcd. for C87H150N20O18

1,763.1437; found [M+2H]2+ = 883.0813; [M+3H]3+

= 589.0584.
A4K14-Citropin1.1-Sp7

162mg, 62% yield. HR-MS m/z calcd. for C86H148N20O18

1,749.1280; found [M+2H]2+ = 875.5751; [M+3H]3+

= 584.0531.

Protease Stability Experiment
Fifty microliters peptides in dimethyl sulfoxide (DMSO) (1mM)
and 1,950 µl α-chymotrypsin in phosphate-buffered saline (PBS)
(0.5 ng/µl, pH 7.4, containing 2mM CaCl2) were mixed and
incubated at 37◦C. After 0, 1, 2, 4, 8, and 12 h, the percent residual
peptide was monitored by HPLC.

CD Spectroscopy Study
Peptides in 50% 2,2,2-trifluoroethanol (TFE) aqueous solution
(0.1 mg/ml) were recorded at 20◦C in a quartz cell of 10mm
path length. Percent helicity was calculated by the follow equation
(Wang et al., 2006):

α =
[θ]222

[θ]max
× 100% (1)

[θ]222 is the molar ellipticity of 222 nm; [θ]max = (−44,000 +

250T)(1 – k/n), k = 4, where n is the numbers of amino acids
and T= 20◦C.

Cell Culture and Cell Viability Assay
The human prostate cancer cell line C4-2B was kindly provided
and authenticated by Dr. Leland Chung (Cedars-Sinai Medical
Center, Los Angeles, CA, USA). The human lung tumor cell
line A549, the human breast tumor cell line MCF-7, and
glioma cell line U87 were obtained from Shanghai Cellular
Institute of Chinese Academy of Sciences (Shanghai, China).
All cell lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) involving 10% fetal bovine serum (FBS) and
1% penicillin–streptomycin (PS) (complete DMEM) and was
cultured at 37◦C with humidified atmosphere of 5% CO2. Cell
viability was examined using the cell counting kit (CCK-8) in
accordance with manufacturer’s protocol. Cells were seeded in
96-well culture plates at a density of 3 × 103 cells/well at 37◦C
for 24 h. Next day, cells were treated without or with various
concentrations (0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, and 50µM)
of peptides for 96 h after which 10µl of CCK-8 reagent was added
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FIGURE 1 | Structures of A4K14-citropin 1.1 and stapled derivatives. The key residues are colored red, and S5/S5 and R8/S5 were cross-linked by ring-closing

metathesis (RCM).

to each well and incubated for further 2 h at 37◦C. The optical
density (OD) was then measured at a wavelength of 450 nm on
a Cell Imaging Multi-Mode Reader (BioTek, Vermont, USA),
and the average OD values for each sample were analyzed using
Image-J software (NIH, Bethesda, MD, USA). The half maximal
inhibitory concentration (IC50) was calculated by GraphPad
Prism v7.0 software (San Diego, CA, USA).

Scratch-Wound Healing Assay
A549 cell line was allowed to grow until a confluent monolayer
was observed. After being serum starved overnight, using a
sterilized micropipette tip, a linear scratch wound was created
across the diameter of the well, splitting the cell monolayer
in two. Cellular debris was removed by gentle washing with
PBS. The remains were then incubated with fresh low-serum
(2% FBS) DMEM without or with 5µM of A4K14-citropin 1.1
or A4K14-citropin 1.1-Sp4. Immediately, phase contrast images
were captured for each scratch wound and used as starting
reference point (day 0). Further phase contrast images were
captured 1 and 2 days after peptides treatment. The reduction in
the scratch-wound area was calculated.

Transwell Migration Assay
The effect of A4K14-citropin 1.1 upon cancer cells migrating was
evaluated using the Transwell permeable support filters (8µm
pore size, 12-well format; Corning Inc., Corning, NY, USA).
Briefly, 6 × 104 cells/well of A549 cells were seeded into the
upper chamber of the Transwell inserts in low-serum (2% FBS)
DMEM with the concentration of 0 or 5µM of A4K14-citropin
1.1 or A4K14-citropin 1.1-Sp4. Next, the lower chambers were
full of complete DMEM and cells incubated at 37◦C for 24 h.
Finally, cells in the upper chamber inserts were gently washed
with PBS twice and gently wiped with cotton swabs to remove
nonmigrating cells. Migrated cells were washed briefly, fixed, and
subsequently dyed and counted.

