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By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy

eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational

principle. In practice, the prepared quantum state is indirectly assessed by the value of the

associated energy. Novel adaptive derivative-assembled pseudo-trotter (ADAPT) ansatz

approaches and recent formal advances now establish a clear connection between

the theory of quantum chemistry and the quantum state ansatz used to solve the

electronic structure problem. Here we benchmark the accuracy of VQE and ADAPT-VQE

to calculate the electronic ground states and potential energy curves for a few selected

diatomic molecules, namely H2, NaH, and KH. Using numerical simulation, we find both

methods provide good estimates of the energy and ground state, but only ADAPT-VQE

proves to be robust to particularities in optimization methods. Another relevant finding

is that gradient-based optimization is overall more economical and delivers superior

performance than analogous simulations carried out with gradient-free optimizers. The

results also identify small errors in the prepared state fidelity which show an increasing

trend with molecular size.

Keywords: ADAPT-VQE, quantum computing, quantum chemistry, VQE, potential energy scan, state fidelity

1. INTRODUCTION

Quantum mechanics naturally lends itself to the description of phenomena at the atomic and
molecular scale, including problems of chemical interest, which has culminated in the field of
research known as quantum chemistry. Despite the formal impediments to achieve exact, closed-
form solutions to quantum chemistry problems, there is a wide array of possible approximations,
such as coupled cluster (CC) theory (Shavitt and Bartlett, 2009), which have elevated quantum
chemistry to good standing in the scientific community due to their reliability.

In practice, CC faces two main difficulties that have hindered a more widespread adoption. One
is that most of the success it has garnered over the years is due to its superior performance in
the weak electron correlation regime, for which single-reference (SR) CC remains unchallenged.
This success is justified because many problems in chemistry, such as thermochemistry, can be
adequately treated as being largely weakly correlated. Yet, many other problems of interest involve
molecules and materials that do not comply with this assumption, and for these instances, SR-
CC breaks down. Despite multi-reference (MR) CC being an active area of research (Jeziorski
and Monkhorst, 1981), theoretical and computational challenges currently curb the applicability
of MR-CC (Lyakh et al., 2012).

A second obstacle to a more extensive use of CC theory is its pronounced computational
cost. Reliable SR-CC methods, such as the so-called “gold standard” of quantum chemistry,
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coupled cluster singles and doubles (and perturbative triples), aka
CCSD(T) (Urban et al., 1985; Raghavachari et al., 1989; Watts
et al., 1993), scale unfavorably with one-particle basis spanning
the Hilbert space that houses the electronic wave function, which
largely constrains the application of CCSD(T) to relatively small
molecular systems. It is important to note that some of these
limitations can be mitigated with methods such as configuration
interaction (CI) in its MR formulation and the density matrix
renormalization group (DMRG) which have in turn their own
shortcomings, such as lack of size-extensivity and exactness
contingent upon the dimensionality of the problem.

Concurrent with developments in CC theory has been the
increase in performance of computing technologies, which
broadens the reach of computational chemistry techniques.
Presently, this trend is continuing with the adaptation of
chemistry methods, including CC, to the new technology
paradigm of quantum computing (Britt and Humble, 2017;
Humble et al., 2019). Because of the shared foundation in
quantum mechanics, one of the most immediate applications for
quantum computers is quantum chemistry (McArdle et al., 2020).
Recent advances have reformulated conventional problems in
electronic structure for currently available quantum computing
platforms (Cao et al., 2019). In particular, these efforts have led
to a resurgence of the unitary coupled cluster (UCC) theory
(Bartlett et al., 1989; Kutzelnigg, 1991; Taube and Bartlett, 2006;
Romero et al., 2018), which can be employed in investigations
where strong correlation is dominant. Quantum computing
hardware appears to be well suited for building the states
described by UCC, as this hardware can efficiently implement
unitary operations to construct physical representations of the
quantum state. Moreover, the intrinsic nature of the quantum
computing logic can be exploited in order to propose new
ansatze that, despite lacking a close connection to the underlying
chemical intuition lent by UCC, are prone to a more efficient
implementation, such as the so-called hardware efficient ansatz
(Kandala et al., 2017).

It is in the context of noisy intermediate-scale quantum
(NISQ) (Preskill, 2018) devices that the variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) has emerged as a
promising method for testing the preparation and measurement
of quantum states including those that represent the electronic
eigenstates described by UCC (Quantum et al., 2020). Several
variants of VQE are available (Parrish et al., 2019b; Chivilikhin
et al., 2020), but all build on the variational principle from
quantum mechanics, which constrains the quantum states that
can satisfy the electronic eigenvalue problem (McClean et al.,
2016). While the initial VQE proposal assumes a predefined
ansatz, this constraint has been relaxed, opening the door to
adaptive approaches (Grimsley et al., 2019; Ryabinkin et al.,
2020), by which the preparable quantum states are driven by the
problem at hand. In particular, the adaptive derivative-assembled
pseudo-trotter (ADAPT) ansatz, which finds support on the
recently coined “disentangled” UCC (Evangelista et al., 2019)
and starts from an exact UCC representation of the electronic
ground state to construct an approximate prepared state based
on the dominant contributions. Early studies demonstrated
this as a promising avenue for developing ansatze for specific

molecules and constraints, such as highly accurate energetics or
shallow circuits.

