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Supported single atom or nanocluster catalysts have been widely studied due to

their excellent catalytic properties. Many methods to prepare such catalysts start with

constructing defects on supports, and the main focus is to improve dispersion and

stability of the active sites. This paper for the first time reports a radical-assisted

method to prepare single atom or nanocluster Pd on a biochar. The char was prepared

by pyrolyzing walnut shell at 600◦C under N2, and Pd was loaded on the char by

impregnating with palladium acetate in toluene under an oxygen-free atmosphere. It

is found that there are three types of radicals in the fresh char (F-Char-600), two

of them may adsorb/bond with O2 or Pd2+ resulting in decreases in the char’s

radical concentration. The Pd on F-Char-600 for 24 h impregnation are single atoms

(0.1–0.3 nm, 2%) and nanoclusters (0.3–1.2 nm, 98%), which grow larger (0.3–4 nm,

100%) for 84 h impregnation. The Pd on N2 purged O2-adsorbed-char (N-O-Char-600)

is much larger in size. The bond between Pd and char is probably C–Pd in F-Char-600

or C–O–Pd in N-O-Char-600.
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INTRODUCTION

Catalysts with highly dispersed nanoscale active components on various supports have been studied
and used (Huang et al., 2012; Wang et al., 2013; Li et al., 2014; Shi et al., 2014). As the size of
active components decreases, their free energy and activity increase, so does their mobility on
supports, leading to easy agglomeration and deactivation (Yang et al., 2013), especially when the
active component size is down to the single atom level. Many attempts were made to form highly
dispersed stable active components on supports (Qiao et al., 2011).

The nature of catalyst supports plays an important role in the formation and stability of active
component sites. For single atom catalysts, the supports studied include metal (Georgios et al.,
2012), metal oxide (Lin et al., 2012), molecular sieve (Lu et al., 2012), metal organic framework
(MOF) (Zhang et al., 2016), and graphene (Wang et al., 2018). These supports contain defects
that interact with and stabilize single atoms (Lin et al., 2012; Zhang et al., 2016; Wang et al.,
2018). Biochar is also a catalyst support and has been used in chemical preparation (Ormsby et al.,
2012), biofuel production (Nieva Lobos et al., 2016), and pollutant control (Cha et al., 2010). The
formation of defect sites on its surface and consequently the single atom active components are also
of great interest. However, the methods reported on preparing biochars through pyrolysis (Shen
and Yoshikawa, 2014) and supporting active components by impregnation (Wang et al., 2014;
Nieva Lobos et al., 2016) and sol–gel (Li et al., 2007) resulted mainly in large active component
sizes, 1.9–38 nm, for example, without single atom sites.
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The supported single atoms have been characterized by
high angle annular dark field aberration-corrected scanning
transmission electron microscope (HAADF-STEM). Their image
intensity was found to be proportional to the square of atomic
number (Z2). The image also tells the detailed location of a single
atom in support structure and the statistical size distribution of
the active sites. For instance, Qiao et al. embedded Pt atoms on
an iron oxide support and showed by HAADF-STEM that only Pt
single atoms are present (Qiao et al., 2011). Yan et al. selectively
deoxidized an oxidized graphene to form active hydroxyl sites on
its surface and then replaced the hydroxyl’s H atoms by Pd atoms
through atomic layer deposition to form C–O–Pd linkage that
resulted in nano Pd clusters of <1 nm in size and Pd loadings of
0.01–1.70 wt.% (Yan et al., 2015). Bulushev et al. loaded Cu on a
N-doped porous carbon network and showed by HAADF-STEM
that the doped pyridine N reduced Cu agglomeration through
Cu–N coordination, resulting in a small number of single Cu
atom sites (Bulushev et al., 2017). Wang et al. blasted holes on
the graphene surface by high-energy atoms or ions to generate
unpaired electrons and then sputtered various metals (M, such as
Pt, Co, and In) into these holes to form single atoms through C–
M linkage as evidenced by high-resolution transmission electron
microscopy (Wang et al., 2012). Apparently, the formation of
single atoms and their linkage to the supports depend on the
chemical state of defects in supports. For carbon supported single
atom catalysts, the linkages may be C–O–M, C–N–M, and C–M.

It was reported that coal chars from pyrolysis in the
temperature range of 300–750◦C contain radicals and their
concentration maximizes at 600◦C (Seehra and Ghosh, 1988;
Cheng et al., 2020; Xiang et al., 2020). Some of the radicals adsorb
oxygen strongly and irreversibly, whereas some other radicals
adsorb oxygen weakly and reversibly (Xiang et al., 2020). Since
an oxygen molecule contains two unpaired electrons, it tends
to bond with the unpaired electrons on the char surface. This
phenomenon implies that metal cations that lack one or more
electrons may strongly bond with or anchored at the biochar’s
radical sites in a metal cation-containing solution. If this is the
case, biochar supported single atom catalysts can be prepared by
utilizing the biochar radicals. This type of work, however, has not
been reported.