RESULTS AND DISCUSSION

Design of Stapled A4K14-Citropin 1.1
Peptides
To design all-hydrocarbon peptidomimetics of A4K14-citropin
1.1, modification of the key residues that are significant for
biological activities of A4K14-citropin 1.1 should be avoided.
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SCHEME 1 | Synthesis route of A4K14-citropin 1.1-Sp1. (a) (i) 20% piperdine/DMF, 20min, rt; (ii) pyridine/Ac2O (1:1, v/v), 20min, rt; (b) first generation Grubbs’

reagent, DCE, 2 h, rt; (c) TFA/TIPS/phenol/H2O = 88:5:5:2, v/v/v/v, 2 h, rt, 63%.

According to a previous study, Gly1, Phe3, Ala4, Lys7, and Leu16
are necessary to remain its biological activities, so in this work,
these residues were left intact and A4K14-citropin 1.1-Sp1-5
was designed by introducing (S)-2-(4-pentenyl) alanine amino
acid (S5) with an i + 4 strategy. Additionally, (R)-2-(7-octenyl)
alanine amino acid (R8) and (S)-2-(4-pentenyl) alanine amino
acid (S5) were incorporated at the i and i + 7 positions to obtain
A4K14-citropin 1.1-Sp6-7 (Figure 1).

Synthesis and Characterization of Stapled
A4K14-Citropin 1.1 Peptides
The synthesis of stapled peptides was started from the rink
amide AM resin (loading = 0.33 mmol/g) as shown in
Scheme 1. Normal amino acids, Fmoc-(S)-2-(4-pentenyl)Ala-
OH (Fmoc-S5-OH) and Fmoc-(R)-2-(7-octenyl)Ala-OH (Fmoc-
R8-OH), were introduced into the peptide backbone on resin
using HCTU as the coupling reagent to provide Fmoc-protected
on-resin peptide 1. After Fmoc deprotection and N-terminal
acetylation, intramolecular macrocyclization of on-resin peptide

2 was successfully accomplished with the first-generation Grubbs’
reagent in DCE solution to obtain the on-resin stapled peptide
3. Finally, acidic cleavage and concomitant global deprotection
using reagent B (TFA/TIPs/phenol/water = 88:5:5:2, v/v/v/v)
yielded the crude target peptidomimetic A4K14-citropin 1.1-Sp1.
Further analysis and purification were achieved by RP-HPLC.
Crude products could be easily purified to more than 95% purity,

and the yields ranged from 60 to 75%. Then, all of the molecular

weights were confirmed by HR-MS and were identical to the
theoretical molecular mass.

Helicity Degree and Protease Stability
Analysis of Stapled A4K14-Citropin 1.1
Peptides
The secondary structure of these stapled peptides was measured
by circular dichroism (CD). CD analysis indicates that the helicity
of initial A4K14-citropin 1.1 was 61.5% and that of the stapled
peptides ranged from 13.6 to 89.8% (Figure 2 and Table 1).
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FIGURE 2 | (A) The circular dichroism data of A4K14-citropin 1.1 and stapled derivatives. (B) Proteolytic stability of A4K14-citropin 1.1 and stapled derivatives under

α-chymotrypsin treatment.

TABLE 1 | α-Helicity, degradation half-life, and antitumor activity of A4K14-citropin 1.1 and stapled derivatives.

Peptide Helicity (%) t1/2 (h)a IC50 (µM)b

C4-2B A549 U87 MCF-7

A4K14-citropin1.1 61.5 0.63 29.05 14.97 14.8 14.16

A4K14-citropin1.1-1 89.8 >10 8.94 12.48 11.88 11.26

A4K14-citropin1.1-2 66.1 1.72 10.14 12.55 14.76 12.65

A4K14-citropin1.1-3 49.2 0.61 17.89 12.11 11.93 11.92

A4K14-citropin1.1-4 85.3 >10 8.90 10.51 7.277 10.49

A4K14-citropin1.1-5 49.4 1.83 11.90 9.899 8.229 12.42

A4K14-citropin1.1-6 34.9 0.57 35.84 30.19 34.49 23.78

A4K14-citropin1.1-7 13.6 0.58 10.23 16.37 14.72 12.1

aHydrolysis enzyme degradation half-life.
bHalf maximal inhibitory concentration.
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FIGURE 3 | Monolayer A549 cells were wounded using a sterilized micropipette tip subsequently treated with indicated concentration of A4K14-citropin 1.1 or