Here we benchmark adaptive VQE prescriptions, ADAPT-
VQE in particular, by comparing the prepared quantum
states with the conventional solutions obtained from exact
diagonalization of the full configuration interactionHamiltonian.
We track the energy of the minimized expectation value
as well as the fidelity of the corresponding prepared state
using multiple ansatz, optimization methods, and molecular
Hamiltonians. We calculate infidelity as a measure of error
for the prepared quantum state relative to the expected, exact
result from quantum chemistry using frozen-core Hamiltonians.
Across these examples, we find that ADAPT-VQE is the more
robust method due mainly to its performance with respect to
optimization methods. While all methods lead to small errors as
measured by the infidelity, these errors are found to grow with
molecular size.

This presentation is structured as follows. In section 2, we
provided an overview of the ingredients in the VQE approach
relevant to our purposes, followed by a short exposition of
the underpinnings of ADAPT-VQE (section 2.1) and a brief
discussion on implementation of gradients and optimization
in ADAPT-VQE (section 2.2). The computational details
permeating the reported simulations are exposed in section 3.
The main results are presented and discussed in section 4 and
several conclusions are drawn in section 5.

2. VARIATIONAL QUANTUM EIGENSOLVER

This section serves to illustrate the pertinent fundamentals of
the VQE algorithm and to motivate the following exposition of
adaptive ansatz construction.We start by recalling the variational
principle, which is at the heart of VQE, and given as

E ≤ min
9

〈9|Ĥ|9〉 (1)

where |9〉 is normalized trial wave function for which Equation
(1) becomes an equality when 9 is constructed from a basis
that spans the single-particle Hilbert space of all possible
occupation numbers (the underlying Fock space) and the
electronic Hamiltonian Ĥ for a molecular system is given as

Ĥ =
∑

pq

hpqp
†q+

∑

pqrs

hpqrsp
†q†sr (2)

The central problem in modern electronic structure theory is the
description and quantification of the electron correlation from an
un-entangled, mean-field wave function |0〉 whose preparation
can be carried out in classical hardware in a timely fashion,
e.g., Hartree-Fock (HF). In analogy with quantum chemistry,
we can expect that there exists an operator that, once applied
to |0〉, will account for the missing electron correlation. Bearing
in mind that quantum computers manipulate quantum states in
a well-defined Hilbert space, this configures a generic unitary
operator Û(Eθ) whose main purpose is to build entanglement
from an un-entangled reference function |0〉. The set of scalars
Eθ are parameters variationally varied in order to minimize
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the expectation value in Equation (1). With that, we recast
Equation (1):

E ≤ min
Eθ
〈0|Û†(Eθ)ĤPÛ(Eθ)|0〉 (3)

In order to ensure that Equation (3) meets the requirements of
quantum hardware, the fermionic, second-quantized operators
found in the formulation of electronic structure problem,
such as those in Equation (2), are brought to a qubit (spin)
representation, with the additional constraint of fermionic anti-
symmetry. Our approach uses the Jordan-Wigner transformation
(Jordan and Wigner, 1928), but others exist, and such a
transformation yields ĤP from Ĥ, that is, the Hamiltonian in
terms of strings of Pauli operators. Starting from the UCC ansatz,
the unitary Û(Eθ) can be written as:

Û(Eθ) = exp(
∑

k

θk(T̂k − T̂†
k
)) = exp(

∑

k

θkτk) (4)

with the T̂k representing the usual cluster operators in CC
theory and τk = T̂k − T̂†

k
, ensuring the anti-Hermiticity of the

operators, which is a necessary condition for their utilization in
quantum computing.

Once in possession of all ingredients in Equation (3), the
tasks of preparing the state Û(Eθ)|0〉 and measuring the terms in
ĤP are delegated to the quantum hardware, and Û(Eθ) is varied
variationally with the aid of a classical optimization routine until
〈ĤP〉 reaches its minimum, which is dependent on the chosen
optimizer and is taken as a good approximation to the sought
ground state energy. Due to the isomorphic property of the qubit
mappings, 〈ĤP〉 = 〈Ĥ〉, yielding the lowest energy eigenvalue of
the molecular Hamiltonian in Equation (2).