METHOD

In this work, walnut shell chars were prepared from pyrolysis
at a heating rate of 5◦C/min to 600 or 850◦C as detailed in the
Supplementary Material. The whole process was under a flow of
Ar (0.99999 purity) at 100 ml/min. The chars were discharged
and sieved to <0.25mm in size under a N2 atmosphere in a
glovebox to yield the fresh chars F-Char-600 and F-Char-850,
respectively. Some of the fresh chars were fully exposed to O2

at room temperature to yield the oxygen-exposed chars, termed
as O-Char-600 and O-Char-850, respectively. The O-Chars were
then subjected to N2 purging at room temperature to yield
N-O-Char-600 and N-O-Char-850, respectively.

These chars were impregnated with a solution containing
palladium acetate and toluene (termed Pd(Ac)2/toluene) or

SCHEME 1 | CR change of Char-600 during O2 adsorption and N2 purging.

tetrahydrofuran (termed Pd(Ac)2/THF) under nitrogen for F-
Char-600 and F-Char-850 or in a parafilm covered beaker
in air for N-O-Char-600 and N-O-Char-850. The chars were
also characterized by the ultimate and proximate analyses,
electron spin resonance (ESR) for radical concentration CR,
HAADF-STEM, and inductively coupled plasma atomic emission
spectroscopy (ICP-AES) for Pd loadings. Details are shown in the
Supplementary Material.

RESULTS AND DISCUSSION

Scheme 1 shows the CR change of Char-600 during O2 exposure
and then N2 purging. It is seen that the CR of F-Char-600 is 46.6
µmol/g (the circle at 0min). It decreases rapidly to 1.0 µmol/g in
O2 (the triangles) to form O-Char-600 and then increases to 9.5
µmol/g in N2 purging (the squares) to form N-O-Char-600. This
trend of CR is confirmed by the second and third O2-adsorption-
and-then-N2-purging cycles, indicating a high reliability of the
measurement. These data suggest the presence of three types
of radical sites in F-Char-600. One type is the strong radical
sites that strongly and irreversibly adsorb/bond O2 at room
temperature, i.e., the adsorbed/bonded O2 cannot be purged off
by N2, and its concentration is about 37.1 µmol/g (46.6–9.5
µmol/g). Another type is the weak radical sites that can weakly
and reversibly adsorb/bond O2, i.e., the adsorbed/bonded O2 can
be removed by N2 purging, and its concentration is∼8.5 µmol/g
(9.5–1.0 µmol/g). The third type is the enclosed radical sites that
are confined in the char structure and not able to contact O2, and
its concentration is about 1.0 µmol/g. This behavior agrees with
that of corncob chars (Xiang et al., 2020).

As hypothesized earlier, the radicals on the char surface may
bond electron-deficient metal cations, such as Pd2+. The amount
of Pd2+ cations bonded on the strong radical sites would be 18.6
µmol/g-char when a Pd2+ cation links two radical sites or 37.1
µmol/g-char when a Pd2+ cation links one radical site. Similarly,
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the amounts of Pd2+ cations bonded on the weak radical sites
would be 4.3 or 8.5 µmol/g-char when a Pd2+ cation links two or
one radical site(s), respectively. Therefore, the minimum amount
of Pd2+ required to bond the strong and weak radical sites
on F-Char-600 is approximately 22.9 (18.6 + 4.3) µmol/g-char,
corresponding to 2.43mg Pd/g-char. To avoid agglomeration of
Pd particles on the char surface and clearly show the small size of
Pd particles, 3.12mg palladium acetate, corresponding to 1.48mg
Pd, about 60% of the minimum Pd loading was used to prepare a
toluene solution (Pd(Ac)2/toluene) for impregnation.

Scheme 2 shows the CR during impregnation of F-Char-600
and N-O-Char-600 by Pd(Ac)2/toluene or toluene. The dashed
lines are the CR of chars alone, 46.6 and 9.5 µmol/g, respectively.
It is seen that the CR of F-Char-600 in Pd(Ac)2/toluene (the filled
triangles) increases initially to 55.8µmol/g, then decreases to 45.0
µmol/g for 24 h, slightly lower than the CR of char, and stabilizes
at 31.7 µmol/g for 72 h. The initial increase of CR is attributed
to tar removal from the char because tar contains radicals (He

SCHEME 2 | CR change of Char-600 in Pd(Ac)2/toluene and toluene.

et al., 2014; Wu et al., 2017) that may couple loosely with
the char radicals. This hypothesis agrees with the high volatile
content of F-Char-600, 26.7 wt.% in Supplementary Table 1, and
is consistent with the CR behavior of F-Char-600 in toluene (the
open triangles) that increases monotonically to 77.5 µmol/g for
12 h. Clearly the trend of CR in Pd(Ac)2/toluene impregnation
can be attributed to two counter effects, the removal of loosely
coupled tar radicals from the char radicals by toluene that
increases CR and the coupling of Pd2+ cations with the char
radicals that decreases CR. The former occurred mainly for 4 h,
whereas the latter took place mainly for 72 h. Therefore, the
Pd loading in F-Char-600 is about 45.8 µmol/g considering the
toluene effect or 14.9 µmol/g excluding the toluene effect.