A4K14-citropin 1.1-Sp4 for 48 h; (A) the images of wound at each point were recorded. (B) The reduction in the scratch-wound area was calculated. (C) A549 cells

that had passed through the 8-µm polycarbonate membrane without the Matrigel following treatment with the indicated concentrations of A4K14-citropin 1.1 or

A4K14-citropin 1.1-Sp4 for 24 h. (D) Quantification analysis of the area of the migrated A549 cells. Scale bars: 100µm (Data are presented as the mean ± standard

deviation; n = 3; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. the control group).

These results suggested that peptide stapling strategy can
effectively optimize the helicity level compared with their linear
compartment if the all-hydrocarbon side chains were at the
proper position. Among them, A4K14-citropin 1.1-Sp1 and
A4K14-citropin 1.1-Sp4 displayed the top 2 degrees of helicity
(89.8 and 85.3%, respectively) in the aqueous solution and
acquired 1.46- and 1.38-fold improvements compared to A4K14-
citropin 1.1, respectively. A further protease stability experiment
was conducted using an α-chymotrypsin-mediated degradation
test. It was found that, after 12 h of protease exposure, A4K14-
citropin 1.1, A4K14-citropin 1.1-Sp2-3, and A4K14-citropin 1.1-
Sp5-7 were degraded completely, whilemore than 85% of A4K14-
citropin 1.1-Sp1 and A4K14-citropin 1.1-Sp4 remained intact,

suggesting greater protease stability over other peptides (Figure 2
and Table 1).

Antitumor Activity Test of Stapled
A4K14-Citropin 1.1 Peptides
After A4K14-citropin 1.1 and its analogs were synthesized,
their antitumor activities were tested using the CCK-8 test
with the human prostate cancer cell line C4-2B, the human
NSCLC cell line A549 (adenocarcinoma), the human breast
tumor cell line MCF-7, and the glioma cell line U87. The
results are summarized in Table 1. It was found that all of
the stapled peptides exhibited enhanced activity compared with
prototype peptide A4K14-citropin 1.1 (Table 1). Among them,
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A4K14-citropin 1.1-Sp4 exhibited the best inhibition activity.
For further study, we illustrated the inhibitions of A4K14-
citropin 1.1-Sp4 upon metastatic characteristic of malignant
lung cancer cells by the scratch-wound horizontal-migration
(Figures 3A,B) as well as the Transwell vertical-migration assays
(Figures 3B–D). In the scratch-wound horizontal-migration
assay, A549 cells treated with A4K14-citropin 1.1-Sp4 revealed
a better decreased ability to migrate across and close the scratch
wound. Similarly, in the Transwell vertical-migration assay, it
was found that A4K14-citropin 1.1-Sp4 had a better suppression
ability of A549 cells vertical migration than a prototypical
peptide at the same dose. Taking CD spectroscopy study and a
protease stability experiment into account, it was suggested that
protease resistance and stable spatial conformation, which were
successfully optimized by stapling strategy, were both significant
for the antitumor activity of A4K14-citropin 1.1 and its analogs.
Besides, the improved hydrophobicity provided by fatty chains is
another possible reason for increased activity.

CONCLUSIONS

In conclusion, a novel series of stapled A4K14-citropin 1.1
derivatives has been successfully realized in a satisfactory
yield via the standard SPPS strategy and olefin metathesis
macrocyclization. In vitro data suggested that the analog
A4K14-citropin 1.1-Sp1 and A4K14-citropin 1.1-Sp4 displayed
improved helicity levels, greater protease stability, and increased
antitumor activity compared with the original peptide, which
establishes them as promising lead compounds for novel
cancer therapeutics development. In addition, considering
the close relationship between stable α-helix structure and
membrane penetration ability and AMPs’ molecular cell-
membrane hole-punching role during the killing of pathogens,
it was speculated that the antitumor mechanism of A4K14-
citropin 1.1 and its analogs is also related to its cell membrane

permeation property. Further molecular tracing studies using
a fluorescent molecular labeling strategy and relative biological
investigation are ongoing, and new findings will be published in
due course.
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