2.1. ADAPT-VQE
An important choice in the specification of the VQE method
is the functional form of the ansatz Û(Eθ). Even for a relatively
small Hilbert space, with a moderate number of cluster operators
T̂i, the ansatz Û(Eθ) gives rise to a unitary that translates into
multi-qubit gates and thus cannot be efficiently implemented
in an actual quantum processor. Borrowing from the dynamics
community, this can be alleviated by resorting to the Trotter-
Suzuki decomposition, or Trotterization for short:

exp(
∑

k

θkτk) ≈
∏

k

exp(θkτk) (5)

which here is limited to first-order.
The Adaptive Derivative-Assembled Pseudo-Trotter ansatz

Variational Quantum Eigensolver (ADAPT-VQE) (Grimsley
et al., 2019) takes advantage of Equation (5) to propose an
iterative ansatz construction whereby only the perceived most
relevant operator for energy lowering is added to the ansatz.
A set of operators the algorithm can choose from needs to be
provided, which in this work is comprised of the fermionic spin
singlet adapted single and double excitations, borrowing from the
usual UCCSD formulation, and subsequently mapped into the

appropriate tensor products of Pauli operators via the Jordan-
Wigner transformation. In principle, one could envision explicit
enforcement or relaxation of other types of symmetry, and the
effect of such choices on the performance of ADAPT is certainly
a topic worth exploring. Moreover, the ADAPT algorithm has
also recently been reported to perform well with other choices of
operators, including a more economical pool of qubit operators
(Tang et al., 2020), and has been applied to variational algorithms
other than VQE (Zhu et al., 2020).

From a practical standpoint, at the i-th iteration of the
algorithm, the energy gradient vector (G) with respect to all
{θk} in Equation (5) is computed from measurements on the
circuit that prepares the state optimized in the previous iteration,
represented by |ψi−1〉, with |ψ0〉 = |0〉. Labeling the energy at the
current iteration Ei, we have:

G =

(

∂Ei

∂θ1
, . . . ,

∂Ei

∂θk
, . . . ,

∂Ei

∂θN

)

∂Ei

∂θk
= 〈ψi−1|[H, τk]|ψi−1〉 (6)

and if the norm of this vector falls below a set threshold, the
algorithm is deemed converged and the ansatz-growing loop
is exited. Otherwise, the operator associated with the largest
absolute component of G is selected to increment the ansatz:

|ψi〉 = eθiτi |ψi−1〉, τi = {τk|max |〈[H, τk]〉i−1|} (7)

where 〈[H, τk]〉i−1 means this commutator was computed from
observations in the circuit obtained from the previous iteration.
With the selection of a new operator, the new ansatz is subject to
the usual VQE routine and the corresponding energy minimum
is obtained.

2.2. Gradient Estimate and Classical
Optimization in ADAPT-VQE
From a quantum computing standpoint, ADAPT-VQE improves
on VQE by potentially offering a more tractable circuit. However,
this may come at the expense of a much larger number of
measurements, as the evaluation of all [H, Âk] is performed at
each iteration of the ADAPT loop, on top of the expected energy
evaluations. In order to reduce the number of measurements
associated with ADAPT-VQE simulations, adoption of a gradient
estimate strategy can help improve the classical optimization
step by reaching the sought minima with fewer calls to the
hardware backend.

To motivate the discussion, we start by invoking the
gradient expression as introduced in the original formulation
of ADAPT-VQE:

∂E

∂θi
= 〈φ|Ĥ

i+1
∏

j=N

(eθjτj )τi

1
∏

k=i

(eθkτk )|0〉

− 〈0|
i

∏

k=1

(e−θkτk )τi

N
∏

j=i+i

(−eθjτj )Ĥ|φ〉 (8)

where
∏

i e
θiτi |0〉 = |φ〉.
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Equation (8) can be further simplified into a
recursive formula:

∂E

∂θi
= 〈φ|



Ĥ,
i+1
∏

j=N

(eθjτj )τi

N
∏

j=i+1

(e−θjτj )



 |φ〉 (9)

Before moving further in the discussion regarding the use
of gradients to support the classical optimizer, let us clarify
a potential source of confusion. At a certain ADAPT-VQE
iteration, the circuit previously optimized is implemented to
prepare the state from which the current iteration builds upon.
The gradient vector G is then computed upon the necessary
measurements for all τk in the chosen operator pool (Equation
6), and the operator that has the largest commutator (in absolute
value) is selected. And this the extent to which the gradient
is employed at this stage. On the other hand, we now have a
new ansatz, which is composed of all previously added operators
that enable preparation of |ψi−1〉, along with the newly added
operator from Equation (7). Each of these operators have a
corresponding variational parameter, which in the following
VQE step need to be re-optimized. It is in this optimization
that we would employ the gradients as written in Equations (8)
and (9), and whose magnitude needs to be minimized in order
to signal the finding of an extremum (minimum in this case).
For an operator pool containing N elements, at each ADAPT-
VQE iteration, all N elements of G need to be evaluated, but the
magnitude of this vector is not directly minimized by varying
the circuit parameters, only indirectly by the addition of enough
operators in the ansatz. On the other hand, for optimization
purposes, at the i-th iteration, only i gradient elements are
considered, and the search for the energy minimum is guided
by the minimization of the magnitude of this i-th dimensional
gradient vector. Finally, another crucial point worth pointing out
is that the commutators in Equation (6) are equivalent to those in
Equation (9) only for the operator most recently added, i.e., τi in
Equation (7).