Scheme 2 also shows that the CR of N-O-Char-600 in
Pd(Ac)2/toluene (the filled circles) increases initially and then
decreases to a stable value close to the initial CR, whereas the
CR of N-O-Char-600 in toluene (the open circles) increases
monotonically to values similar those of F-Char-600 in toluene
for 12 h. These behaviors suggest that toluene removes not only
the tars but also the bonded O2 from the N-O-Char-600. If this
is the case, it suggests that the amounts of Pd2+ cations bonded
to the radical sites on the surface of N-O-Char-600 are about 64.2
µmol/g considering the toluene effect, about 1.4 times that on
F-Char-600, or about 0 µmol/g excluding the toluene effect.

The effect of tar removal by toluene on CR is confirmed by
the char impregnation with Pd(Ac)2/THF or THF (Scheme S1),
during which the trends of CR are similar to those in Scheme 2.

Scheme 3 shows a HAADF-STEM image (a, 100% contrast)
and the corresponding Pd size distribution (b) of F-Char-600
impregnated with Pd(Ac)2/toluene for 24 h. Clearly, there are
many bright spots (marked with the circles) on the char surface
(the gray background). The single Pd atoms (0.1–0.3 nm in size)
account for about 2 wt.% Pd, whereas the rest are Pd nanoclusters
of 0.3–1.2 nm in size. Scheme 4 shows a HAADF-STEM image
of N-O-Char-600 impregnated with the Pd(Ac)2/toluene also
for 24 h (100% contrast). Apparently, only large agglomerated
Pd particles are visible on the char surface. These behaviors
suggest that the char radicals play an important role in bonding
Pd2+ cations and preventing them from agglomeration, which

SCHEME 3 | A HAADF-STEM image (a) and corresponding Pd size distribution (b) of F-Char-600 impregnated with Pd(Ac)2/toluene for 24 h.
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SCHEME 4 | A HAADF-STEM image of N-O-Char-600 impregnated with

Pd(Ac)2/toluene for 24 h.

however also indicates that the solvent effect is more complex
than we had proposed. It is possible that the radicals recovered
by the solvents through tar removal are mainly the weak sites,
whereas the oxygen bonded strong radical sites onN-O-Char-600
are not recovered by the solvents.

The effect of char radicals on Pd particle size is further
elucidated by the HAADF-STEM images of F-Char-600
(Scheme S2a) and N-O-Char-600 (Scheme S2b) impregnated
with the Pd(Ac)2/toluene for 84 h (100% contrast), as well as the
Pd size distribution of F-Char-600 (Scheme S2c). The larger Pd
particle size than that in Scheme 3b indicates the growth of Pd
particles with impregnation time.

The ICP-AES results (Supplementary Table 2) show that the
Pd impregnated F-Char-600 contains 0.017 or 0.061 wt.% Pd,
whereas the Pd impregnated N-O-Char-600 contains 0.024 and
0.075 wt.% Pd for 24 or 84 h impregnation, respectively. The
trends of these data agree with the HAADF-STEM results, i.e., the
Pd size on F-Char-600 is smaller than that on N-O-Char-600, and
a longer impregnation time results in a higher Pd content. The Pd
loadings are similar to those of single atom catalysts shown in the
Supplementary Material.

The effect of char radicals on Pd particle size is further
supported by Scheme S3 (100% contrast), where F-Char-850 and
N-O-Char-850 contain no radicals, and the Pd particles formed
in impregnation with Pd(Ac)2/toluene for 84 h are >10 nm.

It is possible that the Pd supported on F-Char-600 forms the
C–Pd linkage that is stable and maintains small Pd sizes, whereas
the Pd on N-O-Char-600 forms C–O–Pd linkage that is less
stable, and the Pd particles tend to migrate and agglomerate on
the char surface. Since F-Char-850 and N-O-Char-850 do not
have radicals, the Pd supported on their surface does not form
C–Pd linkage and tends to migrate on the surface to form large
Pd agglomerates.

In conclusion, the radicals on biochar surface are crucial to
anchor single Pd atoms or Pd nanoclusters, which is a promising
new method to prepare highly active catalysts and the method
can be extended to other metals. The method should be further
optimized, and the mechanism, the state of the radicals, and the
valence of Pd single atoms should be further studied.
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