For the purposes of an economical quantum resource
utilization, it is desirable to deploy only one circuit to
be used in both energy and gradient estimates (the same
circuit is implemented many times, one for each term in
the Hamiltonian/gradient). Even though the recursive formula
in Equation (9) could, in principle, satisfy this requirement,
this commutator cannot be measured (Mitarai et al., 2018).
As originally proposed, the gradient is no longer given in
an expectation value form, requiring an auxiliary state to be
prepared via introduction of ancilla qubits, which deviates from
our requirement of saving quantum resources. For that reason,
we resort to numerical finite differences as means of carrying out
gradient-based optimizations in the current work.

In terms of resource estimation, for a circuit depth of O(N),
forward or backward finite differences are akin to introducing
a single Rz(h), where h is the step size, leading the a circuit
depth of O(N + 1), while the use of central differences,
thus, has circuit depth of O[2(N + 1)], the former being
used here due to its superior convergence properties. This is
the cost incurred in the numerical gradient estimate for each

parameter being optimized and a detailed discussion is provided
in section 4.4. Such an estimate may be improved with strategies
such as the quantum natural gradient (Stokes et al., 2020)
or exploiting partial tomography (Parrish et al., 2019a). These
ramifications are worthy of a separate study, and will not be
further investigated here.

3. COMPUTATIONAL DETAILS

The quantum simulations detailed in this manuscript were
performed using the VQE and ADAPT-VQE algorithms and
numerical gradient strategies as implemented in the XACC
hybrid quantum-classical computing framework (McCaskey
et al., 2018b, 2020), with the latter algorithm leveraging a
convergence criterion of ||G|| ≤ 10−2. We emphasize that this
parameter can be of substantial impact on the results, as it
controls the size of the obtained ansatz. In light of the findings in
Grimsley et al. (2019), the adopted value in this paper is believed
to strike a satisfactory balance between accuracy and circuit
depth. The resulting circuits were simulated via the TNQVM
(tensor-network quantum virtual machine) (McCaskey et al.,
2018a) XACC simulation backend and employed a noiseless,
matrix product state (MPS) wave function decomposition for the
quantum circuit with the aid of the ITensor library (Fishman
et al., 2020). XACC provides other simulation backends, as well
as physical backends targeting QPUs from IBM and Rigetti. For
the size of the problems studied in this work, there may not
be perceived benefits from choosing TNQVM over other XACC
simulation backends like Aer (Abraham et al., 2019) or QPP
(Gheorghiu, 2018). TNQVM is expected to be advantageous over
other simulation approaches for problems requiring more qubits
(McCaskey et al., 2018a), but we leave this to future work and do
not investigate it here.

The COBYLA (Powell, 1994) algorithm was used as a
gradient-free optimizer, while gradient-based optimizations were
carried out with the L-BFGS algorithm (Nocedal, 1980; Liu and
Nocedal, 1989), with all parameters being initialized at 0 at each
optimization cycle for both optimizers. Other approaches have
been reported in the literature, such as random initialization
(Grimsley et al., 2020), or as in the original implementation of
ADAPT-VQE (Grimsley et al., 2019) where the new parameter is
initialized at 0, while the previous parameters are initialized from
the optimal values obtained in the previous ADAPT iteration.
XACC offers both optimizers via its interface with NLOpt
(Johnson).

The potential energy curves (PEC) of NaH and KH, were
generated by imposing the frozen-core approximation, reducing
the number of configurations to only those arising from one σ
orbital and its σ ∗ counterpart, that is, a two electrons in two
orbitals complete active space [CAS(2,2)] problem. The one-
and two-electron integrals necessary for the construction of the
Hamiltonians and the corresponding references CAS energies
were obtained with PySCF (Sun et al., 2017), with all calculations
performed with the STO-3G basis set (Hehre et al., 1969, 1970;
Pietro et al., 1980).
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The quality of the output circuits in preparing the desired
states is assessed via the fidelities computed with respect to the
ground state full configuration interaction (FCI) wave function.
This corresponds to the lowest energy eigenvector from exact
diagonalization in the 2N Hilbert space, with orbital occupation
determined by the number of electrons. In possession of the
circuits from the quantum simulations, the respective state vector
representation is obtained using the XACC interface to the Qiskit
Aer simulator (Abraham et al., 2019).

4. RESULTS AND DISCUSSION

Typically, the quality of the state obtained from the variational
optimization of the gate parameters is probed indirectly
by comparison of the computed energies with trustworthy
references values or the exact lowest energy eigenvalue whenever
computationally feasible. Thus, we start by investigating the
energy profile along the atomic displacement, and subsequently
contrast these findings with the analysis of the appropriateness
of the corresponding states via evaluated fidelities relative to the
vector corresponding to the lowest eigenvalue in the active space.

4.1. Potential Energies Curves
We start investigating the behavior of the energy by studying
the H2 molecule. This example has been extensively approached
in quantum computing, and hardly poses any difficulty, at least
from the standpoint of numerical simulations, as opposed to
deployment to actual hardware. However, it serves as a baseline
for the following discussion, as the orbital spaces in the other
molecules are reduced to an active space with the goal of
resembling the H2 molecule. Results with the VQE and ADAPT-
VQE ansatze are plotted in Figure 1, along with FCI results.

Unsurprisingly, there is a remarkable agreement between
simulated and exact values, both qualitatively and quantitatively.
Absolute errors from FCI are found in the sub-miliHartree
range throughout the energy scan, and with either choice of
ansatz, the observed errors would be inconsequential when
taking into account the scale of the errors introduced by noise
in the operation of quantum devices. The impression that
some points are “missing” from the bottom plot of Figure 1 is
explained by these values being numerically identical to the FCI
values (to seven decimal places), hence not being plotted in the
logarithmic scale.

The results from the potential energy curve from simulations
on the NaH molecule are presented in Figure 2.

Visual inspection of the top plot reveals that the choice
between the two ansatze being considered here yield energies
that track one another very well, but because of the energy scale
of this plot, it begs a closer look. The bottom plot displays the
absolute errors between VQE and ADAPT-VQE with respect
to FCI. The errors here are still within chemical accuracy (<1
kcal/mol), and are unlikely to be of much relevance in the total
error if such simulations are executed in a quantum computer.
However, there is a clear trend of increase in the magnitude of the
computed deviations when compared to the hydrogen molecule,
whose results are in Figure 1.

FIGURE 1 | (Top) Potential energy curves of H2 computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

In Figure 3, we again observe some of the patterns that
follow from the analysis of Figures 1, 2. The energy scale here
is much too large to able to reveal relatively minor inadequacies,
even though qualitative discrepancies, such as those arising
from symmetry breaking or the crossing of lines of different
states, would be evident had they been present. The bottom
plot, exhibiting the energy differences from FCI, offers a more
reliable evidence, allowing us to infer that ADAPT-VQE is overall
superior, with smaller errors for the vast majority of points (the
exception being 1.4 Å). Perhaps more importantly, we observe
a general trend of the points from simulations with the plain
VQE ansatz approaching the 1mHartree, with the distances of 2.9
and 3.9 Å now found more than 1 kcal/mol above the respective
FCI energy.

4.2. Optimization Strategies
The potential energy curves presented and discussed in section
4.1 are based upon gradient-free optimization carried out with
the COBYLA optimizer. We report that analogous simulations
were performed with the Nelder-Mead optimizer, which is
also a gradient-free alternative, but preliminary investigations
pointed to COBYLA being a superior choice, at least for the
chosen molecules. To contrast the performance of gradient-free
optimization in the current context, we use the L-BFGS optimizer
for parameter update, as implemented in NLOpt, with gradient
estimated via central numerical finite differences. To assess the
relative performance of these two approaches as the bond in the
current diatomic molecules is stretched, we plot the difference

Frontiers in Chemistry | www.frontiersin.org 5 December 2020 | Volume 8 | Article 606863

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Claudino et al. Benchmarking Adaptive Variational Quantum Eigensolvers

FIGURE 2 | (Top) Potential energy curves of NaH computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

between energies obtained with the COBYLA optimizer and
those with L-BFGS+finite differences, that is, E(COBYLA) −
E(L-BFGS). That way, positive energy differences indicate there
is an improvement by turning to a gradient-based optimization,
while the opposite signals that the current gradient-free method
reached a lower energy.

We observe compatible energies for the H2 case, regardless of
the underlying optimization strategy, for the entirety of Figure 1.
In order to maintain consistency, we plot the energy difference
between the two optimization prescriptions in a miliHartree
scale, and the spike in E(COBYLA) − E(L-BFGS) in 1.7Å, when
rationalized with the scale in mind, shows a deviation in the
µHartree range. Due to the presence of all the many-body
operators necessary for exactness (Evangelista et al., 2019), we
expect and in fact observe results on par with the numerical
precision imposed by the employed optimizers (10−6 Hartree in
relative energy).

While most of the PEC for H2 showed no major dependence
on the adopted optimization procedure, according to Figure 4,
the picture is significantly different in the case of NaH, as
portrayed in Figure 5. Even though the values for E(COBYLA)−
E(L-BFGS) are still rather small, in the sub-miliHartree range,
noticeable differences are more frequent here. Albeit of µHartree
in magnitude, we also observe cases where COBYLA provides
a lower energy than L-BFGS, most notably for ADAPT-VQE
in the 1.4 and 2.5 Å interatomic distances. On the other
hand, in an overall assessment of the performance between

FIGURE 3 | (Top) Potential energy curves of KH computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

FIGURE 4 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the H2 potential energy curve.

VQE and ADAPT-VQE, the latter displays a more pronounced
insensitivity with respect to the choice of optimization scheme.

An even more drastic contrast is found from inspection
of Figure 6, where E(COBYLA) − E(L-BFGS) are plotted for
the KH molecule. Some of the qualitative assertions pointed
out in Figure 5 hold, namely that the performance of VQE
is much more influenced by the choice of optimization
strategy than ADAPT-VQE. Not only that, but ADAPT-VQE is
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FIGURE 5 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the NaH potential energy curve.

FIGURE 6 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the KH potential energy curve.

largely unaffected by employed optimizer, at least between the
two alternatives in consideration. Here again, the differences
seen for VQE correlated well with the deviations from FCI
reported in Figure 3, further corroborating the claim that a
gradient-based optimization, given the current conditions, is a
more robust for approaching the lowest energy eigenvalue of
molecular Hamiltonians.

4.3. State Fidelities
As previously stated, energy values can be used as valuable metric
of the adequacy of a given set of variational parameters and
trial state. However, the energy alone may not be indicative
of the quality of the corresponding state and even acceptable
energy values do not guarantee equally satisfactory values for
other properties. The usual electronic Hamiltonian, as shown
in Equation (2), transforms as the most symmetric irreducible

FIGURE 7 | State infidelities for VQE and ADAPT-VQE using COBYLA (solid

line) and L-BFGS (dashed line) optimization with central finite differences for

the NaH potential energy curve.

representation for a given point group, therefore yielding the
same energy in the case of degenerate states. Other operators,
however, such as the terms in the multipole expansion of the
electric potential, do not display this feature, meaning that
degenerate states may yield different expectation values for
such operators.

In order to examine the state prepared by the two circuit
approaches considered here, we compute their “infidelities”
with respect to the exact FCI state within the aforementioned
active spaces, which is mathematically represented by 1 −
|〈9FCI|Û(Eθ)|0〉|, where Eθ here are the set of optimal values also
utilized for the energy computations in sections 4.1 and 4.2. We
acknowledge that, while this provides direct inroads in the state
being output at completion of the state preparation, it cannot be
experimentally realized. However, in the case of moderately sized
molecules for which the exact diagonalization of the Hamiltonian
is feasible, this can provide valuable insights.

The energy differences discussed in the case of the hydrogen
molecule in sections 4.1 and 4.2 are quite small when considering
the magnitude of the other potential sources of error that
can arise in the presence of noise, either through a model
or in the operation of an actual quantum device. Due to the
simplicity of the electronic structure of this molecule the state
prepared according to the two ansatze construction prescriptions
investigated here yield infidelities that are below the numerical
thresholds employed here, and certainly would be unnoticeable
for realistic purposes. Because they offer little insight, we abstain
from plotting the infidelity results for this molecule here.

Before delving into the particularities of each curve in
Figure 7, we bring the reader’s attention to the scale of the plots,
signaling a remarkable agreement between the state prepared
and the one expected (FCI). It should come as no surprise
that the largest infidelities are found in the vicinity of the
Coulson-Fischer point, the most demanding region in the energy
landscape, and subsequently approach zero as the atoms are
moved far apart. The infidelities for the VQE ansatz follow a
smooth progression when employed in conjunction with the
gradient-based optimizer L-BFGS, whereas the same is not true
for the other combinations of ansatze and optimization. This is
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FIGURE 8 | Number of operators in the ADAPT-VQE ansatze using the

COBYLA (solid line) and L-BFGS (dashed line) optimizers. The corresponding

VQE ansatz has two operators.

likely a compound effect, explained by the former being a fixed
circuit, where only the associate Eθ changes throughout the energy
scan. The latter, however, can assume a different composition,
changing according to the demands of the electronic structure at
each bond length. This works along with the fact that gradient-
based optimization, at least in the current study, provides a
tighter, more reliable solution. For the NaH and KH cases, we
plot the number of operators in the ansatz in Figure 8.

Once again, there is a clear advantage in turning to gradient-
based optimization, as it renders ansatze with fewer operators.
For some internuclear distances, the ADAPT-VQE ansatze,
even when optimized with L-BFGS, contain more operators
than the corresponding VQE ansatz. This is not necessarily
in contradiction with the some of the findings from Grimsley
et al. (2019) because those results were obtained for different
molecules and using different optimization implementations.
Yet, we would expect that when comparing against a larger VQE
problem, such as those investigated in that paper, we would see
similar trends. We also speculate that another variable that can
contribute to the observed behavior is the tolerance that controls
how tight the optimization should be. Because we are using a
default 10−6 threshold in relative energy as the tolerance and
there is no clear connection between the quality of the energies
and the respective prepared states, the absolute energies values
may fall in a scale that may have a small, but non-negligible effect
on the fidelities, which is also evidence of the effect it can have in
the output state, further corroborated by the number of operators
found in the respective ansatze, yet not enough to alter any of the
main conclusions drawn from the results presented here.

Many of the main inferences from the analysis of the Figure 7
hold for the KH molecule, whose infidelities are shown in
Figure 9. Firstly, the infidelities, though still quite small, are
about an order of magnitude larger. The smoothness and
overall profile observed for the VQE UCCSD is retained, but
the behavior of the ADAPT-VQE infidelities is much more
erratic. Secondly, while the ADAPT-VQE ansatz for NaH around

FIGURE 9 | State infidelities for VQE and ADAPT-VQE using COBYLA (solid

line) and L-BFGS (dashed line) optimization with central finite differences for

the KH potential energy curve.

the Coulson-Fischer point is mostly the same, but the larger
number of variational parameters make it more vulnerable
to the optimization inconsistencies discussed above, here the
large oscillations are due to ansatze of alternating operator
compositions. Because the ADAPT-VQE convergence criterion
depends upon a fixed numerical threshold, sometimes the ansatz
at a given iteration may already be close to convergence, but
still not quite below the gradient norm threshold, and upon
the addition of an extra operator, the state may be improved
significantly in the scale of the plots seen in this section.

4.4. Resource Estimation
One of the main motivations behind the present work is to serve
as the baseline for following studies focusing on the investigation
of the electronic structure of molecules carried out in NISQ
devices. With this in mind, it is important to develop some
intuition on the resource demands involved in such tasks.

First we analyze the circuit proposed by VQE and ADAPT-
VQE to prepare the states whose energies and fidelities were
shown in sections 4.1–4.3 in terms of total gate count and circuit
depth, plotted in Figure 10.

Let us first compare the ADAPT-VQE results on the basis of
the two optimizers. As we move from H2 to NaH and KH, we
see a more intricate picture of how these optimizers impact the
final circuit. Qualitatively, L-BFGS has an overall advantage as it
provides circuits that are shallower and with fewer gates. While
there are a few points along the potential energy scans where
the circuits generated based on L-BFGS are not as efficient as
those from a COBYLA optimization, the scales of the plots are
determined solely by the latter. We noticed that in several points,
the simulations with the COBYLA optimizer would produce
states with two instances of the same operator adjacent to each
other. If the actual minimum value had been achieved in a
certain iteration of ADAPT-VQE, the commutator of the same
operator in the next iteration would have been zero. Because this
procedure is accomplished numerically, the magnitude of this
commutator is related to how close the determined minimum
is from the actual one. It turns out that the default threshold
in relative energy (10−6) is found not to be stringent enough,
which incurs a commutator whose deviation from the expected
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FIGURE 10 | Gate counts (left axis) and circuit depth (right axis) from

ADAPT-VQE circuits optimized with the COBYLA and L-BFGS optimizers. The

black solid and dashed lines are the gate counts and circuit depths from the

VQE ansatz, respectively.

zero is non-negligible, resulting in the same operator being added
in successive iterations. Another factor that accounts for the
displayed circuit figures is the fixed gradient norm threshold
in ADAPT-VQE. In some iterations, this quantity is above,
but already quite close to the pre-defined 10−2, and one extra
iteration is performed, with only marginal energy improvement.
To illustrate this, the ADAPT-VQE simulation for NaH with
internuclear separation of 1.8Å converges to ansatz with three
operators, with E = −160.3146751 Hartree and ||G|| = 0.001.
Had the ADAPT cycle been stopped in the second iteration, we
would have ||G|| = 0.013, with E = −160.3146492 Hartree,
that is, the energy improvement was in the µHartree range, yet
at the expense of a deeper circuit, which calls for a more flexible
operator selection in ADAPT-VQE.

These resource estimation parameters in Figure 10 are
comparable between the two ansatz strategies. In general terms,
the circuits optimized upon L-BFGS are more affordable than
the corresponding VQE ones, while using COBYLA tends to
yields circuits that are deeper and need to implement more
gates. We bring attention to the fact that there is not a one-
to-one correspondence between the present analysis and that
in the Figures 2C,F,I in Grimsley et al. (2019). This is because
the latter refers to the number of parameters/operators in the
ansatz. A circuit withmore parameters/operators does not readily
translate into a more complex circuit, which depends on the
number of qubits in a given operator and the operator locality

FIGURE 11 | Total number of measurements for final energy evaluation for the

VQE and ADAPT-VQE ansatze using the COBYLA (solid line) and L-BFGS

(dashed line) optimizers.

and placement. Thismeans these results are not at odds with what
was previously reported, which were obtained for a distinct set of
molecules, but can be seen as complementary.

Another important metric when estimating the necessary
resources for implementation and deployment of the simulations
discussed here is the number of measurements. To complement
the end of the last paragraph, it is important to mention that in
this context the rationalization in terms of number of operators
increases in relevance. In Figure 11, we plot the total number of
measurements to achieve the results reported in section 4.1.

As pointed out in Grimsley et al. (2019), the ansatz put
forth by ADAPT-VQE offers a trade-off between circuit depth
and number of measurements. We can readily confirm by
visual inspection of Figure 11 that ADAPT-VQE incurs a
much larger number of measurements. These figures account
for all measurements involved in computing the commutators
in Equation (6), the energy evaluations at each optimization
iteration, and the computations necessary to minimize the
gradients when L-BFGS is employed. The measurement burden
in ADAPT-VQE reported here can be partially alleviated by
employing a better parameter initialization, such as starting the
VQE optimization at each iteration with the previously optimized
parameters and initializing just the newly added parameter at
zero. This demand is also expected to be greatly relieved by
resorting to a different set of operators, such as those introduced
in the qubit-ADAPT-VQE variant (Tang et al., 2020), which can
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still span the underlying Hilbert space, yet with linear growth in
the number of qubits. This approach would require much fewer
commutator computations at each iteration, but would likely be
of noticeable advantage for operator pools larger than those in
question here. These results are also contingent upon the choice
of optimizer, and there may exist better suited choices than those
investigated here. Yet, we do not believe this would dramatically
change the overall qualitative picture drawn in Figure 11.

Another key outcome from the analysis of Figure 11 is
the fact that, even though the gradient computation with L-
BFGS requires more measurements per iteration, it is overall
much more economical than the gradient-free optimization,
represented here by COBYLA. This furthers strengthens the
case for gradient-based optimization in VQE, as it not only
results in smaller errors/better convergence with respect to the
sought ground state, but it is also much less demanding from a
resource standpoint.

5. CONCLUSION

For a broader adoption of adaptive methods for ansatz
construction in the realm of quantum chemistry, and perhaps,
for many-body methods in general, many aspects still needs to
be explored and their underpinnings better understood. This
work provides a contribution toward this goal by showing a
comprehensive study of potential energy curves of a selection
of molecules of the general formula XH (X = H, Na, K).
Despite their simplicity, they serve to shed light on some of
the mentioned characteristics, and deliver a baseline for feasible
studies involving actual quantum hardware.

Even a relatively conservative gradient norm threshold of 10−2

in ADAPT-VQE is sufficient to provide overall better energetics
than corresponding fixed ansatz approach embodied by the
ordinary VQE, which is in agreement with the initial ADAPT-
VQE proposal. Due to its iterative nature, ADAPT-VQE has an
extra layer of tunability which can be controlled via the threshold
on ||G||. This means that the errors observed with ADAPT-
VQE might have been reduced had ||G|| been made tighter,
which could in turn increase the depth of the circuits, and even
having to cope with more necessary measurements than those of
UCCSD, as suggested with ||G|| = 10−3 in Figure 2i by Grimsley
et al. (2019) However, upon a simple choice of gradient strategy
motivated by the constraints of quantum hardware, we report
that ADAPT-VQE is fairly resilient with respect to the employed
optimization strategy and that encouraging improvements in
performance by adopting a gradient-based approach in the search
of the parameter set that minimizes the objective function can
be mostly beneficial in the case of VQE. These findings call
for a follow-up study on the role of optimizer in conjunction
with ADAPT-VQE, extending the analysis to a larger selection
of optimizers and gradient strategies.

The ongoing development of VQE methods, including
ADAPT-VQE, must also address the noise that is intrinsic to the
operations implemented in experimental quantum computers.
The above benchmarks of infidelity and energy error place
lower bounds on the expected accuracy for VQE methods

using noiseless numerical simulation. However, we anticipate
that the introduction of noise will substantially affect the
accuracy with which the prepared ansatz state approaches
the pure state expected from conventional quantum chemistry
theory. However, if the state infidelity grows with increasing
molecular size, as indicated by our short series of examples,
then lower bounds on ansatz accuracy may become a non-trivial
contribution to observed errors in experimental measurements.
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